
 
  

ARGEE 
Reference Manual 
 MA1019 



 

 2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



 
 

 3 

 

Table	of	Contents 
 

Preface ........................................................................................................................................................ 6	
Why use ARGEE? .......................................................................................................................................................... 7	
What are ARGEE’s advantages and limitations? ........................................................................................................... 7	
Who should use this manual? ........................................................................................................................................ 7	
What is the purpose of this manual? .............................................................................................................................. 7	
What content is in this manual? ..................................................................................................................................... 8	

Chapter 1: Logging into ARGEE ............................................................................................................... 9	
Opening the Environment ............................................................................................................................................... 9	
Logging into Program Mode ........................................................................................................................................... 9	
Welcome to Flow Chart .................................................................................................................................................. 9	
Chapter 2: ARGEE Menu Bar .................................................................................................................. 10	
Run ............................................................................................................................................................................... 10	
Debug ........................................................................................................................................................................... 11	
Reset ............................................................................................................................................................................ 12	
Open/Save As .............................................................................................................................................................. 13	
New Project .................................................................................................................................................................. 14	
Erase Project ................................................................................................................................................................ 14	
Convert to ARGEE PRO .............................................................................................................................................. 15	
About ............................................................................................................................................................................ 15	
Set Title ........................................................................................................................................................................ 15	
Print .............................................................................................................................................................................. 16	
Edit HMI ........................................................................................................................................................................ 16	
View HMI ...................................................................................................................................................................... 16	
Edit Code ...................................................................................................................................................................... 17	
Project .......................................................................................................................................................................... 17	
Settings ........................................................................................................................................................................ 18	
Run Without Source ..................................................................................................................................................... 18	
Modify Variables ........................................................................................................................................................... 19	
Finish Modifications ...................................................................................................................................................... 19	
Show Trace, Stop Trace, Resume Trace ..................................................................................................................... 20	
Show Variables ............................................................................................................................................................ 20	
Chapter 3: Getting Familiar with Flow Chart ......................................................................................... 21	
The Basics .................................................................................................................................................................... 21	
Conditions .................................................................................................................................................................... 21	
Operations .................................................................................................................................................................... 22	
Actions .......................................................................................................................................................................... 22	
Clean Empty Rungs ..................................................................................................................................................... 23	
Add Empty Rungs ........................................................................................................................................................ 24	
Delete All Rungs ........................................................................................................................................................... 25	
Timers ........................................................................................................................................................................... 26	
Counters ....................................................................................................................................................................... 26	
Chapter 4 – Getting Familiar with the ARGEE PRO .............................................................................. 27	
The Basics .................................................................................................................................................................... 27	
Conditions .................................................................................................................................................................... 27	
Actions .......................................................................................................................................................................... 28	
Embedded Webserver .................................................................................................................................................. 29	
Program Variables ........................................................................................................................................................ 30	

PLC_connected & PROG_cycle_time ..................................................................................................................... 31	
Variable Name ......................................................................................................................................................... 31	
Delete ...................................................................................................................................................................... 32	
Add Above ............................................................................................................................................................... 33	
Init (Initialize) ............................................................................................................................................................ 34	



 

 4 

Integer...................................................................................................................................................................... 35	
Timer/Counter .......................................................................................................................................................... 35	
State ........................................................................................................................................................................ 36	
Retain Integer .......................................................................................................................................................... 36	
Add Variable ............................................................................................................................................................ 37	

PLC Variables .............................................................................................................................................................. 38	
Direction ................................................................................................................................................................... 39	
Word Index .............................................................................................................................................................. 39	
Bit Offset .................................................................................................................................................................. 39	
Size .......................................................................................................................................................................... 40	
Signed ..................................................................................................................................................................... 40	

State Names ................................................................................................................................................................. 41	
Add State ................................................................................................................................................................. 42	

Keyboard Shortcuts ...................................................................................................................................................... 43	
Program Variables (Control + Q) ............................................................................................................................. 44	
I/O Variables (Control + I) ........................................................................................................................................ 44	
Operations (Control + F) .......................................................................................................................................... 45	
State Names (Control + S) ...................................................................................................................................... 45	

Chapter 5: Conditions & Actions ............................................................................................................ 46	
Conditions .................................................................................................................................................................... 46	
Actions .......................................................................................................................................................................... 47	

Assignment .............................................................................................................................................................. 47	
Timer Start ............................................................................................................................................................... 48	
Coil ........................................................................................................................................................................... 49	
Timer On .................................................................................................................................................................. 50	
Timer Off .................................................................................................................................................................. 51	
Trace ........................................................................................................................................................................ 52	
Comment ................................................................................................................................................................. 54	
Count Up.................................................................................................................................................................. 55	
Count Down ............................................................................................................................................................. 56	
Reset Counter ......................................................................................................................................................... 57	

Chapter 6 - Operations ............................................................................................................................ 58	
Math .............................................................................................................................................................................. 58	

Addition .................................................................................................................................................................... 58	
Subtraction .............................................................................................................................................................. 58	
Multiplication ............................................................................................................................................................ 59	
Division .................................................................................................................................................................... 59	
Modulo ..................................................................................................................................................................... 60	
Absolute Value ........................................................................................................................................................ 60	
Minimum Value ........................................................................................................................................................ 61	
Maximum Value ....................................................................................................................................................... 62	
Brackets ................................................................................................................................................................... 63	
Boolean AND ........................................................................................................................................................... 63	
Boolean OR ............................................................................................................................................................. 64	
Boolean NOT ........................................................................................................................................................... 64	
Greater Than ........................................................................................................................................................... 65	
Greater Than or Equal to ......................................................................................................................................... 65	
Less Than ................................................................................................................................................................ 66	
Less Than or Equal to ............................................................................................................................................. 66	
Equal........................................................................................................................................................................ 67	
Not Equal ................................................................................................................................................................. 67	
If_Then_Else ........................................................................................................................................................... 68	

Change of State ........................................................................................................................................................... 69	
Count ............................................................................................................................................................................ 71	
Expired ......................................................................................................................................................................... 72	
Chapter 7 - ARGEE Simulation Mode ..................................................................................................... 73	
Opening the Environment ............................................................................................................................................. 73	
Logging into Simulation Mode ...................................................................................................................................... 73	
Select Device to Simulate ............................................................................................................................................ 74	
Welcome to ARGEE Simulation Mode. ........................................................................................................................ 74	



 
 

 5 

Chapter 8 - ARGEE Security ................................................................................................................... 76	
General Security ........................................................................................................................................................... 76	

Visual Behavior ........................................................................................................................................................ 76	
Connection Behavior ............................................................................................................................................... 76	

Password Protection – ARGEE Environment ............................................................................................................... 77	
Source Code Protection – Run Without Source ........................................................................................................... 79	

Chapter 9 – System Performance .......................................................................................................... 81	
Scan Cycle Information ................................................................................................................................................ 81	
IO Variable Formats ..................................................................................................................................................... 81	
How Actions Respond to Conditions ............................................................................................................................ 82	
Defining Variable Types – (Advanced Definitions) ....................................................................................................... 83	
Chapter 10 - Common Applications ....................................................................................................... 84	
Communicating with an EtherNet/IP Master – Allen Bradley ....................................................................................... 84	
Communicating with a Modbus TCP/IP Master – Red Lion ......................................................................................... 86	
Communicating with a PROFINET Master – Siemens ................................................................................................. 89	
Using State Variables ................................................................................................................................................... 92	
ARGEE HMI ................................................................................................................................................................. 95	

General Buttons ....................................................................................................................................................... 95	
Editable Fields ......................................................................................................................................................... 97	
Display Fields ........................................................................................................................................................ 106	

Working with IO-Link .................................................................................................................................................. 115	
Working with RFID ...................................................................................................................................................... 117	
Working with Analog ................................................................................................................................................... 125	
Appendix ................................................................................................................................................. 126	
I/O Variable Definitions ............................................................................................................................................... 126	

Slot “0” Diagnostics Definitions .............................................................................................................................. 126	
Slot 1 or 2 Input Definitions ................................................................................................................................... 126	
Diagnostics Definitions .......................................................................................................................................... 126	
Slot 1 or 2 Output Definitions ................................................................................................................................. 127	

 

  



 

 6 

Preface 
  
Read this preface to familiarize yourself with the rest of the manual. It provides answers to the following questions: 
 

• Why use ARGEE? 
• What are ARGEE’s advantages and limitations? 
• Who should use this manual? 
• What is the purpose of this manual? 
• What content is in the ARGEE reference manual? 

 
 
 
  



 
 

 7 

Why use ARGEE? 
Imagine that a customer is trying to solve a simple application. This customer does not need a PLC, but they do need 
some logic. ARGEE was created specifically to solve this problem. 

 
 
What are ARGEE’s advantages and limitations? 
ARGEE advantages 

• ARGEE stands alone 
o Standalone application (No PLC needed to perform logic) 

• ARGEE backs up the PLC  
o PLC back-up (If the application loses communication with the PLC, ARGEE can take over and 

safely shut down the process) 
• ARGEE and the PLC work together 

o Local Control (ARGEE can monitor an application and send updates back to the PLC) 
 
ARGEE limitations 

• One ARGEE block cannot control another ARGEE block 
• ARGEE is not suited for motion applications 

 
 
Who should use this manual? 
Use this manual if you are responsible for designing, installing, programming or trouble shooting a Turck multiprotocol 
block that is using the ARGEE programmable functionality.  
 
You should have a basic understanding of networking knowledge, Boolean algebra, and ladder logic. If you do not 
possess these skills, contact your local Turck representative for proper training before using ARGEE. 
  
