Your Global Automation Partner

LS-5 Füllstandssensor

Betriebsanleitung

Beschriebenes Produkt

Füllstandssensor Serie LS-5

Hersteller

Hans Turck GmbH & Co. KG Witzlebenstraße 7 45472 Mülheim an der Ruhr Germany Tel. +49 208 4952-0 Fax +49 208 4952-264 more@turck.com www.turck.com

Rechtliche Hinweise

Dieses Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte bleiben bei der Firma Turck. Die Vervielfältigung des Werks oder von Teilen dieses Werks ist nur in den Grenzen der gesetzlichen Bestimmungen des Urheberrechtsgesetzes zulässig. Jede Änderung, Kürzung oder Übersetzung des Werks ohne ausdrückliche schriftliche Zustimmung der Firma Turck ist untersagt.

Die in diesem Dokument genannten Marken sind Eigentum ihrer jeweiligen Inhaber.

© Hans Turck GmbH & Co.KG. Alle Rechte vorbehalten.

Originaldokument

Dieses Dokument ist ein Original-Dokument der Firma Turck.

Inhalt

1	Zu d	iesem Dokument	6
	1.1	Informationen zur Betriebsanleitung	6
	1.2	Geltungsbereich	6
	1.3	Symbolerklärung	6
	1.4	Weiterführende Informationen	7
2	7u lk	nrer Sicherheit	8
-	21	Restimmungsgemäße Verwendung	8
	2.1	Bestimmungswidrige Verwendung	8
	2.3	Haftungsbeschränkung	8
	2.4	Änderungen und Umbauten	8
	2.5	Anforderungen an Fachkräfte und Bedienpersonal	9
	2.6	Arbeitssicherheit und besondere Gefahren	
	2.7	Allgemeine Sicherheitshinweise	. 10
	2.8	Reparatur	. 10
з	Prod	uktheschreihung	11
0	2 1	Produktidentifikation	11
	0.1	3.1.1 Angahen auf dem Gehäuse	11
		3.1.2 Typenschlüssel	11
	30	Produktaigenschaften	12
	0.2	3.2.1 Geräteansicht	12
		3.2.2 Redientasten	12
	33	Produktmerkmale und Funktionen	12
	0.0	3 3 1 Funktionsprinzin	12
		3.3.2 Einsatzbereiche	. 13
л	Tran	sport und Ladorund	11
4	11 all	Tropopert	14
	4.1 1 0		11
	4.Z		. 14 17
	4.5		. 14
5	Mon	tage	15
	5.1	Einbaubedingungen	. 15
		5.1.1 Einbau in einen Behälter	. 15
		5.1.2 Einbau in ein metallisches Tauchrohr oder metallischen Bypass	. 16
	5.2	Sondenstab kürzen oder tauschen	. 17
		5.2.1 Ablauf	. 17
	5.3	Sondenstab montieren	. 18
6	Elek	trische Installation	19
	6.1	Sicherheit	. 19
		6.1.1 Hinweise zur Elektroinstallation	. 19
	6.2	Elektrischer Anschluss	. 20
		6.2.1 Übersicht der elektrischen Anschlüsse	. 20
		6.2.2 Pinbelegung, M12-Steckverbinder, 5-polig	. 20
		6.2.3 Pinbelegung, M12-Steckverbinder, 8-polig	.21

7	Inbetriebnahme									
	7.1	Kurzinb	etriebnahme (mit Werkseinstellung)	22						
	7.2	Erweiter	rte Inbetriebnahme							
	7.3 Schauminbetriebnahme (mit Werkseinstellung)									
8	Bedienung									
	8.1	Display	und Tasten							
		8.1.1	Variante mit zwei Schaltausgängen							
		8.1.2	Variante mit vier Schaltausgängen							
		8.1.3	IO-Link							
	8.2	Parame	trierung der Schaltausgänge	27						
		8.2.1	Schalthysterese und Fensterfunktion	27						
		8.2.2	Schließer mit einstellbarer Hysterese							
		8.2.3	Öffner mit einstellbarer Hysterese							
		8.2.4	Schließer mit Fensterfunktion							
		8.2.5	Öffner mit Fensterfunktion	31						
		8.2.6	Schließer mit Fehlersignal							
		8.2.7	Öffner mit Fehlersignal							
	8.3	Parame	trierung des Analogausgangs							
		8.3.1	Automatische Signalerkennung							
		8.3.2	Stromausgang 4 mA 20 mA							
		8.3.3	Spannungsausgang 0 V +10 V							
	8.4	Erweiter	rte Funktionen							
		8.4.1	Experten-Modus	34						
		8.4.2	Messwerte filtern	34						
		8.4.3	Automatische Einstellung der Störsignalgrenze	35						
		8.4.4	Ausblenden von Störsignalen in maskierter Zone							
		8.4.5	Auswahl des Auswerteverfahrens							
		8.4.6	Testen der Parametrierung							
		8.4.7	Parametrierung der Sondenlänge							
		8.4.8	Statische Störsignale einlernen							
		8.4.9	Signalqualität auswerten							
		8.4.10	Displayschutz aktivieren							
		8.4.11	Anzeigeeinheit auswählen (Millimeter/ inch)	40						
		8.4.12	Offset einstellen							
		8.4.13	Zurücksetzen der Kalibrierung	42						
9	Men	ü-Übers	icht	43						
10	Übei	rsicht de	er Parameter	46						
11	Fehl	erbeheh	oung							
	11.1	Fehlerm	neldung am Display							
	11.2	Bedienu	ing am Display							
	11.3	Ausgän	ge							
	11.4	Fehlerve	- erhalten							

12	Insta	Indsetzu	ung	53
	12.1	Wartung	۶	
	12.2	Rückser	ndung	53
13	Ents	orgung.		54
14	Tech	nische I	Daten	
	14.1	Merkma	ıle	55
	14.2	Perform	ance	55
	14.3	Mechan	ik/ Werkstoffe	
	14.4	Referenz	zbedingungen	56
	14.5	Umgebu	Ingsbedingungen	
	14.6	Elektriso	che Anschlusswerte	57
	14.7	Messger	nauigkeit	
		14.7.1	Messgenauigkeit bei parametriertem Behälter	58
		14.7.2	Messgenauigkeit ohne Behälterparametrierung	58
15	Maß	zeichnu	ngen	59
		15.7.1	LS-5 mit Stabsonde	59
16	Werk	kseinste	ellung	60
17	Medi	ienliste.		61

1 Zu diesem Dokument

1.1 Informationen zur Betriebsanleitung

Diese Betriebsanleitung gibt wichtige Hinweise zum Umgang mit den Turck-Sensoren.