 
What is the purpose of this manual? 
This manual is a reference guide for the ARGEE Programing Environment. This manual: 

• Teaches the user how to use the ARGEE Flow Chart 
• Teaches the user about syntax in ARGEE PRO 
• Provides code for common applications 
• Defines all the tag names associated with Turck I/O cards 

 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

 
 



 

 8 

What content is in this manual? 
 
Chapter Title Content 

		 Preface Overview of the ARGEE Manual content 

1 Logging into ARGEE How to access the ARGEE Environment 

2 ARGEE Menu Bar An explanation of the ARGEE Menu Bar 

3 Getting Familiar with Flow Chart A general overview and walkthrough of the ARGEE 
Flow Chart 

4 Getting Familiar with ARGEE PRO A general overview and walkthrough of ARGEE PRO 

5 Conditions & Actions A detailed explanation of the ARGEE Condition & 
Action statements 

6 Operations A detailed explanation of the Operations offered in 
ARGEE PRO 

7 ARGEE Simulation Mode A general overview and walkthrough of the ARGEE 
Simulation Mode 

8 ARGEE Security A detailed explanation about ARGEE Security  

9 System Performance A general overview of ARGEE system behavior 

10 Common Application Sample code for many common applications 

		 Appendix Defining I/O Variable Names 

  



 
 

 9 

Chapter 1: Logging into ARGEE 
Opening the Environment 
Open the ARGEE Environment and double click on pg.html. 

 

  
 

NOTE: ARGEE only opens up in HTML 5 compliant web browsers such as Google Chrome or Firefox. 

Logging into Program Mode 
Type your devices IP Address into the ARGEE Device IP Address text box, and then click Enter Program Mode. 

 

 
 
NOTE: Simulation Mode is explained on page 73. 

Welcome to Flow Chart 
 

  
  



 

 10 

Chapter 2: ARGEE Menu Bar 
Run 
When the user clicks Run, several things happen. First, ARGEE checks the code for errors. If the code has no errors, 
ARGEE downloads the code to the block. It also calculates and displays how much memory the code has used and 
how much memory is still available. Next, ARGEE transitions over to the Debug screen.  

 

 
 
 
If the code has errors, ARGEE will display an error message and tell the user where the error is located in the code.  

 
 

 
 
 
 
  



 
 

 11 

Debug 
When the user clicks Debug, different things happen depending on whether the user is in Flow Chart or ARGEE 
PRO. 

 

 
 

 
If the user clicks Debug while in Flow Chart, the first thing the user will notice is that the Flow Chart will enter Debug 
mode. As conditions become true, the user can visually observe code progression.  

 

 
 
 
When the user clicks Debug while in the ARGEE PRO, the user can visually observe code progression from a more 
advanced screen. 

 

   



 

 12 

Reset 
The user can view the Reset button while in Debug  mode or while viewing an HMI screen. Reset sets the program’s 
timers and counters to zero. If the user clicks Reset while in Flow Chart, the user can visually observe the timers and 
counters being reset.  

 

 
 
 
 

 
 
When the user clicks Reset while in the ARGEE PRO, the user can visually observe timers and counters resetting to 
zero from a more advanced screen. 

 

 
 
 
 
 

 
 
 
  



 
 

 13 

Open/Save As 
The Open/Save feature allows the user to save a current project or load a previous project. The user accesses the 
Open/Save As feature from different places depending on if they are in Flow Chart or ARGEE Pro. From Flow Chart, 
the Open/Save As tab is available in the ARGEE Menu Bar. 
 

  
 

 
While in ARGEE PRO, the user can access the Open/Save As screen by clicking on the Project tab and then 
selecting the Open/Save As tab. 
 

 
 
 
 
 
 

 
 
On the Open/Save As screen, the user can perform several actions: 

• The Import Text Above button imports the above text into the project 
• Under the Open Project text, the Choose Files button allows the user to browse their 

computer for a previously saved project. Once the file is selected, ARGEE will 
automatically load the project 

• Under the Save Project text, the Save Project With Source button allows the user to save 
their project as an .arg file. The user also has the option to Save Project Without Source 
Code. 

• The Edit tab brings the user back to ARGEE PRO.  

  



 

 14 

New Project 
The user clicks on New Project to start a new project. 
 

 

 

Erase Project 
Starting a new project does not erase the code on your block. If the user wants to erase the code on the block, they 
need to first start a New Project and then click Run. This action will load an empty project the block.  
 

 
 
 
The user can also remove the ARGEE code by selecting Erase ARGEE Program or Reset to Factory Defaults inside 
the webserver page. 

 

 
 
Note: Getting to the webserver is discussed on page 29. 



 
 

 15 

Convert to ARGEE PRO 
The user will click Convert to ARGEE PRO when they want to leave the Flow Chart mode and enter the ARGEE PRO 
Programming Environment. 
 

 
 
NOTE: Once the user selects Convert to ARGEE PRO, they cannot convert back to Flow Chart. 

 
 
About 
The user can click About if they want to view the ARGEE environment and kernel firmware revisions. 
 

 

 

Set Title 
The user can click Set Title to add a name to the project. 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 



 

 16 

Print 
The Print option is available in the ARGEE PRO menu bar. The user can click Print if they want to print out a copy of 
their project. 

 

 
 
 

Edit HMI 
The Edit HMI tab brings the user to the edit HMI screen.  
 

 
 
  
 
 

 
 
NOTE: Instructions for how to build an HMI are located on page 94. 

 

View HMI 
The View HMI tab allows the user to view their HMI screen. This tab becomes active after the user has already built 
an HMI. 
 

 
 
  



 
 

 17 

Edit Code 
When the user clicks on the Edit Code tab they will return to the main ARGEE PRO page. 
 

 

 

Project 
When the user clicks on the Project tab, they will have access to a second ARGEE Menu Bar.  

 

 
 
 
  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 



 

 18 

Settings 
From the Settings screen, the user can set the “percentage” of their screen that displays their Variables and State 
Names. The remaining “percentage” of the screen displays the ARGEE Program.  
 

 
 
 

 

 

Run Without Source 
Selecting Run Without Source will allow the user to run a program without displaying the actual code. The end user 
will not be able to access source code by loading the ARGEE environment. Run Without Source is one of ARGEE’s 
security protocols. 
 

 
 
Very Important Note: The user needs to save a Master Copy of the program before the user logs out of the 
environment if the user wants to view/edit the code in the future. Security protocols are discussed in Chapter 8 - 
ARGEE Security. 

 
 

35 percent width 



 
 

 19 

Modify Variables 
The Modify Variables tab is available in ARGEE PRO and in the ARGEE Simulation Mode. It only becomes visible 
when the user is in Debug mode. From the Modify Variables screen, the user can manually change register and 
variable values. 

 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 

Finish Modifications 
The user can select Finish Modification to exit Modify Variables mode. 
 

 

 
 
 
 

 

 



 

 20 

Show Trace, Stop Trace, Resume Trace 
The user will use Trace when they want to measure the run-time behavior of the program. Trace allows the user to 
measure how long each state takes as well as which states were visited in which order. Trace is an Action that must 
be inserted into the code before Trace will appear in the menu bar. 
 
The user can click on Show Trace to view the active Trace data. 
 

 
   
 
The user can click on Stop Trace to easily view the programs historical run-time data. 
 

 
 
 
The user can click on Resume Trace to resume tracing the programs run-time. 
 

 
 
NOTE: More information about Trace can be found on page 52. 

 

Show Variables 
The user can click on Show Variables if the user wants to leave Trace Mode. 
 

  



 
 

 21 

Chapter 3: Getting Familiar with Flow Chart 
The Basics 
The Flow Chart Editor is made up of Condition, Operation, and Action Blocks. Conditions, Operations and Actions are 
selected by clicking their respective drop down arrows. The Flow Chart Editor also provides the user with two timers 
and two counters. 

 

 
 
 
 

Conditions 
The Condition Block contains Input conditions. The input conditions the user sees corresponds to the block the user 
is connected to. Other included input conditions are: Timer X expired, Counter X expired, Internal Reg X, and PLC In 
Reg X. 
 

 
 

NOTE: Expired functions are discussed on page 72. Internal Reg’s are discussed on page 30 (Reg = Register). PLC 
In Reg’s are discussed on page 38. 

 

  
  

Action Blocks Operation Blocks Condition Block 



 

 22 

Operations 
The Operation Blocks contain various Boolean operations. If no Operations are desired, select Pass Through. 
 

 
 

NOTE: Boolean Logic is discussed on pages 63 and 64. 
 
 

Actions 
The Action Block contains Output conditions, The Output conditions the user sees corresponds to the block the user 
is connected to. Other included Output conditions are: TON Timer X (Turn ON Timer X), CTU Counter X (CounT Up 
Counter X), RESET Counter X, Internal Reg X, PLC Out Reg X. 
 

 
 

NOTE: TON is discussed on page 50. CTU is discussed on page 55. RESET is discussed on page 57. Internal Reg’s 
are discussed on page 30 (Reg = Register). PLC Reg’s are discussed on page 38. 
 
  



 
 

 23 

Clean Empty Rungs 
The Clean Empty Rungs button will remove all unused rungs from the Flow Chart Editor. 
 

 
 
 
 
 

 
 
  



 

 24 

Add Empty Rungs 
The Add Empty Rungs button will add four empty rungs to Flow Chart Editor. 
 

 
 
 
 
 
 

  



 
 

 25 

Delete All Rungs 
The Delete All Rungs button will remove all rungs from Flow Chart Editor.  
 

 
 
 
 
 

 
 

Note: Used and unused rungs will both be deleted from the project.  



 

 26 

Timers 
Flow Chart Editor contains two Timers. The user can set the Timers by typing a value into the Timer text box. Timer 
values are in milliseconds (1000 Milliseconds = 1 Second). 
 

 
 

NOTE: Timer examples can be seen on page 48, 50 and 51.  
 

Counters 
Flow Chart Editor contains two Counters. The user can set the Counters by typing a value into the Counter text box. 
 

 
 

NOTE: Counter examples can be seen on page 55, 56 and 57.  
  



 
 

 27 

Chapter 4 – Getting Familiar with the ARGEE PRO 
The Basics 
The ARGEE PRO home page is made up of Conditions & Actions, An Embedded Webserver Link, Variables & State 
Names, and Keyboard Shortcuts.  
 

 
 

Conditions 
The Add Condition button will add one blank condition to the ARGEE project. This environment is executed in the 
manner of IF / THEN statements. ARGEE calls them Conditions (IF) and Actions (THEN).  
 

 
 
 

 
 

Variables & State Names 

Keyboard Shortcuts 

Conditions & Actions 

Embedded Webserver Link 



 

 28 

Actions 
Actions are selected from a pull down menu. Users select the desired action, and then select the Add Action button.  
 

 
 
 
 

 
 
Note: Some Actions are executed even if the Condition is false. See Chapter 9 – System Performance for more 
information in this topic. 
  



 
 

 29 

Embedded Webserver 
The user can click Link to access the connected blocks webserver. Once the user is in the webserver, they can view 
the device status and even set device parameters.  
 

 
 
 
 
 

 
   
 
NOTE: The default password for the webserver is “password”.    



 

 30 

Program Variables 
Program Variables can be added, deleted and renamed. The user can also change the variable type by using the 
drop down arrow.  
 

 
 
  



 
 

 31 

PLC_connected & PROG_cycle_time 
The PLC_connected bit is true when a PLC is connected to the device. The PROG_cycle_time displays the time it 
takes to execute the entire program. 
 

 

Variable Name 
Variable Names are the names of variables in the users program. 
 

 

 

 

 

 
 
 
 
 



 

 32 

 
 

Delete 
The Delete button will delete the program variable. 
 

 
 
 
  



 
 

 33 

Add Above 
The Add Above button will add a Program Variable above the selected variable. 
 

 
 
 
 
 

 
 
  



 

 34 

Init (Initialize) 
The user will use Initialize if they want to pre-set the value in a Program Variable’s register. 
 

 
 
 
 

 
 

   



 
 

 35 

Integer 
If the user selects Integer, the Program Variable will be stored in 32 bit signed register. This allows the user to store 
an Integer value between +2,147,483,647 and -2,147,483,647 in the Program Variable’s register. 
 

 
   NOTE: Integer values are stored in four 8-bit registers. 

   

Timer/Counter 
The user can select Timer/Counter if they want to add a Timer or Counter variable to their program. 
 

 
 
  



 

 36 

State 
The user would select State if they wanted to create a State Variable. State Variables are used in State Machines. An 
example of a State Machine is shown on page 91. 
 

 
 

Retain Integer 
The user would use Retain Integer if they wanted to save the value in a Program Variable through a power cycle. The 
value is saved into flash memory once every three minutes if the value has been changed. 
 

  



 
 

 37 

Add Variable 
The Add Variable button will add a Program Variable to the program. 
 

 
 
 
 
 

 

 
  



 

 38 

PLC Variables 
PLC Variables are used to define communication between the ARGEE block and the PLC. PLC examples are shown 
in Chapter 10 – Common Applications. 
 

 
  



 
 

 39 

Direction 
The user will use the Direction dropdown arrow to assign which direction the data is traveling. ARGEE->PLC means 
the data is traveling from the ARGEE block to the PLC. PLC->ARGEE means the data is traveling from the PLC to 
the ARGEE block. 
 

 
 

Word Index 
The user will use the Word index to assign the data to a specific register in the PLC or the ARGEE block. 
 

 
 

Bit Offset 
The user will use the Bit offset to assign the data to a specific bit in a register. 
 

 

 
 
 
 
 



 

 40 

Size 
The user will use the Size drop down to set the size of the data being transferred.  
 

 

Signed 
The user will use the Signed drop down to indicate whether the data being transferred is a signed or unsigned 
integer. 
 

 

  
  



 
 

 41 

State Names 
State Names are used to make it easier to identify which State the users program is in. “State” is the term used to 
identify a specific program operation at a specific moment. 
 

 
 
 
 

   
  



 

 42 

Add State 
The user would click Add State if they wanted to add State Names to their program. 
 
 

 
 
 
 
 
 

 

 
 
Note: An example that uses State Names is shown on page 91 and page 116. 
  
  



 
 

 43 

Keyboard Shortcuts 
Keyboard shortcuts provide the user with a quick way to access Program Variables, I/O Variables, Operations and 
State Names. 

• Ctrl-q, Program Variables. 
• Ctrl-i, I/O Variables. 
• Ctrl-f, Operations 
• Ctrl-s, State names 

 

 

 

 

 

 
  



 

 44 

Program Variables (Control + Q) 
If the user presses Ctrl + q while in a Condition or Action box, the Program Variable List will pop up. The user can 
select their desired variable and it will be added to their respective Condition or Action box.  
 

 

I/O Variables (Control + I) 
If the user presses Ctrl + i while in a Condition or Action box, the I/O Variable List will pop up. The user can select 
their desired variable and it will be added to their respective Condition or Action box.  
 

 



 
 

 45 

Operations (Control + F) 
If the user presses Ctrl + f while in a Condition or Action box, the Operations List will pop up. The user can select their 
desired operation and it will be added to their respective Condition or Action box.  
 

 
 
State Names (Control + S) 
If the user presses Ctrl + s while in a Condition or Action box, the State Name List will pop up. The user can select 
their desired State Name and it will be added to their respective Condition or Action box.  
 

 
 
NOTE: If the user has not added a State Name to their project, the State Name List will be empty.  



 

 46 

Chapter 5: Conditions & Actions 
Conditions 
The Condition box is where the user puts their input conditions. An example of an Input condition could be:  

• A Timer expiring  
• A Counter reaching a specific value 
• A Counter expiring   
• A register value changing from 0 to 1 
• A register value changing from 1 to 0 
• An Input from a sensor becoming true 
• …many other things can also be used as an input condition 

 

 
 
The Condition box also allows the user to combine different types of Inputs.  

 

 
 
Explaining the Screenshot: The above Condition will only become true when timer 1 expires and Input_value_1 
goes true. 

 
 
 
 
 
 
 
 



 
 

 47 

Actions 
The Actions box is where the user puts their Output conditions. The user can execute several Actions under a single 
Condition statement. An Action could be:  

• Loading a value into a register 
• Stating a Timer  
• Stopping a Timer 
• Signal Tracing 
• Incrementing a Counter  
• Decrementing a Counter 
• Resetting a Counter 

 

 

Assignment 
The user would use the Assignment action if they want to load a value into a register.  
 

 
 
Explaining the Example: The Condition in the above statement is always “true”. The value “1” is loaded into register 
Output_value_1. In other words, this means that the user’s Output 1 will always be on. 
  



 

 48 

Timer Start 
The user will use the Timer Start action if they want to start a timer after the Condition has occurred. 
 

 
 
If the Condition occurs again before the timer expires, the timer will restart. 
 

 
  
Example of Timer Start  
 

 
 
Explaining the Example: When Input_value_1 goes true and then false, start timer 1. When timer 1 expires, load the 
value “1” into register Output_value_2 (or turn on Output 2).   



 
 

 49 

Coil 
The user will use the Coil action if they want an Output to be “set” if the Condition is true and “cleared” when the 
Condition is false.  
 

 
 
Example of Coil 
 

 
 
Explaining the Example: When Input_value_1 is true, Output_value_2 is true. When Input_value_1 is false, 
Output_value_2 is false. 
  



 

 50 

Timer On 
The user will use the Timer On action if they want a timer to run while a Condition is true. The user will normally tie an 
additional Action or Output to the timer expired Condition. 
 

 
 
If the Condition ends before the timer expires, the Action tied to the expired timer will not occur. 
 

 
 
Example of Timer On 
 

 
 
Explaining the Example: When Input_value_1 is true, start timer 1. When timer 1 expires, coil Output_value_2. 
When Input_value_1 is false, Output_value_2 will be false. 



 
 

 51 

Timer Off  
The user will use the Timer Off action if they want a timer to run while a Condition is false. The user will normally tie 
an additional Action or Output to the timer expired Condition. 

 

 
 
If the Condition starts before the timer expires, the Action tied to the expired timer will not occur. 
 

 
 
Example of Timer Off 
 

 
 
Explaining the Example: Timer 1 starts counting as soon as the program starts. When timer 1 expires, 
Output_value_2 is coiled on. When Input_value_1 is true, timer 1 is reset to zero and Output_value_2 goes false. 
When Input_value_1 is false, timer 1 starts counting again. 
  



 

 52 

Trace 
The user will use the Trace function if they want to time stamp exactly when an event occurred. Trace can be used to 
measure a programs run-time behavior, how long each state takes and even which states were visited in which order.  
 
Example of Trace 
The user wants to use Trace to measure how long the condition is true. 
 

 
Note: The below example uses the Change of State Operation (F_COS) in the Condition block. The Change of State 
Operation is discussed on page 69. 

 

  
 
Explaining the Example: When Input_value_1 is true, Trace_1 time stamps that event. When Input_value_1 goes 

false, Trace_2 time stamps that event. The Prefix String is a name that makes sense to the user. The 
Expression can be any value or even another variable name that makes sense to the user. 

 
The Trace example is continued on the next page. 

 
 
 
 
 
 



 
 

 53 

Trace Example (Continued): Once the user has written the code the user will click Run. 
 