Voraussetzungen für sicheres Arbeiten sind:

- Einhaltung aller angegebenen Sicherheitshinweise und Handlungsanweisungen
- Einhaltung der örtlichen Unfallverhütungsvorschriften und allgemeinen Sicherheitsbestimmungen im Einsatzbereich des Sensors

Die Betriebsanleitung richtet sich an Fachkräfte und Elektrofachkräfte.

1 Hinweis:

Die Betriebsanleitung vor Beginn aller Arbeiten sorgfältig durchlesen, um mit dem Gerät und seinen Funktionen vertraut zu werden.

Die Anleitung ist Produktbestandteil und ist in unmittelbarer Nähe des Geräts für das Personal jederzeit zugänglich aufzubewahren. Bei Weitergabe des Geräts an Dritte auch die Betriebsanleitung mitgeben.

Diese Betriebsanleitung leitet nicht zur Bedienung der Maschine an, in die der Sensor ggf. integriert wird. Informationen hierzu enthält die Betriebsanleitung der Maschine.

1.2 Geltungsbereich

Die Betriebsanleitung dient dazu, den Sensor in ein Kundensystem einzubinden. Zu allen erforderlichen Tätigkeiten wird schrittweise angeleitet.

Die Anleitung ist gültig für alle verfügbaren Gerätevarianten des Sensors. Nähere Informationen zur Identifikation des vorliegenden Gerätetyps, siehe "3.1.2 Typenschlüssel".

Verfügbare Gerätevarianten sind auf der Produktseite im Internet gelistet:

www.turck.com

Die Inbetriebnahme wird beispielhaft an verschiedenen Gerätevarianten beschrieben, basierend auf der Parametergrundeinstellung des jeweiligen Geräts.

Vereinfachte Gerätebezeichnung im Dokument: Im Folgenden wird der Sensor vereinfacht als LS-5 bezeichnet. Ausnahmen bilden Stellen, an denen eine Unterscheidung der Gerätevarianten aufgrund unterschiedlicher technischer Merkmale oder Funktionen erforderlich ist. In diesem Fall wird die vollständige Typenbezeichnung (z. B. LS-5) verwendet.

1.3 Symbolerklärung

Warnhinweise und wichtige Informationen sind in diesem Dokument durch Symbole gekennzeichnet. Die Hinweise werden durch Signalworte eingeleitet, die das Ausmaß der Gefährdung zum Ausdruck bringen. Die Hinweise unbedingt einhalten und umsichtig handeln, um Unfälle, Personen- und Sachschäden zu vermeiden.

GEFAHR

... weist auf eine unmittelbar gefährliche Situation hin, die zum Tod oder zu schweren Verletzungen führt, wenn sie nicht gemieden wird.

WARNUNG

... weist auf eine möglicherweise gefährliche Situation hin, die zum Tod oder zu schweren Verletzungen führen kann, wenn sie nicht gemieden wird.

VORSICHT

... weist auf eine möglicherweise gefährliche Situation hin, die zu geringfügigen oder leichten Verletzungen führen kann, wenn sie nicht gemieden wird.

WICHTIG

... weist auf eine möglicherweise schädliche Situation hin, die zu Sachschäden führen kann, wenn sie nicht gemieden wird.

i

HINWEIS

... hebt nützliche Tipps und Empfehlungen sowie Informationen für einen effizienten und störungsfreien Betrieb hervor.

1.4 Weiterführende Informationen

HINWEIS

Alle vorhandenen Dokumentationen zum Sensor finden Sie auf der Produktseite im Internet unter:

www.turck.com

Dort stehen zum Herunterladen folgende Informationen bereit:

- Typspezifische Online-Datenblätter der Gerätevarianten mit technischen Daten, Maßbild und Diagramme
- EU-Konformitätserklärung der Produktfamilie
- Maßzeichnungen und 3D-CAD-Maßmodelle in verschiedenen elektronischen Formaten
- Diese Betriebsanleitung in Englisch und Deutsch, ggf. in weiteren Sprachen
- Weitere Publikationen im Zusammenhang mit den hier beschriebenen Sensoren (z. B. IO-Link)
- Publikationen des Zubehörs

2 Zu Ihrer Sicherheit

2.1 Bestimmungsgemäße Verwendung

Der LS-5 ist sowohl zur kontinuierlichen Füllstandmessung als auch zur Grenzstanddetektion in nahezu allen Flüssigkeiten konzipiert (eine Liste der möglichen Medien finden Sie im Anhang).

Änderungen in den Eigenschaften der zu messenden Flüssigkeit beeinflussen den Sensor nicht.

Der LS-5 kann in metallischen Behältern oder Bypass-/Tauchrohren eingesetzt werden. Für den Einsatz in Kunststoffbehältern ist ein Koaxialrohr zu verwenden.

2.2 Bestimmungswidrige Verwendung

Jegliche Verwendung, die über die genannten Bereiche hinausgeht, insbesondere die Verwendung außerhalb der technischen Spezifikationen und den Vorgaben für den bestimmungsgemäßen Gebrauch, ist bestimmungswidrig.

Wenn der Sensor unter anderen Bedingungen oder in anderen Umgebungen verwendet werden soll, kann der Hersteller-Service in Absprache mit dem Kunden und in Ausnahmefällen eine Betriebserlaubnis erteilen.

2.3 Haftungsbeschränkung

Alle Angaben und Hinweise in dieser Anleitung wurden unter Berücksichtigung der geltenden Normen und Vorschriften, des Standes der Technik sowie unserer langjährigen Erkenntnisse und Erfahrungen zusammengestellt. Der Hersteller übernimmt keine Haftung für Schäden aufgrund:

- Nichtbeachtung der Betriebsanleitung
- Bestimmungswidriger Verwendung
- Einsatzes von nicht ausgebildetem Personal
- Eigenmächtiger Umbauten
- Technischer Veränderungen
- Verwendung nicht freigegebener Ersatz-, Verschleiß- und Zubehörteile

Der tatsächliche Lieferumfang kann bei Sonderausführungen, der Inanspruchnahme zusätzlicher Bestelloptionen oder aufgrund neuester technischer Änderungen von den hier beschriebenen Merkmalen und Darstellungen abweichen.