 
 
 
 
To view the Trace, the user will click Show Trace. 
 

 
 
 
 
The user will trigger their Condition true then false to show a transition in the Trace data. 
 

  
 
 
To calculate how long the users Condition is true, the user must subtract the two time stamps from one another: 
37240 - 36805 = 435ms. 
  



 

 54 

Comment 
The user can use a Comment to explain the Condition and Action statements.  
 

 
 
 
 
 
 
 
  



 
 

 55 

Count Up 
The user will use Count Up if they want to count the number of times their condition is true. The user will normally tie 
an additional Action or Output to the counter expired Condition. 
 
Example of Count Up 
The user wants to do an Action after the same Condition has occurred two times. 
 

 
 

 
 
Explaining the Example: Each time Input_value_1 is true, counter 1 counts up one time. Counter 1 expires after two 
counts. When counter 1 expires, Output_value_2 is coiled on.  
 
  



 

 56 

Count Down 
The user will use Count Down if they want to count down when a condition is true. Count Down is normally used to 
counter the Count Up Action.  
 

 
 
Example of Count Down 
The user wants to keep track of the number of guests in the store. When a guest walks in the store the counter goes 
up, but when a guest walks out of the store the counter goes down. 
 

 
 
Explaining the Example: Each time Input_value_1 is true (or a guest walks in the store), counter 1 counts up one 
time. Each time Input_value_2 is true (or a guest walks out of the store), counter 1 counts down one time.  
 
  



 
 

 57 

Reset Counter 
The user will use Reset Counter if they want to reset a counter to zero. 
 

 
 
Example of Reset Counter 
The user wants the ability to reset the counter at any time. 
 

 
 
Explaining the Example: Each time Input_value_1 is true, counter 1 counts up one time. Each time Input_value_2 is 
true, counter 1 resets to zero.    



 

 58 

Chapter 6 - Operations 

Math  
The user will use Math Operations if they want to monitor, compare or combine data from different registers. Math 
Operations can be used in both Condition and Action expressions.  

Addition 
The user will use the Add Operation (+) to add one value to another value.  
 
Example of Add Operation 
 

 
 
Explaining the Example: When Input_value_1 is true, the value in Register_A will be added to the value in 
Register_B. The result is placed in Temporary_Register. 

Subtraction 
The user will use the Subtraction Operation (-) to subtract one value from another value.  
 
Example of Subtraction Operation 
 

 
 
Explaining the Example: The user is subtracting the value in Register_A from the value in Register_B. When 
Register A minus Register B is greater than 1, the user Coils on Output_value_1. 
 
  



 
 

 59 

Multiplication 
The user will use the Multiplication Operation (*) to multiply one value with another value.  
 
Example of Multiplication Operation 
 

 
 
Explaining the Example: The user is multiplying the value in Register_A with the value in Register_B. If Register A 
times Register B is less than 1000, the user Coils on Output_value_1. 

 

Division 
The user will use the Division Operation (/) to divide one value into another value.  
 
Example of Division Operation 
 

 
 
Explaining the Example: When Input_value_1 is true, the value in Register_A will be divided by the value in 
Register_B. The result is placed in Temporary_Register. 
 
VERY IMPORTANT NOTE: ARGEE does not currently support floating point math (or fractions). If the result has a 
fraction in it, AGREE will drop the fraction and just display the whole number.  
 
For example: 
 
36 / 6 = 6    ---> ARGEE displays “6” 
34 / 6 = 5𝟒

𝟔
   ---> ARGEE displays “5” 

6 / 36 =  𝟏
𝟔
    ---> ARGEE displays “0” 

 
 
 
 
 
 



 

 60 

Modulo 
The user will use the Modulo Operation (%) if they want to capture the “remainder” after a Division Operation has 
occurred.  
 
Example of Modulo Operation 
 

 
 
Explaining the Example: When Input_value_1 is true, the value in Register_A will be divided by the value in 
Register_B. The “remainder” from the Division Operation is placed in Temporary_Register. 
 
For example: 
 
36 / 6 = “6” with a remainder of “0”    --->   ARGEE displays “0” 
34 / 6 = “5” with a remainder of “4”    --->   ARGEE displays “4” 
6 / 36 = “0” with a remainder of “6”    --->   ARGEE displays “6” 

 

Absolute Value 
The user will use the Absolute Value Operation (abs) to capture the magnitude of a real number without regard to its 
sign.  
 
Example of Absolute Value Operation 
 

 
 
Explaining the Example: When Input_value_1 is true, ARGEE will take the value in Register_A, find its Absolute 
Value, and place that value back in Register_A. 

 
 

 
 



 
 

 61 

Minimum Value 
The user will use the Minimum Value Operation (min) to compare multiple registers and place the smallest value in to 
the Destination Register. The user can also use the Minimum Value Operation (min) to compare multiple registers 
and use the smallest value in a Math Operation.  
 
Example of Minimum Value Operation 
 

 
 
Explaining the Example: When Input_value_1 is true, ARGEE will take the smallest value between Register_A and 
Register_B and place that value into Temporary_Register 
 

OR 
 

 
 
Explaining the Example: When Input_value_1 is true, ARGEE will take the smallest value between Register_A and 
Register_B and place that value into the Math Operation. The result will be stored in Temporary_Register.  
 
 
 
 
 
 
  



 

 62 

Maximum Value 
The user will use the Maximum Value Operation (max) to compare multiple registers and place the largest value in to 
the Destination Register. The user can also use the Maximum Value Operation (max) to compare multiple registers 
and use the largest value in a Math Operation.  
 
Example of Maximum Value Operation 
 

 
 
Explaining the Example: When Input_value_1 is true, ARGEE will take the largest value between Register_A and 
Register_B and place that value into Temporary_Register 
 

OR 
 

 
 
Explaining the Example: When Input_value_1 is true, ARGEE will take the largest value between Register_A and 
Register_B and place that value into the Math Operation. The result will be stored in Temporary_Register.  

 

 

 
 
 
 
 
 
 
 
 
 
 

 
 
 



 
 

 63 

Brackets 
The user will use Brackets ( ) to show the order of operations while performing Math. 
 
Example of Brackets 
 

 
 
Explaining the Example: When Input_value_1 is true, ARGEE will examine the “(Register_B + Register_C)” first and 
then divide the answer into the value in Register_A. The result will be stored in Temporary_Register.  

 

Boolean AND 
The user will use the Boolean AND Operation (&) if the user wants to combine several Conditions together before 
allowing a specific Action to occur.  
 
Example of Boolean AND 
 

 
 
Explaining the Example: When both Input_value_1 AND input_value_2 are true, load the value “1” into Register_A.  
 
 
 
  



 

 64 

Boolean OR 
The user will use the Boolean OR Operation (I) if the user wants one of several Conditions to cause an Action to 
occur.  
 
Example of Boolean OR 
 

 
 
Explaining the Example: When either Input_value_1 OR input_value_2 are true, load the value “1” into Register_A.  

 

Boolean NOT 
The user will use the Boolean NOT Operation (!) if the user wants an Action to occur while a Condition is false.  
 
Example of Boolean NOT 
 

 
 
Explaining the Example: When Input_value_1 is true, load the value “1” into Register_A. When Input_value_1 is 
false, load the value “0” into Register_A. 
 
  



 
 

 65 

Greater Than 
The user will use the Greater Than Operation (>) if the user wants a Condition to occur when one register value is 
Greater Than another register value.  
 
Example of Greater Than 
 

 
 
Explaining the Example: When the value in Register_A is Greater Than the value in Register_B, the value “1” will 
be loaded into Register_C. 

 

Greater Than or Equal to 
The user will use the Greater Than or Equal to Operation (>=) if the user wants a Condition to occur when one 
register value is Greater Than or Equal to another register value.  
 
Example of Greater Than 
 

 
 
Explaining the Example: When the value in Register_A is Greater Than or Equal to the value in Register_B, the 
value “1” will be loaded into Register_C. 

 
 
 
 
 
 
 
 
 
 

 
 



 

 66 

Less Than 
The user will use the Less Than Operation (<) if the user wants a Condition to occur when one register value is Less 
Than another register value.  
 
Example of Greater Than 
 

 
 
Explaining the Example: When the value in Register_A is Less Than the value in Register_B, the value “1” will be 
loaded into Register_C. 

 

Less Than or Equal to 
The user will use the Less Than or Equal to Operation (<=) if the user wants a Condition to occur when one register 
value is Less Than or Equal to another register value.  
 
Example of Greater Than 
 

 
 
Explaining the Example: When the value in Register_A is Less Than or Equal to the value in Register_B, the value 
“1” will be loaded into Register_C. 

 
 
 
 
 
 
 
 
 
 
 



 
 

 67 

 

Equal 
The user will use the Equal Operation (=) if the user wants a Condition to occur when one register value is Equal to 
another register value.  
 
Example of Equal 
 

 
 
Explaining the Example: When the value in Register_A is Equal to the value in Register_B, the value “1” will be 
loaded into Register_C. 

 

Not Equal 
The user will use the Not Equal Operation (<>) if the user wants a Condition to occur when one register value is Not 
Equal to another register value.  
 
Example of Not Equal 
 

 
 
Explaining the Example: When the value in Register_A is Equal to the value in Register_B, the value “1” will be 
loaded into Register_C. When the value in Register_A is Not Equal to the value in Register_B, the value “0” will be 
loaded into Register_C. 
 



 

 68 

If_Then_Else 
The user will use the If_Then_Else operation if they want an expression to be set only if a particular test evaluates as 
true. If it evaluates as false, a secondary expression is chosen.  
 