2.4 Änderungen und Umbauten

Änderungen und Umbauten am Sensor und/oder an der Installation können zu unvorhergesehenen Gefahren führen.

Bei Eingriffen und Änderungen am Sensor oder an der Software erlischt der Gewährleistungsanspruch gegenüber der Firma Turck. Dies gilt insbesondere beim Öffnen des Gehäuses, auch im Rahmen von Montage und elektrischer Installation.

Vor technischen Änderungen und Erweiterungen am Sensor muss eine schriftliche Genehmigung des Herstellers eingeholt werden.

2.5 Anforderungen an Fachkräfte und Bedienpersonal

WARNUNG

Verletzungsgefahr bei unzureichender Qualifikation!

Unsachgemäßer Umgang mit dem Sensor kann zu erheblichen Personen- und Sachschäden führen.

• Jegliche Tätigkeiten immer nur durch die dafür benannten Personen durchführen lassen.

In der Betriebsanleitung werden folgende Qualifikationsanforderungen für die verschiedenen Tätigkeitsbereiche benannt:

- Unterwiesene Personen wurden durch den Betreiber über die ihnen übertragenen Aufgaben und möglichen Gefahren bei unsachgemäßem Verhalten unterrichtet.
- Fachkräfte sind aufgrund ihrer fachlichen Ausbildung, Kenntnisse und Erfahrungen sowie Kenntnis der einschlägigen Bestimmungen in der Lage, die ihnen übertragenen Arbeiten auszuführen und mögliche Gefahren selbstständig zu erkennen und zu vermeiden.
- Elektrofachkräfte sind aufgrund ihrer fachlichen Ausbildung, Kenntnisse und Erfahrungen sowie Kenntnis der einschlägigen Normen und Bestimmungen in der Lage, Arbeiten an elektrischen Anlagen auszuführen und mögliche Gefahren selbstständig zu erkennen und zu vermeiden. In Deutschland muss die Elektrofachkraft die Bestimmungen der Unfallverhütungsvorschrift BGV A3 erfüllen (z. B. Elektroinstallateur-Meister). In anderen Ländern gelten entsprechende Vorschriften, die zu beachten sind.

Folgende Qualifikationen sind für unterschiedliche Tätigkeiten erforderlich:

Tätigkeiten	Qualifikation
Montage, Wartung	Praktische technische GrundausbildungKenntnisse der gängigen Sicherheitsrichtlinien am Arbeitsplatz
Elektroinstallation, Geräteersatz	 Praktische elektrotechnische Ausbildung Kenntnisse der gängigen elektrotechnischen Sicherheitsbestimmungen Kenntnisse über Betrieb und Bedienung der Geräte des jeweiligen Einsatzgebiets (z. B. Förderstrecke)
Inbetriebnahme, Konfiguration	 Grundkenntnisse des verwendeten Steuerungssystems Grundkenntnisse im Aufbau und in der Einrichtung der beschriebenen Verbindungen und Schnittstellen Grundkenntnisse der Datenübertragung
Bedienung der Geräte des jeweiligen Einsatzgebiets	 Kenntnisse über Betrieb und Bedienung der Geräte des jeweili- gen Einsatzgebiets (z. B. Abfüllanlage) Kenntnis der Soft- und Hardware-Umgebung des jeweiligen Einsatzgebiets (z. B. Abfüllanlage)

2.6 Arbeitssicherheit und besondere Gefahren

Beachten Sie die hier aufgeführten Sicherheitshinweise und die Warnhinweise in den weiteren Kapiteln dieser Betriebsanleitung, um Gesundheitsgefahren zu reduzieren und gefährliche Situationen zu vermeiden.

2.7 Allgemeine Sicherheitshinweise

- Lesen Sie die Betriebsanleitung vor der Inbetriebnahme.
- Diese Betriebsanleitung gilt für Geräte mit Firmwareversion höher als V1.0.
- Der LS-5 ist kein Sicherheitsmodul gemäß EU-Maschinenrichtlinie.
- Beachten Sie die nationalen Sicherheits- und Unfallverhütungsvorschriften.
- Verdrahtungsarbeiten, Öffnen und Schließen von elektrischen Verbindungen nur im spannungslosen Zustand durchführen.
- Die abgestrahlte Energie unterschreitet die von Telekommunikationseinrichtungen um ein Vielfaches.
 Nach dem aktuellen Stand der Wissenschaft kann der Betrieb des Gerätes als gesundheitlich unbedenklich eingestuft werden.

_ _ _

2.8 Reparatur

Reparaturen am Sensor dürfen nur von ausgebildetem und autorisiertem Personal der Firma Turck durchgeführt werden. Bei Eingriffen und Änderungen am Sensor durch den Kunden erlischt der Gewährleistungsanspruch gegenüber Turck.

3 Produktbeschreibung

3.1 Produktidentifikation

3.1.1 Angaben auf dem Gehäuse

Auf dem Gehäuse aufgedruckt befinden sich Informationen zur Identifikation des Sensors und dessen elektrischem Anschluss.

3.1.2 Typenschlüssel

Nicht alle Varianten des Typenschlüssels sind miteinander kombinierbar.

3.2 Produkteigenschaften

3.2.1 Geräteansicht

- Abb. 1: LS-5
- Sonde
- 2 Elektrischer Anschluss
- 3 Bedientasten
- ④ Display

3.2.2 Bedientasten

Die Bedienung des Sensors wird über das Display und die Bedientasten vorgenommen.

Eine detailierte Beschreibung der Tasten und deren Funktionen, siehe "8.1 Display und Tasten".

3.3 Produktmerkmale und Funktionen

3.3.1 Funktionsprinzip

Der LS-5 verwendet die TDR-Technologie (TDR: Time Domain Reflectometry).

Dabei handelt es sich um ein Verfahren zur Ermittlung von Laufzeiten elektromagnetischer Wellen. In der Elektronik des Sensors wird ein niedrig-energetischer, elektromagnetischer Impuls erzeugt, auf die Sonde eingekoppelt und entlang dieser Sonde geführt.

Trifft dieser Impuls auf die Oberfläche der zu messenden Flüssigkeit, wird ein Teil des Impulses dort reflektiert und läuft an der Sonde entlang wieder zur Elektronik zurück, welche dann aus der Zeitdifferenz zwischen dem ausgesandten und dem empfangenen Impuls den Füllstand errechnet.

Den Füllstand kann der Sensor als kontinuierlichen Messwert ausgeben (Analogausgang) sowie zwei und/oder vier frei positionierbare Schaltpunkte daraus ableiten (Schaltausgänge).

Darüber hinaus steht beim Schaltausgang (Q1) eine IO-Link-Kommunikation zur Verfügung, siehe "8.1.3 IO-Link".

3.3.2 Einsatzbereiche

Die innovative TDR -Technologie ermöglicht eine zuverlässige und weitgehend anwendungsunabhängige Füllstandmessung. Der LS-5 ist sowohl zur kontinuierlichen Füllstandmessung als auch zur Grenzstanddetektion in nahezu allen Flüssigkeiten geeignet.

Änderungen in den Eigenschaften der zu messenden Flüssigkeit beeinflussen den Sensor nicht.

Der LS-5 kann in metallische Behältern oder Bypass-/Tauchrohren eingesetzt werden. Für den Einsatz in Kunststoffbehälter ist ein Koaxialrohr zu verwenden.

4 Transport und Lagerung

4.1 Transport

Folgende Hinweise zu Ihrer eigenen Sicherheit beachten und einhalten:

WICHTIG

Beschädigung des Sensors durch unsachgemäßen Transport!

- Gerät für Transport stoßsicher und geschützt gegen Feuchtigkeit verpacken.
- Empfehlung: Originalverpackung verwenden, bietet optimalen Schutz.
- Transport nur durch Fachkräfte durchführen lassen.
- Beim Abladen und beim innerbetrieblichen Transport stets mit größter Sorgfalt und Vorsicht vorgehen.
- Symbole auf der Verpackung beachten.
- Verpackungen erst unmittelbar vor Montagebeginn entfernen.

4.2 Transportinspektion

Die Lieferung bei Erhalt im Wareneingang unverzüglich auf Vollständigkeit und Transportschäden prüfen. Bei äußerlich erkennbarem Transportschaden ist wie folgt vorzugehen:

- Lieferung nicht oder nur unter Vorbehalt entgegennehmen.
- Schadensumfang auf den Transportunterlagen oder auf dem Lieferschein des Transporteurs vermerken.
- Reklamation einleiten.

Hinweis:

i

Jeden Mangel reklamieren, sobald er erkannt ist. Schadenersatzansprüche können nur innerhalb der geltenden Reklamationsfristen geltend gemacht werden.

4.3 Lagerung

Das Gerät unter folgenden Bedingungen lagern:

- Empfehlung: Originalverpackung verwenden.
- Nicht im Freien aufbewahren.
- Trocken und staubfrei lagern.
- Nicht in luftdichten Behältern aufbewahren, damit eventuell vorhandene Restfeuchte entweichen kann.
- Keinen aggressiven Medien aussetzen.
- Vor Sonneneinstrahlung schützen.
- Mechanische Erschütterungen vermeiden.
- Lagertemperatur: siehe "12 Instandsetzung".
- Relative Luftfeuchtigkeit: siehe "12 Instandsetzung".
- Bei Lagerung länger als 3 Monate regelmäßig den allgemeinen Zustand aller Komponenten und der Verpackung kontrollieren.

5 Montage

5.1 Einbaubedingungen

Der LS-5 wird mittels seines Prozessanschlusses senkrecht von oben in den Behälter oder Bypass montiert. Der Füllstandsensor LS-5 verfügt über einen G ³/₄ oder ³/₄" NPT Gewindeanschluss. Ein minimaler Stutzendurchmesser gemäß nachfolgenden Grafiken ist dabei einzuhalten.

Der LS-5 ist so einzubauen, dass nach der Montage genügend Abstand zu anderen Tankeinbauten (z. B. Zulaufrohre, andere Messgeräte), der Behälterwand oder zum Behälterboden besteht. Mindestabstände sind ebenfalls in den Grafiken beschrieben.

Der LS-5 kann auch in einem metallischen Tauchrohr oder Bypass eingesetzt werden. Die Einbaubedingungen sind in der Abbildung auf Seite 15 dargestellt.

Es ist darauf zu achten, dass zwischen Messgerät LS-5 und dem Tank/Bypass eine gute metallische Verbindung besteht. Beim Betrieb des Sensors dürfen die Grenzen für die Umgebungstemperatur nicht unter- oder überschritten werden.

Das Einisolieren des Sensorgehäuses bei Tanks mit heißen Medien ist nicht erlaubt.

Der Einbauort ist so zu wählen, dass der Sensor nicht direkt dem Befüllstrom ausgesetzt ist.

Das Sensorgehäuse ist um 360° drehbar und somit kann der Leitungsabgang frei eingestellt werden.

5.1.1 Einbau in einen Behälter

i

Hinweis:

Die Abstände sind gleich für den Sensor mit abgesetzter Elektronik.

Abb. 2: LS-5

① Koaxialrohr in metallischen und nichtmetallischen Behältern

C = Bei einer Koaxialsonde sind keine Mindestabstände zur Behälterwand und zu Einbauten einzuhalten.

2 Monosonde mit metallischen Behältern

Einbau im Stutzen $D \ge DN 25$ Abstand Behälterwand/ Behälterboden: $A \ge 50 \text{ mm}$ $B \ge 10 \text{ mm}$ Abstand zu Behältereinbauten $\ge 100 \text{ mm}$

5.1.2 Einbau in ein metallisches Tauchrohr oder metallischen Bypass

① Zentrieren

2 $D \ge DN 40$

Abstand zu Bypassboden/Behälterboden $B \ge 10 \text{ mm}$

Zentrieren: Je nach Sondenlänge sollte abhängig vom Durchmesser des Bypassrohres eine Zentrierung der Sonde vorgenommen werden, um einen Kontakt der Sonde zum Bypassrohr unter Schwingungen zu vermeiden. Dazu ist es notwendig, ein oder zwei Zentrierstücke einzusetzen.