Example of if_then_else

  
 
Explaining the Example: If the value in Register_A is below 1000, then the value in Register_B is loaded into the 
Temporary_Register. If the value in Register_A is above 1000, then the value in Register_C is loaded into the 
Temporary_Register.   



 
 

 69 

 

Change of State 
The user will use the Change of State Operation (F_COS) if the user wants an Action only to occur when a Condition 
changes state. A Condition can change state from either “low to high” or “high to low”. 
 

 
 
Change of State Command Structure: 
 

 
 
Example of Change of State 
 

 
 
Explaining the Example: When Input_value_1 does a Change of State from low (zero) to high (one), the value “1” is 
loaded into Register_A. When Input_value_2 does a Change of State from high (one) to low (zero), the value “0” is 
loaded into Register_A. 
 



 

 70 

Note: Each monitored Condition requires its own Current State register. Notice in the example, Temp_1 was used to 
monitor the Change of State of Input_value_1 and Temp_2 was used to monitor the Change of State of 
Input_value_2.  



 
 

 71 

Count 
The user will use the Count Operation (count) if the user wants to perform an Action when a counter or timer is at a 
specific value but has not yet expired. 
 

 
 
Example of Count 
 

 
 
Explaining the Example: Each time Input_value_1 goes true, counter 1 counts up one time. Counter 1 expires after 
five counts. After input_value_2 goes true, timer 1 starts. Timer 1 will expire after ten seconds (or 10,000ms). When 
counter 1 counts to “2” OR timer 1 is Greater Than two seconds (or 2000ms), Output_value_3 is coiled on.  
  



 

 72 

Expired 
The user will use the Expired Operation (expired) if they want to perform an Action when a counter or timer has 
expired. 

 
 
Example of Expired 
 

 
 
Explaining the Example: Each time Input_value_1 goes true, counter 1 counts up one time. Counter 1 expires after 
two counts. After input_value_2 it goes true, timer 1 starts. Timer 1 will expire after two seconds (or 2,000ms). When 
counter 1 OR timer 1 expires, Output_value_3 is coiled on. 

 
  



 
 

 73 

Chapter 7 - ARGEE Simulation Mode 
Opening the Environment 
Open the ARGEE Environment and double click on pg.html. 
 

  
 
NOTE: ARGEE only opens up in HTML 5 compliant web browsers such as Google Chrome or Firefox. 

 

Logging into Simulation Mode 
Click Enter Simulation Mode. 
 

 
 
 

  
 



 

 74 

Select Device to Simulate 
If the user has never used Simulation Mode before, the first thing they will have to do is select a device to simulate 
from the drop down arrow. 
 

 
 

 
 

 

 

Welcome to ARGEE Simulation Mode.  
 



 
 

 75 

 



 

 76 

Chapter 8 - ARGEE Security 
General Security 
Security is a concern to some users. ARGEE provides several security features, the first of which is General Security. 
General Security is the term used to explain a block’s behavior with ARGEE programming versus a block’s behavior 
without ARGEE programming. 

Visual Behavior 
If there is an ARGEE program running on the block and: 

• The BUS LED will flash green three times and then stay off for 1 second. 
 
If there is not an ARGEE program running on the block: 

• The block’s LED’s will behave in accordance with that block’s data sheet. 
 

Connection Behavior 
Ethernet IP Master (Allen Bradley) 
If there is an ARGEE program running on the block before a PLC connection is established: 

o The PLC connection point combinations 101,102 or 103,104 will not be allowed 
o ARGEE will block any attempt by the PLC to upload parameters from the block 
o The PLC will only be able to make connection to the block via the ARGEE connection pair 

101, 110 
  
If the PLC makes a connection to the block before an ARGEE program is loaded: 

o The PLC connection point combinations 101,102 or 103,104 will be allowed 
o The AGREE connection pair 101, 110 will not be allowed 
o The ARGEE environment will not allow upload of new code 

Modbus TCP Master (VT500 or Red Lion HMI) 
If there is an ARGEE program running on the block before a Modbus connection is established: 

o Regular Modbus/TCP registers will not be accessible 
o Access to Regular Modbus/TCP registers results in “exception” 
o Only ARGEE Modbus/TCP registers can be read/written from: 

o 0x4000 - 0x407F (Registers 16384 - 16512 in decimal) Read only Input Data (ARGEE 
-> PLC) 

o 0x4400 – 0x447F (Register 17408 - 17536 in decimal) Read/Write Output Data (PLC 
-> ARGEE) 

 
If a Modbus/TCP connection is established before an ARGEE program is loaded: 

o Regular Modbus/TCP registers are accessible 
o Access to ARGEE specific registers results in “exception” 

PROFINET Master 
If there is an ARGEE program running on the block before a PROFINET connection is established: 

o Standard IO PROFINET connection is not allowed. ARGEE PROFINET connection is 
allowed 

o Access to the block can be established by installing the ARGEE GSD file to the project 
 
If a PROFINET connection is established before an ARGEE program is loaded: 

o The regular PROFINET module ID is accessible. ARGEE PROFINET connection is not 
allowed. If the ARGEE environment attempts to load an ARGEE code when a standard 
PROFINET connection is establish, the ARGEE environment will block the upload. 

 
Note: PLC Connection examples can be found in Chapter 10 – Common Applications.  



 
 

 77 

Password Protection – ARGEE Environment 
All Turck block devices support a password protected webserver. To access the block’s webserver, the user needs to 
type the blocks IP address into any web browser.  
 

 
 
Note: The default password to log into the blocks webserver is “password”. 
 
 
To password protect the users ARGEE environment, the user must change the Admin password on their webserver. 
 

 



 

 78 

To change the Admin password, select Change Admin Password link, follow the instructions, and click Submit. 
 

 
 
Now every time the user try’s to log into the block, they will be prompted to input a password. 
 

 
Note: To remove this feature, the user can simply change their webserver password back to “password”. 



 
 

 79 

Source Code Protection – Run Without Source 
If a user wants to prevent “end users” from logging into the block and seeing or modifying code, the user will want to 
use the Run Without Source feature.  
 
The access the Run Without Source button, the user must first click on Project and navigate to the second ARGEE 
menu bar. 
 

 
 
 
 
 

 
 
 
If the user clicks on Run Without Source and then logs out of the environment, the ARGEE program will be hidden 
the next time anyone logs into the block. 

 
 
Logging in before clicking Run Without Source 
 

 
 
 
  



 

 80 

Logging in after the user click Run Without Source 
 

 
 
Very Important Note: The user needs to save a Master Copy of the program before the user logs out of the 
environment if the user wants to view/edit the code in the future. 

  



 
 

 81 

Chapter 9 – System Performance 
Scan Cycle Information 
The ARGEE Scan Cycle is typically between 5 – 10 ms depending on the code size. If the user attempts to use 
ARGEE in an application with scan cycles less than 5 ms, it is possible that ARGEE may miss the signal. 
 
Example of Scan Cycle 

 
 
Explaining the Example: In this example, the user is hammering ARGEE with repeated 3 ms signals. Notice that 
ARGEE does not catch all the signals because the signal is occurring faster than ARGEE’s Scan Cycle.  
 
Note: ARGEE is not suited for motion control applications. 

 

IO Variable Formats 
IO.Slot2.Output.Output_value_X -> This example loads the value “1” into Output 4 bit 0.   
 

 
 
IO.Slot2.Output.Output_value_X.Y -> In this example, when Input_value_0 Bit_2 equals “1”, a “1” is loading into 
Output_value_4 Bit_12.   
 

 
 

 
 
 
 



 

 82 

How Actions Respond to Conditions 
 

Action Condition=FALSE Condition=TRUE 

Assignment No action Assigns a destination variable to a result of 
expression evaluation.  

Coil Resets a variable to 0 Sets the variable to 1 

Timer start No action If the timer is not started – it starts the timer. 
Otherwise it restarts the timer. The timer is 
executed in the background until the 
accumulator >= “Expires” Preset value. 

Timer On Resets the timer 
accumulator and Done flag. 

If timer Done flag is 0, run the timer. The timer 
is accumulated every millisecond until the 
accumulator >=“Expires” Preset value. In that 
case the Done flag is raised. 

Timer Off If timer Done flag is 0, run 
the timer. The timer is 
accumulated every 
millisecond until the 
accumulator >=“Expires” 
Preset value. In that case, 
the Done flag is raised. 

Resets the timer accumulator and Done flag. 

Comment - - 

Count up Increments the counter whenever the condition changes from false to true. 

Count down Decrements the counter whenever the condition changes from false to true. 
(note - the Preset can be a negative value)	

Reset - Restarts the counter to - 0 

Trace - Record trace information into a trace buffer. 

 
  



 
 

 83 

Defining Variable Types – (Advanced Definitions)  
 

 
Type 

 
Description 

 
Type 

Allowed 
arithmetic 

expressions 

 
Specific 
actions 

 
Size in bytes 

Integer 
Variables 

Variables are defined in the 
program.  

All these variables are 
32 bit signed integers. 

All integer 
arithmetic  

Assignment 4 

Retain Integer Variables which are 
automatically saved to flash. 

All these variables are 
32 bit signed integers. 

All integer 
arithmetic 

Assignment 8 bytes (4 
bytes of data 4 
bytes of 
additional 
information) 

PLC Variables Variables mapping upper 
level PLC (Modbus/TCP, 
EtherNet/IP or PROFINET) 
exchange data to an integer 
variable accessible in the 
program.  