5.2 Sondenstab kürzen oder tauschen

Sollte die Stabsonde für den Einsatz zu lang sein, so kann diese auf die Behälterhöhe gekürzt werden. Das Mindestmaß der Sondenlänge von 100 mm darf hierbei nicht unterschritten werden. Sollte der LS-5 in einer hygienischen Applikation eingesetzt werden, so ist sicherzustellen, dass an den gekürzten Schnittflächen der Monosonde die Rauhigkeiten von Ra $\leq 0.8 \ \mu m$ wiederhergestellt wird.

5.2.1 Ablauf

Stabsonde um das gewünschte Maß kürzen. Die neue Sondenlänge im LS-5 einstellen, siehe "8.4.7 Parametrierung der Sondenlänge". Stellen Sie sicher, dass diese Korrektur der Sondenlänge entspricht, da ein falscher Wert im Menü Length sich direkt auf die Messgenauigkeit auswirkt und zu Störungen führen kann. Die Sondenlänge L ist im Kapitel "15 Maßzeichnungen" definiert.

Der Sondenstab kann getauscht werden. Bitte verwenden sie geeignetes Werkzeug. Bei starken Anlagenvibrationen ist die Sonde mit Schraubensicherungslack zu sichern.

5.3 Sondenstab montieren

Bei LS-5 lässt sich ein Sondenstab kundenseitig adaptieren. Der Sondenstab muss wie folgt ausgeführt sein:

Sondenstabdurchmesser:	7 mm 8 mm
Innengewinde am Sondenstab:	M5
Länge Innengewinde:	min. 10 mm
Werkstoff:	Edelstahl

① Länge Sondenstab

Gesamt-Sondenlänge: 100 mm ... 1.000 mm Gesamt-Sondenlänge = 15 mm + Länge Sondenstab

Die Gesamt-Sondenlänge wie in Kapitel "8.4.7 Parametrierung der Sondenlänge" einstellen. Das Menü EXPRT-Config-Length ist passwortgeschützt. Bei starken Anlagenvibrationen ist die Sonde mit Schraubensicherungslack zu sichern.

- ① Gesamt-Sondenlänge
- 2 Länge Sondenstab

6 Elektrische Installation

6.1 Sicherheit

6.1.1 Hinweise zur Elektroinstallation

WICHTIG

Geräteschaden durch falsche Versorgungsspannung!

Eine falsche Versorgungsspannung kann zu einem Geräteschaden führen.

• Gerät nur mit einer geschützten Niederspannung und einer sicheren elektrischen Isolierung der Schutzklasse III betreiben.

WICHTIG

Geräteschaden oder unvorhergesehener Betrieb durch Arbeiten unter Spannung!

Das Arbeiten unter Spannung kann zu einem unvorhergesehenen Betrieb führen.

- Verdrahtungsarbeiten nur im spannungslosen Zustand durchführen.
- Elektrische Anschlüsse nur im spannungslosen Zustand verbinden und trennen.
- Die Elektroinstallation nur durch qualifizierte Elektrofachkraft ausführen.
- Versorgungsspannung für das Gerät erst nach Abschluss der Anschlussarbeiten und sorgfältiger Prüfung der Verdrahtungsarbeiten einschalten.
- Bei Verlängerungsleitungen mit offenem Ende darauf achten, dass sich blanke Aderenden nicht berühren (Kurzschlussgefahr bei eingeschalteter Versorgungsspannung!). Adern entsprechend gegeneinander isolieren.
- Aderquerschnitte der anwenderseitig zuführenden Versorgungsleitung gemäß gültiger Normen ausführen. In Deutschland folgende Normen beachten: DIN VDE 0100 (Teil 430) und DIN VDE 0298 (Teil 4) oder DIN VDE 0891 (Teil 1).
- Am Gerät angeschlossene Stromkreise als SELV-Stromkreise ausführen (SELV = Safety Extra Low Voltage = Sicherheitskleinspannung).
- Das Gerät mit einer separaten Sicherung am Anfang des zuführenden Stromkreises absichern.

Hinweis zur Verlegung von Datenleitungen:

- Abgeschirmte Datenleitungen mit paarweise verdrillten Adern (twisted pair) verwenden.
- Einwandfreies und vollständiges Schirmungskonzept ausführen.
- Leitungen stets EMV-gerecht verlegen und verdrahten, um Störeinflüsse zu vermeiden, z. B. von Schaltnetzteilen, Motoren, getakteten Reglern und Schützen.
- Leitungen nicht über eine längere Strecke parallel mit Stromversorgungs- und Motorleitungen in Kabelkanälen verlegen.

Die Schutzklasse IP67 wird für das Gerät nur bei folgenden Bedingungen erreicht:

• Die aufgesteckte Leitung am M12-Anschluss ist verschraubt.

Bei Nichteinhaltung entspricht das Gerät keiner spezifizierten Schutzart IP!

6.2 Elektrischer Anschluss

6.2.1 Übersicht der elektrischen Anschlüsse

Der Sensor wird über eine fertig konfektionierte Leitungsdose mit M12 x 1-Steckverbinder, 5-/8-polig angeschlossen. Leitungsdose spannungsfrei auf den Sensor aufstecken und festschrauben.

Leitung gemäß ihrer Funktion anschließen. Nach Anlegen der Versorgungsspannung führt der Sensor einen Selbsttest durch. Im eingebauten Zustand ist nach abgeschlossenem Selbsttest (< 5 s) der Sensor betriebsbereit und das Display zeigt den aktuellen Messwert an.

Abb. 4: LS-5

6.2.2 Pinbelegung, M12-Steckverbinder, 5-polig

Abb. 5: M12 x 1-Steckverbinder, 5-polig

Kontakt	Kennzeichnung	Aderfarbe	Beschreibung
1	L+	braun	Versorgungsspannung
2	Q _A	weiß	Analog Strom-/Spannungsausgang
3	М	blau	Masse, Bezugsmasse für Strom-/Spannungsausgang
4	C/ Q ₁	schwarz	Schaltausgang 1, PNP/IO-Link- Kommunikation
5	Q ₂	grau	Schaltausgang 2, PNP/NPN

6.2.3 Pinbelegung, M12-Steckverbinder, 8-polig

Abb. 6: M12 x 1-Steckverbinder, 8-polig

Kontakt	Kennzeichnung	Beschreibung		
1	L+	Versorgungsspannung		
2	Q ₂	Schaltausgang 2, PNP/NPN		
3	М	Masse, Bezugsmasse für Strom-/Spannungsausgang		
4	C/Q ₁	Schaltausgang 1, PNP/IO-Link-Kommunikation		
5	Q ₃	Schaltausgang 3, PNP/NPN		
6	Q ₄	Schaltausgang 4, PNP/NPN		
7	Q _A	Analog Strom-/Spannungsausgang		
8		keine Funktion		

Die Adernfarben bei 8-poligen Leitungen sind nicht einheitlich. Bitte beachten Sie immer die Anschlussbelegung des Sensors.

7 Inbetriebnahme

7.1 Kurzinbetriebnahme (mit Werkseinstellung)

Die Kurzinbetriebnahme kommt bei Anwendungen unter Referenzbedingungen zum Einsatz, siehe "5 Montage".

Dabei gilt:

- Einsatz in metallischen Behältern oder Tauch-/Bypassrohren
- Die zu messende Flüssigkeit hat eine Dielektrizitätskonstante > 5; siehe "18 Medienliste"

Inbetriebnahme

- 1. Montage des Sensors gemäß den Einbaubedingungen durchführen, siehe "5 Montage".
- 2. Der Behälter muss leer sein und/oder der Füllstand muss sich mindestens 200 mm unterhalb des Sondenendes befinden.
- 3. Experten-Modus anmelden, siehe "8.4.1 Experten-Modus".
- 4. Nach der Montage den Menüpunkt AutCal ausführen.
 - Set-Taste länger als 3 s gedrückt halten.
 - Den Menüpunkt AutCal mit der Set-Taste bestätigen und die Sicherheitsabfrage Ok? ebenfalls mit der Set-Taste bestätigen.
 - Die AutCal-Funktion wird mit !CalOk bestätigt.
- 5. Ausgänge parametrieren, siehe "8.2 Parametrierung der Schaltausgänge".

Wurde die AutCal-Funktion mit !NoSig bestätigt, AutCal erneut ausführen.

Bei Problemen während der Inbetriebnahme siehe "11 Fehlerbehebung".

7.2 Erweiterte Inbetriebnahme

Die erweiterte Inbetriebnahme ist notwendig, wenn die Kurzinbetriebnahme nicht ausreicht oder einer der folgenden Punkte zutrifft:

- Die zu messende Flüssigkeit hat eine Dielektrizitätskonstante < 5, siehe "18 Medienliste".
- Es existieren Tankeinbauten, welche das Messsignal stören können (bei LS-5).
- Bei starker Wellenbildung an der Flüssigkeitsoberfläche.
- Wenn abweichende Einbaubedingungen vorhanden sind, siehe "5 Montage".

Inbetriebnahme

- 1. Montage des Sensors gemäß den Einbaubedingungen, siehe "5 Montage".
- 2. Experten-Modus anmelden, siehe "8.4.1 Experten-Modus".
- 3. Messmodus auswählen.
 - Menü EXPRT-CONFIG-MeasMd mit den Pfeil-Tasten und Set-Taste aufrufen.
 - HiSpd: max. Length = 2.005 mm, Ansprechzeit < 400 ms.
 - HiAcc: max. Length = 6.005 mm, Ansprechzeit < 2.800 ms, stabilere Messwerte, empfohlen bei Flüssigkeiten mit kleinen DKs und bei TrsHld < 70.
- 4. Statische Störer im Tank einlernen.
 - Statische Störer im Tank erzeugt von Rohren, Streben, Stutzen oder einer Reinigungskugel werden standardmäßig eingelernt.
 - Menü EXPRT-CONFIG-CalRng mit den Pfeil-Tasten und Set-Taste aufrufen. Dabei gilt:
 - Einlerntiefe beginnend ab Prozessanschluss des LS-5
 - Einlerntiefe sollte alle Störsignale abdecken
 - Maximale Einlerntiefe (empfohlen) = Sondenlänge
 - Wertebereich: 95 mm ... 6.005 mm einstellen
 - Kann der Tank nicht vollständig geleert werden, muss die Einlerntiefe CalRng entsprechend angepasst werden.
 - Der Füllstand muss sich mindestens 200 mm unterhalb des CalLen und/oder des Sondenendes befinden.
- 5. AutCal-Funktion ausführen.
 - Menü AutCal mit den Pfeil-Tasten und Set-Taste aufrufen.
 - Dabei gilt: Die Sonde darf in der unter Punkt 4 eingestellten CalRng (Einlerntiefe + 200 mm) nicht mit Flüssigkeit bedeckt sein.
 - Den Menüpunkt AutCal mit der Set-Taste bestätigen und die Sicherheitsabfrage Ok? ebenfalls mit der Set-Taste bestätigen.
 - Die AutCal-Funktion wird mit !CalOk bestätigt.
- 6. Signalqualität analysieren.
 - Die Signalqualität lässt sich im eingebauten Zustand analysieren, siehe "8.4.9 Signalqualität auswerten".
 - Bei Problemen:
 - Wert im Menü EXPRT-CONFIG-TrsHld reduzieren.
 - Parameter im Menü EXPRT-CONFIG-MeasMd auf HiAcc setzen.
 - Filter einschalten im Menü Filter einstellen.
 - Parameter im Menü EXPRT-CONFIG-MaxCol reduzieren.
- 7. Filter parametrieren (siehe Kapitel "8.4.2 Messwerte filtern").
- 8. Maximum change of level/ Plausibilitätsprüfung durchführen (siehe Kapitel "8.4.2 Messwerte filtern").
- 9. Ausgänge parametrieren ("8.2 Parametrierung der Schaltausgänge").

Hinweis:

- Bei Applikation mit Schaum die Schauminbetriebnahme verwenden.
- Der Sensor beendet den Experten-Modus nach 5 Minuten Inaktivität am Display automatisch.
- Die Parametrierung (AutCal) verfällt bei folgenden Vorgängen:
 - Ändern der Sondenlänge
 - Ändern des Messmodus
 - Ändern der Einlerntiefe

Bei Problemen während der Inbetriebnahme siehe "11 Fehlerbehebung".

7.3 Schauminbetriebnahme (mit Werkseinstellung)

Zu verwenden bei Applikationen mit starker Schaumbildung.