They are mapped to 
integer variables in the 
program 

All integer 
arithmetic 

Assignment 20 

Timer/Counter Timers Counters can be used 
with appropriate functions, 
such as “expired”, “count” and 
appropriate actions such as 
“Timer On” 

Complex data types Only used 
as 
argument to 
functions 
“expired” 
and “count” 

Specific 
actions: 
Timer on, 
Timer off, 
Start timer, 
Count up, 
Count down 

16 

State Integer variable that is used 
to designate states in state 
machine. Behaves identically 
to a regular integer variable 
except for 2 things: 

1) Initialize – will list 
states 

2) In the debugger, a 
state name matching 
the current value will 
show up  

32 bit integer All integer 
arithmetic  

Assignment 4 

Local IO  Input/Output/Diagnostic 
points 

They are mapped to 
integer variables in the 
program 

All integer 
arithmetic 

Assignment (not allocated 
out of 1KB of 
RAM)  

System 
variables 

PLC Connected 32 bit integer  Only 1 bit is 
used to 
indicate PLC 
connected 
state 

4 

System 
variables 

Max Cycle time (since 
program start) 

32 bit integer 
indicating time in ms 

 Time from 
the previous 
cycle to the 
current 
cycle. 

4 

 
  



 

 84 

Chapter 10 - Common Applications 
Communicating with an EtherNet/IP Master – Allen Bradley 
ARGEE blocks have the ability to communicate with an EtherNet/IP Master. The E/IP Master can establish 
communication via connection points 101 & 110.  
 
Example of Communicating with an EtherNet/IP Master 
The user wants to check and see if data is being passed back and forth between the ARGEE block and the E/IP 
Master. The first thing the user does is set up PLC variables. 
 
PLC Variables 

 
 
Explaining the Set-up: The user creates two PLC Variables, and they set the direction the data will travel. Data 
transmitted from ARGEE to the PLC is mapped into AB PLC Instance 101 and the data size is defined in the ARGEE 
PLC variable section (ARGEE->PLC). Data transmitted from the PLC to ARGEE is mapped into AB PLC Instance 
110 and the data size is defined in the ARGEE PLC variable section (PLC->ARGEE). 
 
The next step is to write the ARGEE code.  
 

 
 
Explaining the Code: The user wrote the value “1” into plc_in_reg1.  
 
The third step is to set up the connection points inside the PLC. 
 

 
 
Explaining the Set up: The user created a Generic Ethernet Device and set the connection points to be 101 & 110. 
The last step is to connect to the device, place a value in the Output Register and verify data transfer. 



 
 

 85 

 

 
 
Explaining the Example: The user inserted the value “1” into the PLC’s Output register “0”, bit “0”. The data transfer 
is verified by observing the PLC registers and the ARGEE registers. 
  



 

 86 

Communicating with a Modbus TCP/IP Master – Red Lion 
ARGEE blocks have the ability to communicate with a Modbus TCP/IP Master. The Modbus Master can establish 
communication via registers 0x4000 (register 16384 in decimal) and 0x4400 (register 17408 in decimal). 0x4000 is a 
read only register, while 0x4400 is a read/write register.  
 
Note: Some Modbus Masters automatically increment the register value by one. For example, register 16384 might 
be 16385. If the user is having connection issues, the user should try and increment the register value by one. 
 
Example of Communicating with a Modbus TCP/IP Master 
The user wants to check and see if data is being passed back and forth between the ARGEE block and the Modbus 
Master. The first thing the user does is set up the PLC variables. 
 
PLC Variables 

 
 
Explaining the Setup: The user creates two PLC Variables, then sets the direction the data will travel. Data 
transmitted from the ARGEE block to Modbus Master is mapped into register 0x4000(hex) and data size as defined in 
the ARGEE PLC variable section (ARGEE->PLC). Max input data size is 0x80(hex). Data transmitted from the 
Modbus Master to the ARGEE block is mapped into register 0x4400(hex), and data size as defined in the ARGEE 
PLC variable section (PLC->ARGEE). Max output data size is 0x80(hex). 
 
 
The next step is to write the ARGEE code.  
 

 
 
Explaining the Code: The user wrote the value “1” into plc_in_reg1.  
 
  



 
 

 87 

The third step is to connect a device to the Modbus Master. 
 

 
 
IMPORTANT NOTE: If the user is using a Red Lion HMI, the user needs to set the Ping Holding Register to zero. 
 
 
The fourth step is to create tags and assign them to the correct registers. 
 

 
 
IMPORTANT NOTE: Red Lion Modbus master register addressing = Original address +1  
 
Example: Original address 0x4000(hex) = 16384 
   Red Lion address = 16384 + 1 = 16385 



 

 88 

The last step is to connect to the device, place a value in the Modbus TCP Master’s Output Register and verify data 
transfer. 
 

 
 
Explaining the Example: The user inserted the value “1” into the HMI’s Output register “17409”. The data transfer is 
verified by observing the HMI screen and the ARGEE registers. 
 
  



 
 

 89 

Communicating with a PROFINET Master – Siemens 
 
ARGEE blocks have the ability to communicate with a PROFINET Master. The PROFINET Master can establish 
communication via an ARGEE GSD file.   
 
Example of Communicating with a PROFINET Master 
The user wants to check and see if data is being passed back and forth between the ARGEE block and the 
PROFINET Master. The first thing the user does is set up the PLC variables. 
 
PLC Variables 

 
 
Explaining the Set-up: The user creates two PLC Variables. The user sets the direction the data will travel. Data 
transmitted from ARGEE to the PLC is mapped into the Siemens input address and the data size is defined in the 
ARGEE PLC variable section (ARGEE->PLC). Data transmitted from the PLC to ARGEE is mapped into the Siemens 
output address and the data size is defined in the ARGEE PLC variable section (PLC->ARGEE). 
 
The next step is to write the ARGEE code.  
 

 
 
Explaining the Code: The user wrote the value “1” into plc_in_reg1.  
 
 
The third step is to install the ARGEE GSD file. 
 

 
 



 

 90 

The fourth step is to add the device to the program.  
 

 
 
Explaining the Set up: The user created an ARGEE Device in the devices and networks area. 
 
 
The fifth step is to set up device addresses. 
 

 
 
Explaining the Set up: The user defines the “I address” and “Q address” in the device overview. 
 
  



 
 

 91 

The user can now verify the data has been transferred. 
 

 

 
 
Explaining the example: The user inserted the value “2” into the PLC’s Output register and verifies the data transfer. 
 
 
 

  
 
  



 

 92 

Using State Variables 
State Variables are helpful in keeping track of the signal as it steps through the code. Before the user creates State 
Variables, it is a good idea to create a State Machine. 

State Machine 
A state machine is drawing on a piece of paper that shows how the signal transitions from one state to another.  
 
Example of a State Machine  
The user wants to use their ARGEE block to create a Traffic Cop. A Traffic Cop is a device that merges two conveyer 
belts together without causing a box collision. The first thing the user does is gets out a piece of paper and draws up 
a State Machine.  

 
 
 
 
 
 
 
 
 
 
 
Explaining the State Machine:  All the States are in light blue boxes. All the Events occur on the arrows. All Actions 
are in dark blue ovals. 
 
 
Example of State Variables are on the next page. 
  

Condition:	Device	powers	up. Condition:	Belt	2	is	off.
Event:	NothingStart

Action:	Belt	1	turns	on.

Action:	Belt	2	turns	off.

Event:	Sensor	2	is	false

Condition:	Belt	2	is	on.

Event:	Sensor	1	is	true.
&	Sensor	2	is	true.

Event:	Sensor	1	is	false.
&	Sensor	2	is	true.

Action:	Belt	2	turns	on.Action:	Belt	2	turns	off.

OR



 
 

 93 

Example of a State Variables  
The user is satisfied with the Traffic Cop State Machine. The user now creates Program and State Variables.  
 

Program Variables     State Variables 

  
 

Note: Program Variable “State” is initalized to Start-up. 
 
 

  
 
 
 
 
 
 



 

 94 

 
 
Explaining the Example: When the device is powered up, Belt 1 is turned on and Belt 2 is turned off. If Sensor 2 
goes true (or a box shows up on Belt 2), ARGEE will check and see if Sensor 1 is true (or if a box is on Belt 1). If 
Sensor 1 is true then Belt 2 stays off. If Sensor 1 is false, Belt 2 turns on and clears the box on Belt 2.  
  



 
 

 95 

ARGEE HMI 
Many user applications can be enhanced with the use of the AGREE HMI. The two main ARGEE HMI operations are 
Editable Fields and Display Fields. General Buttons are used in both types of fields. 

General Buttons 

Add Screen 
The Add Screen button is available under the Edit HMI tab. Add Screen allows the user to add several HMI screens 
to the project. 
 

 
 
 
 
 
The user can toggle between multiple screens by clicking on the Edit button. 
 

 
 
 
 
 
When on the View HMI tab, the user can toggle between screens by clicking on the Screen name. 
 

 



 

 96 

Add Section 
The Add Section button is available under the Edit HMI tab. The user will click on the Add Section button if they want 
to add more sections to their HMI screen. 
 

 
 

Add New Element  
The user can Add New Elements to a specific Section of a specific Screen by selecting an Element from the drop 
down arrow and clicking Add New Element. 
 

 
 

 
  



 
 

 97 

Editable Fields 
The Editable Field elements in the ARGEE HMI are Enter number, Enter state and Edit hex number. The Button 
element is used to submit the new value into the program.  

Enter number (and Button) 
The Enter number element, in conjunction with the Button element, allows the user to manually input a value into a 
register while a program is running. 

 
Example of Enter number (and Button) 
For the HMI to compile, the user must first create some code and then click Edit HMI from the ARGEE menu tab. 
 

 
 
Explaining the code: The user created two Program Variables: Submit and Temporary_Register. When Submit 
goes true, the code sets Submit false and loads the value that is in Temporary_Register into Output_value_3. 