Schaumkalibrierung durchführen

- 1. Montage des Sensors gemäß den Einbaubedingungen, siehe "5 Montage".
- 2. Experten-Modus anmelden, siehe "8.4.1 Experten-Modus".
- 3. Tank vollständig entleeren.
 - Die Stabsonde darf nicht mehr mit Medium und Schaum benetzt sein.
 - Anhaftungen an der Sonde müssen entfernt werden.
 - Das Sondenende darf nicht am Tankboden fixiert sein.
- 4. Messmodus auswählen.
 - Menü EXPRT-Config-MeasMd mit den Pfeil-Tasten und Set-Taste aufrufen und auf HiAcc parametrieren.
- Modus auswählen Menü EXPRT-Config-Mode mit den Pfeil-Tasten und Set-Taste aufrufen und auf Foam parametrieren.
- 6. Leerkalibration ausführen.
 - Menü EXPRT-Foam-CalEmp mit den Pfeil-Tasten und Set-Taste aufrufen.
 - !CalOk: Weiter mit Punkt 7.
 - Ifaild: Sicherstellen, dass der Tank leer ist und Punkt 6 wiederholen.
- 7. Medium einfüllen (ohne Schaum) bis die Sonde mindestens 200 mm bedeckt ist. Der maximale Füllstand muss allerdings 200 mm vom Prozessanschluss entfernt sein.
- 8. EXPRT-Foam-CalMed ausführen.
 - !CalOk: Alles hat funktioniert, weiter mit Punkt 9.
 - !faild: Punkt 8 erneut ausführen.

Der LS-5 muss jetzt einen gültigen Messwert anzeigen.

- 9. Überprüfen der Schaumkalibrierung im EXPRT-INFO-CalSta.
 - FomCal: Schauminbetriebnahme wurde erfolgreich durchgeführt.
 - CalMis: Fehlerhafte Inbetriebnahme. Bitte erneut ausführen.

Hinweis:

i

- Messabweichung kann höher sein.
- Signal-Qualität 1 & 2 werden nicht berechnet!
- Der Sensor beendet den Experten-Modus nach 5 Minuten Inaktivität am Display automatisch.
- Die Parametrierung (Schaum-Teach) verfällt bei folgenden Vorgängen:
 - Ändern der Sondenlänge
 - Ändern des Messmodus
 - Ändern der Einlerntiefe
 - Ausführen von AutCal

Bei Problemen während der Inbetriebnahme siehe "11 Fehlerbehebung".

8 Bedienung

8.1 Display und Tasten

Alle Längenangaben im Menü beziehen sich auf das Sondenende und/oder bei einem parametrierten Offset (bei LS-5 siehe "8.4.7 Parametrierung der Sondenlänge") auf den Tankboden. Das Menü wird durch Bestätigen der SET-Taste für mindestens 3 Sekunden aufgerufen.

8.1.1 Variante mit zwei Schaltausgängen

Q1 Q2

Pfeil-Tasten:Navigieren im Menü und Werte verändernSet-Taste:Speichern und BestätigenEsc-Taste:Schrittweises Verlassen des Bedienmenüs

Hinweis:

Die Darstellung der Zustände der Schaltausgänge erfolgt mit der Einheit Millimeter durch Balkenanzeigen über dem Einheitensymbol. Diese Darstellung ist bei der Einheit Inch nicht möglich.

8.1.2 Variante mit vier Schaltausgängen

i

Q1/2/3/4

Pfeil-Tasten:Navigieren im Menü und Werte verändernSet-Taste:Speichern und BestätigenEsc-Taste:Schrittweises Verlassen des Bedienmenüs

8.1.3 IO-Link

Zum Betrieb über IO-Link steht unter www.turck.com eine IODD-Datei und eine Beschreibung der verfügbaren Telegrammparameter zum Download bereit.

8.2 Parametrierung der Schaltausgänge

8.2.1 Schalthysterese und Fensterfunktion

Je nach Variante 2 oder 4 Ausgänge

Wenn der Füllstand um den Sollwert schwankt (z. B. Wellenbewegung beim Befüllen), hält die Hysterese den Schaltzustand der Ausgänge stabil. Bei steigendem Füllstand schaltet der Ausgang bei Erreichen des jeweiligen Schaltpunktes (SP); sinkt der Füllstand wieder ab, schaltet der Ausgang erst wieder zurück, wenn der Rückschaltpunkt (RP) erreicht ist.

Je nach Variante 2 oder 4 Ausgänge

Die Fensterfunktion erlaubt die Überwachung eines definierten Bereiches. Befindet sich der Füllstand zwischen dem Fenster High (FH) und dem Fenster Low (FL), ist der Ausgang aktiv (Schließer) und/oder inaktiv (Öffner).

Der Fehlerzustand des Messgerätes ist analog zur Leitungsbruchüberwachung. In einem Fehlerzustand nimmt das Messgerät den sicheren Zustand ein, d. h. die Schaltausgänge werden inaktiv.

Für die nachgeschaltete Signalauswertung entspricht dies einer Leitungsunterbrechung.

8.2.2 Schließer mit einstellbarer Hysterese

Anwendungen

- Trockenlaufschutz
- Leermeldung

Parametrierung

- 1. Schaltausgang Qx als Schließer parametrieren.
 - Parameter im Menü QxMENU-OUx auf Qx_Hno setzen.
- 2. Schaltpunkt setzen.
 - Wert im Menü QxMENU-SPx auf Füllstandhöhe in mm setzen (z. B. 500 mm).
- 3. Rücksetzpunkt setzen.
 - Wert im Menü QxMENU-RPx auf Füllstandhöhe in mm setzen (z. B. 450 mm).
- Elektrische Eigenschaft auswählen (NPN/ PNP/ DRV (Push-Pull)). Parameter im Menü QxMENU-TYPx auswählen. Dabei gilt:
 - Qx-PNP = Schaltausgang in PNP Schaltung
 - Qx-NPN = Schaltausgang in NPN Schaltung
 - Qx-Drv = Schaltausgang in Push-Pull-Funktion

Verhalten des Schaltausgangs

Schaltausgang		PNP	NPN	DRV	Zustand bei Fehler
SobligRor / HNO	aktiv	Uv	0 V	U_v (PNP geschaltet)	inalitiv
Schlieber/ HNU	inaktiv	$0 V^{1)}$	U _v ²⁾	0 V (NPN geschaltet)	Indkuv