    
  



 

 98 

 
The user creates an HMI screen and adds an Enter number and Button element to it. 
 

 
 
Explaining the Example: The user named the Enter number element “Value loaded into Temporary Register”. The 
user then set the destination variable to be Temporary_Register. The user then named the Button element “Submit”. 
The user then set the destination variable to be Submit. 
  



 
 

 99 

The user clicks Run to download the code to the block and then clicks View HMI to view the HMI. 
 

 
 
Explaining the Example: The user entered the value “1” into the editable field. The user then clicked the Submit 
Button to load that value into Temporary_Register. 
 
 
 
 
To observe the bits moving, the user can click on Debug and see that Temporary_Register and Output_value_3 have 
the same values loaded into them.  
 

 
 
  



 

 100 

Enter state 
The Enter state element is used when multiple State Machines are running on the same device. This feature is useful 
in recipe applications, RFID applications and even pick-to-light applications.  

 
Example of Enter state 
The user wants to toggle between the Beef Stew, Vegetable Stew and Tomato Soup state machines. The user must 
first create the code and then click Edit HMI. 
 

 
 
Explaining the code: The user created three State Machines (Beef_Stew, Vegetable_Stew and Tomato_Soup). 
Each State Machine has its own individual Sub-States (Beef_Stew_State_1/2, Vegetable_Stew_State_1/2, 
Tomato_Soup_State_1/2) associated with it. The user created five Program Variables. When Submit goes true, the 
code sets Submit false and loads the value “1” into Program Mode. When Program Mode goes true, it loads the value 
“1” into the selected stews State Machine. The other three Program Variables (Create_Beef_Stew, 
Create_Vegetable_Stew, and Create_Tomato_Soup) were created to signify the specific type of stews being created. 
They don’t actually do anything in this code. 
  



 
 

 101 

The user creates an HMI screen and adds an Enter state and Button element to it. 
 

 
 
Explaining the Example: The user named the Enter state element “Program Mode”. The user then set the 
Destination Variable to be Program_Mode. The user used the StartValue and EndValue to set the limits on the states 
that the user wants to display in the HMI drop down menu. The user then named the Button element “Submit”. The 
user then set the Destination Variable to be Submit.  



 

 102 

The user clicks Run to download the code to the block and then clicks View HMI to view the HMI. 
 

 
 
Explaining the Example: The user selects the recipe from the drop down arrow and then clicks the Submit Button to 
execute the Vegetable _Stew State Machine. 
 
 
 
 
To observe the bits moving, the user can click on Debug and see that the Create_Vegetable_Stew register is true. 
 

 
 
  



 
 

 103 

Edit hex number 
The Edit hex number element allows the user to manually input a value (in Hex) into a register while a program is 
running. 
 
Example of Edit hex number 
The user wants to load data into the RFID Write Register. After the code is written, the user clicks on the Edit HMI 
tab. 
 

 
 
Explaining the code: The user created two Program Variables, Submit and RFID_Write_Register. When Submit 
goes true, the code sets Submit false and loads the value that is in RFID_Write_Register into RFID_Write_Register. 

    
  



 

 104 

The user creates an HMI screen and adds an Edit hex number and Button element to it. 
 

 
 
Explaining the Example: The user named the Edit hex number element “RFID Write Register”, and then set the 
destination variable to be RFID_Write_Register. The user then named the Button element “Submit”, and then set the 
destination variable to be Submit. 
  



 
 

 105 

The user clicks Run to download the code to the block and then clicks View HMI to view the HMI. 
 

 
 
Explaining the Example: The user entered the hex value “A2 FF 34 BD” into the editable field. The user then clicked 
the Submit Button to load that value into Temporary_Register_1. 
 
 
 
 
 
To observe the bits moving, the user can click Debug and see that RFID_Write_Register has the hex number A2 FF 
34 BD loaded into it.  
 

 
 
  



 

 106 

Display Fields 
The Display Field elements in the ARGEE HMI are Display number or state, Display number with valid range, Display 
hex number.  

Display number or state 
The Display number or state element is a feature that allows the user to see the current value in a particular register.  

 
Example of Display number or state 
The user wants to monitor the value in Temporary_Register.  
 

 
 
Explaining the code: The user created two Program Variables, Submit and Temporary_Register. When Submit 
goes true, the code sets Submit false and loads the value “1” into Temporary_Register. 
  



 
 

 107 

 
The user creates an HMI screen and adds a Display number or state and Button element to it. 
 

 
 
Explaining the Example: The user named the Display number or state element “Value in Temporary Register”, and 
then sets the destination variable to be Temporary_Register. Next, the user named the Button element “Submit”, and 
then set the destination variable to be Submit. 
  



 

 108 

The user clicks Run to download the code to the block and then clicks View HMI to view the HMI. 
 

 
 
 
 
 
 

 
 
 
Explaining the Example: When the HMI first loads up, the value “0” is in Temporary_Register. When the user 
presses the Submit button, the value “1” is loaded in to Temporary_Register.  
 
  



 
 

 109 

Display number with valid range 
The Display number with valid range element is a feature that allows the user to see the current value in a particular 
register. It also lets the user know when that value has exceeded a preset range.  
 
Example of Display number with valid range 
The user wants to monitor the value in Temporary_Register. The user also wants a visual notification when that value 
has exceeded a preset range. 
 

 
 
Explaining the code: The user created two Program Variables, Submit and Temporary_Register. When Submit 
goes true, the code sets Submit false and loads the value “2” into Temporary_Register. 
  



 

 110 

 
The user creates an HMI screen and adds a Display number with valid range and Button element to it. 
 

 
 
Explaining the Example: The user named the Display number with valid range element “Value in Temporary 
Register”. The user then set the destination variable to be Temporary_Register. The user set the range minimum to 
be “0” and the range maximum to be “1”. The user then named the Button element “Submit”, and set the destination 
variable to be Submit. 
  



 
 

 111 

The user clicks Run to download the code to the block and then clicks View HMI to view the HMI. 
 

 
 
 
 
 
 

 
 
 
Explaining the Example: When the HMI first loads up, the value “0” is in Temporary_Register. When the user 
presses the Submit button, the value “2” is loaded in to Temporary_Register. The value “2” exceeds the preset 
maximum so the HMI goes red. 
  



 

 112 

Display hex number 
The Display hex number element is a feature that allows the user to see the current value in a particular register 
displayed in Hex.  
 
Example of Display hex number 
The user wants to monitor the value in Temporary_Register. The user also wants to display that value in hex. 
 

 
 
Explaining the code: The user created two Program Variables, Submit and Temporary_Register. When Submit 
goes true, the code sets Submit false and loads the value “45842” into Temporary_Register. 
  



 
 

 113 

 
The user creates an HMI screen and adds a Display number or state and Button element to it. 
 

 
 
Explaining the Example: The user named the Display hex number “Value in Temporary Register”, and then set the 
destination variable to be Temporary_Register. Next, the user named the Button element “Submit” and set the 
destination variable to be Submit. 
  



 

 114 

The user clicks Run to download the code to the block and then clicks View HMI to view the HMI. 
 

 
 
 
 
 
 

 
 
 
Explaining the Example: When the HMI first loads up, the value “00 00 00 00” is in Temporary_Register. When the 
user presses the Submit button, the value “45842” is loaded in to Temporary_Register. The value “45842” is 
transformed into hex and is displayed in the HMI.  



 
 

 115 

Working with IO-Link 
When a user combines IO-Link technology with AGREE, the application solutions that can be created become 
endless. IO-Link can support digital and analog signals. Because there are so many IO-Link configurations, it is 
recommended that the user read the IO-Link user manual before attempting any IO-Link applications. 

 

 
 
IMPORTANT NOTE: When using IO-Link over EtherNet-IP or a Modbus/TCP, the user must change the Input and 
Output Data Mapping parameter from “swap 16 bit” to “direct” in the webserver.   
 
Example of IO-Link 
The user wants to use a digital input on an IO-Link slave to turn on a digital output on a different IO-Link slave using 
EtherNet/IP. The first thing the user has to do is change the Input and Output Data Mapping parameter from “swap 16 
bit” to “direct”.   
 

 
 
 

 
 
Explaining the Example: The user logged into the webserver and changed the Input and Output Data Mapping 
parameter from “swap 16 bit” to “direct”, and then clicked submit. 
 
 
 
 
 
 



 

 116 

The next thing the user does is look at the data map of the two IO-Link slaves and determine which Input and Output 
to link together. 
 
Slave 1 Data Map (A TBIL-M1-16DIP Connected to Port 0)

 
 
Slave 2 Data Map (A TBIL-M1-16DXP Connected to Port 1) 

 
 
Explaining the user’s decision: The user wants Connector 7 Pin 2 (Port B) on the input block to turn on Connector 
8 Pin 4 (Port A) on the output block. 
 
IO-Link Command Structure 

 
 

 
 
Explaining the example: When Connector 7 Port B on the input slave block is true, Connector 8 Port A on the 
output slave block is true. When Connector 7 Port B on the input slave block is false, Connector 8 Port A on the 
output slave block is false. 
 



 
 

 117 

Working with RFID 
If a user needs to solve a simple tracking application, using RFID technology (powered by ARGEE) might be the 
solution. Many factors influence RFID Read/Write applications. The user can reference the RFID user manual for 
more information about RFID. 
 
Example of RFID 
The user wants to create an ARGEE HMI that can read from and write to RFID tags. The first thing the user must do 
is break out a pen and paper and draw up a state machine. 

 
 
 

Condition:	HMI	“Write”	bit	is	true.

Event:	User	types	a	value	into	
the	“Value	Written	to	Tag”	field	
on	the	ARGEE	HMI	and	then	
presses	the	“Write”	button.

Action:	Value	in	“Value	Written	to	Tag”	
register	is	loaded	into	Write	Data	Bit	0.

Action:	Set	HMI	“Write”	bit	false.

Action:	Set	“Waiting	for	Write”	bit	true.

Condition:	Transceiver	“Tag	Present”	bit	is	true.

Action:	Set	“Waiting	for	Write”	bit	false.

Action:	Set	Transceiver	“Write”	bit	true.

Event:	Transceiver	
“Write”	bit	is	set	true.

Action:	Set	Transceiver	“Write”	bit	false.

Condition:	Transceiver	“Done”	bit	is	false.

Event:	Transceiver	
“Write”	bit	is	set	false.

Condition:	Transceiver	“Done”	bit	is	true.

Event:	Nothing.

Condition:	Start	up.

Event:	Tag	is	presented	
to	the	transceiver.

Condition:	Start	up.

Start

Action:	Turn	on	Transceiver.

Action:	Load	“Tag	Present”	bit	into	“Tag	Present”	variable.

Action:	Set	“Waiting	to	Read”	bit	true.

Action:	Set	HMI	“Read”	bit	false.

Condition:	HMI	“Read”	bit	is	true.

Event:	“Read”	button	was	
pressed	on	ARGEE	HMI.

Action:	Set	“Waiting	for	Read”	bit	false.

Action:	Set	Transceiver	“Read”	bit	true.

Event:	Transceiver	
“Read”	bit	is	set	true.

Action:	Set	Transceiver	“Read”	bit	false.

Condition:	Transceiver	“Done”	bit	is	false.

Event:	Transceiver	
“Read”	bit	is	set	false.

Action:	Load	Read	Data	Bit	0	into	“Value	
Read	from	Tag”	register.	

Condition:	Transceiver	“Done”	bit	is	true.

Event:	Tag	value	is	loaded	
into	“Value	Read	From	Tag”.

(Tag	value	is	also	displayed	on	ARGEE	HMI.)

Condition:	Transceiver	“Tag	Present”	bit	is	true.

Event:	Tag	is	presented	
to	the	transceiver.

Condition:	Start	up.



 

 118 

Explaining the RFID State Machine: When the device powers up, the transceiver gets turned on. From the ARGEE 
HMI screen the user can select two paths: Read from Tag, or Write to Tag path. If the user wants to read a tag value, 
simply click the Read button on the HMI and present a tag to the transceiver. If the user wants to write to a tag, just 
type a value into the HMI, click Write on the HMI, and then present a tag to the transceiver. After a Read/Write has 
occurred, the program goes back to the “Startup” state and waits for the next command.  
 
Writing the Code:  
 
Program Variables     State Variables 

    
Note: Set initial state for Program Variable “State” to “Start_up” 
 

 

 



 
 

 119 

 

 

 



 

 120 

 

 

 



 
 

 121 

 
 
Explaining the Code: The user created the “Read” and “Write” program variables so the ARGEE HMI buttons would 
have a way to start the RFID operation. The “Tag Present”, “Waiting To Read” and “Waiting To Write” program 
variables are status bits that can be displayed on the HMI.  Everything else is identical to the state machine 
explanation.  
 
 

 

 

 

 

 

 

The RFID example continues on the next page.  



 

 122 

Building the RFID HMI 
After the code is written, the user clicks Edit HMI from the ARGEE menu bar. 
 

 
 
Explaining the RFID HMI: The user creates a “Read” section with two elements. One element displays the tag value 
and the other is a button that starts the “Read” operation. They also create a “Write” section with two elements. One 
element allows the user to enter a value and the other is a button that starts the “Write” operation. The “Status” 
section just displays status bits. 
 



 
 

 123 

Working with the RFID HMI 
To start working with the RFID HMI, the users clicks Run and then View HMI from the ARGEE menu bar. 
 

 
 

 

 

 

 

 

The RFID example continues on the next page.  



 

 124 

Writing to a tag 
If the user wants to write to a tag, they must first type a value into the Write Value field and click the Write button. 
 

       
 
Explaining “Write”: When the user types a value into the Write Value field and clicks Write, the “Ready To Write” 
status bit is true. When a tag is presented to the transceiver, the “Ready To Write” status bit goes false and the “Tag 
Present” bit goes true. 
 
Reading from a tag 
If the user wants to read tag, simply click the Read button and then present a tag to the transceiver. 
 

      
  
Explaining “Read”: When the user clicks “Read”, the “Ready To Read” status bit is true. When a tag is presented to 
the transceiver, the “Ready To Read” status bit goes false and the “Tag Present” bit goes true. The tag value is 
displayed in the “Read Value” field. 



 
 

 125 

Working with Analog 
If the user wants to use an Analog input signal to track errors and make corrections to an Analog output signal 
(Similar to a proportional Controller), they no longer need a PLC. ARGEE has the ability to apply logic and math to 
analog signals. 

  
Explaining a Proportional Controller:  A proportional controller continuously calculates the difference between the 
output and the input. The purpose of a proportional controller is to minimize the difference (error) by adjusting the 
controller’s output.  
 

 
 
Example of Analog - Proportional Controller 
The user wants to create a simple proportional controller, where an Analog input signal inversely controls an Analog 
output signal. The user must first teach the analog input sensor what the minimum and maximum ranges of the 
application are (Read sensor data sheet to learn how to teach minimum and maximum ranges). The user is using a 
4-20 mA input signal and outputting a 0-10 VDC signal.  
 
Write the Code 
 

 
 
Explaining the Code:  Analog sensors use 16 bit signed integers. Therefore the range of the analog input signal is 
from -32767 -> +32767. The user want’s an inversely proportional controller, so they are taking 32767 – Input_value-
_0 and loading that value into Output_value_4. 
  

Analog	Input	Signal ARGEE	Controller Analog	Output	Device

Feed	Back	Loop

Error+

-

OutputController	Output

Proportional	Controller	Example



 

 126 

Appendix  
I/O Variable Definitions 
 

Slot “0” Diagnostics Definitions 
 
Module_Diagnostics_Available : Module Diagnostics Bit 
Station_Configuration_Changed : Station Configuration Changed Bit. 
Overcurrent_Isys : Station Overcurrent Register Bit 
Overvoltage_Field_Supply_V1 - Overvoltage_Field_Supply_V2 : Station Overvoltage Register Bit 
Undervoltage_Field_Supply_V1 - Undervoltage_Field_Supply_V1 : Station Under Voltage Register Bit 
Modulebus_Communication_Lost : Module communication register Bit 
Modulebus_Configuration_Error : Module Error Bit 
Force_Mode_Enabled : Force Mode Enabled Bit 

 

Slot 1 or 2 Input Definitions 
    

Input_Value_0 – Input_Value_7 : Input Channel Registers 
XCVR_DETUNED_0 - XCVR_DETUNED_1 : Transceiver Detuned Bit 
TFR_0 – TFR_1 : Transfer Data Bit 
TP_0 – TP_1 : Tag Present Bit 
XCVR_ON_0 - XCVR_ON_1 : Transceiver On Bit 
XCVR_CON_0 - XCVR_CON_1 : Transceiver Connected Bit 
Error_0 – Error_1 : Error Bit 
Busy_0 – Busy_1 : Busy Bit 
Done_0 – Done_1 : Done Bit 
Error_code_0_0 - Error_code_2_0 : Error Code Bits 
Read_data_0_0 – Read_data_7_0 : Read Data Registers 

 

Diagnostics Definitions 
 
Output_signal_overcurrent_1 - Output_signal_overcurrent_16 : Signal Overcurrent Error Bit 
Overcurrent_on_sensor_group : Sensor Overcurrent Error Bit 
Overcurrent_supply_VAUX1/2_at_channels_1-7 : Supply Overcurrent Error Bit 
Overcurrent_VAUX1/2_Digital_In_CH1-16: AUX Power Overcurrent Error Bit  
Measued_value_out_of_range_0 - Measued_value_out_of_range_3 : Measured Value Out of Range Bit  
Wire_break_0 – Wire_break_3 : Wire Break Bit. Used for wire break detection.  
Hardware_failure_0 – Hardware_failure_7 : Hardware Failure Bit 
Output_value_out_of_range_4 - Output_value_out_of_range_7: Output Value Out of Range Bit 
Output_signal_overcurrent_0 - Output_signal_overcurrent_16 : Output Signal Overcurrent Bit 
Transc_param_not_supported_0/1: Transceiver Parameter Not Supported Bit 
Module_parameter_invalid_0/1: Module Parameter Invalid Bit 
Hardware_failure_transceiver_0/1: Transceiver Hardware Failure Bit  
Transc_power_supply_error_0/1: Transceiver Power Supply Error Bit 
  
 
 
 
 



 
 

 127 

Slot 1 or 2 Output Definitions 
 
Output_value_0 – Output_value_7 : Output channel register. 
Reset_0 – Reset_1 : Transceiver Reset Bit 
XCVR_Info_0 - XCVR_Info_1 : Transceiver Information Bit 
TAG_Info_0 - TAG_Info_1 : Tag Information Bit 
Write_0 – Write_1 : Write Bit 
Read_0 – Read_1 : Read Bit 
Tag_ID_0 – Tag_ID_1 : Tag ID Bit 
Next_0 – Next_1 : Next Bit 
XCVR_0 – XCVR_1 : Turn Transceiver On Bit 
Byte_count_0 – Byte_count_2 : The Byte Count Bytes.  
Domain_0 – Domain_1 : Domain Bit 
Address_0 – Address_1 : Set Read/Write Address Bit 
Write_data_0_0 - Write_data_7_0 : Wrtie Registers 
 
 