- ¹⁾ Nur Pull-down
- ²⁾ Nur Pull-up

8.2.3 Öffner mit einstellbarer Hysterese

Anwendungen

- Überfüllsicherung
- Vollmeldung

Parametrierung

- 1. Schaltausgang Qx als Öffner parametrieren.
 - Parameter im Menü QxMENU-OUx auf Qx_Hnc setzen.
- 2. Schaltpunkt setzen.
 - Wert im Menü QxMENU-SPx auf Füllstandhöhe in mm setzen (z. B. 500 mm).
- 3. Rücksetzpunkt setzen.
 - Wert im Menü QxMENU-RPx auf Füllstandhöhe in mm setzen (z. B. 450 mm).
- Elektrische Eigenschaft auswählen (NPN/ PNP/ DRV (Push-Pull)). Parameter im Menü QxMENU-TYPx auswählen. Dabei gilt:
 - Qx-PNP = Schaltausgang in PNP Schaltung
 - Qx-NPN = Schaltausgang in NPN Schaltung
 - Qx-Drv = Schaltausgang in Push-Pull-Funktion

Verhalten des Schaltausgangs

Schaltausgang		PNP	NPN	DRV	Zustand bei Fehler
Öffner/ HNC aktiv		Uv	0 V	U _v (PNP geschaltet)	inaktiv
	inaktiv	0 V ¹⁾	U_v^{2)}	0 V (NPN geschaltet)	

- ¹⁾ Nur Pull-down
- ²⁾ Nur Pull-up

8.2.4 Schließer mit Fensterfunktion

Anwendung

Die für die Anwendung kritische Füllhöhe liegt innerhalb der Fensterschwellen FHx und FLx.

Parametrierung

- 1. Schaltausgang Qx als Schließer parametrieren.
 - Parameter im Menü QxMENU-OUx auf Qx_Fno setzen.
- 2. Schaltpunkt setzen.
 - Wert im Menü QxMENU-FHx auf Füllstandhöhe in mm setzen (z. B. 500 mm).
- 3. Rücksetzpunkt setzen.
 - Wert im Menü QxMENU-FLx auf Füllstandhöhe in mm setzen (z. B. 400 mm).
- Elektrische Eigenschaft auswählen (NPN/ PNP / DRV (Push-Pull)). Parameter im Menü QxMENU-TYPx auswählen. Dabei gilt:
 - Qx-PNP = Schaltausgang in PNP Schaltung
 - Qx-NPN = Schaltausgang in NPN Schaltung
 - Qx-Drv = Schaltausgang in Push-Pull-Funktion

Verhalten des Schaltausgangs

Schaltausgang		PNP	NPN	DRV	Zustand bei Fehler
Septionar/ENO	aktiv	U _v	0 V	U_v (PNP geschaltet)	inolytiy
Schlieber/ FNO	inaktiv	0 V 1)	U _v ²⁾	0 V (NPN geschaltet)	Πακιν

¹⁾ Nur Pull-down

²⁾ Nur Pull-up

TURCK

8.2.5 Öffner mit Fensterfunktion

Anwendung

Die für die Anwendung kritische Füllhöhe liegt außerhalb der Fensterschwellen FHx und FLx.

Parametrierung

- 1. Schaltausgang Qx als Öffner parametrieren.
 - Parameter im Menü QxMENU-OUx auf Qx_Fnc setzen.
- 2. Schaltpunkt setzen.
 - Wert im Menü QxMENU-FHx auf Füllstandhöhe in mm setzen (z. B. 500 mm).
- 3. Rücksetzpunkt setzen.
 - Wert im Menü QxMENU-FLx auf Füllstandhöhe in mm setzen (z. B. 400 mm).
- Elektrische Eigenschaft auswählen (NPN/ PNP/ DRV (Push-Pull)). Parameter im Menü QxMENU-TYPx auswählen. Dabei gilt:
 - Qx-PNP = Schaltausgang in PNP Schaltung
 - Qx-NPN = Schaltausgang in NPN Schaltung
 - Qx-Drv = Schaltausgang in Push-Pull-Funktion

Verhalten des Schaltausgangs

	Schaltausgang		PNP	NPN	DRV	Zustand bei Fehler
	Öffnor / ENC	aktiv	U _v	οv	U_v (PNP geschaltet)	inclutiv
	inaktiv	0 V 1)	U _v ²⁾	0 V (NPN geschaltet)	Πακιν	

- ¹⁾ Nur Pull-down
- ²⁾ Nur Pull-up

8.2.6 Schließer mit Fehlersignal

Anwendung

Wenn am LS-5 eine Fehlermeldung ansteht, kann diese mit einem Schaltkontakt übertragen werden.

Parametrierung

- 1. Schaltausgang Qx als Schließer parametrieren.
 - Parameter im Menü QxMENU-OUx auf Qx_Eno setzen.
- Elektrische Eigenschaft auswählen (NPN/ PNP/ DRV (Push-Pull)). Parameter im Menü QxMENU-TYPx auswählen. Dabei gilt:
 - Qx-PNP = Schaltausgang in PNP-Schaltung
 - Qx-NPN = Schaltausgang in NPN-Schaltung
 - Qx-Drv = Schaltausgang in Push-Pull-Funktion

8.2.7 Öffner mit Fehlersignal

Anwendung

Wenn am LS-5 eine Fehlermeldung ansteht, kann diese mit einem Schaltkontakt übertragen werden.

Parametrierung

1. Schaltausgang Qx als Öffner parametrieren.

- Parameter im Menü QxMENU-OUx auf Qx_Enc setzen.
- Elektrische Eigenschaft auswählen (NPN/ PNP/ DRV (Push-Pull)). Parameter im Menü QxMENU-TYPx auswählen. Dabei gilt:
 - Qx-PNP = Schaltausgang in PNP-Schaltung
 - Qx-NPN = Schaltausgang in NPN-Schaltung
 - Qx-Drv = Schaltausgang in Push-Pull-Funktion

8.3 Parametrierung des Analogausgangs

8.3.1 Automatische Signalerkennung

Der LS-5 kann selbständig anhand der angeschlossenen Ausgangslast erkennen, welches Signal gefordert wird.

Dabei gilt:

- 4 mA ... 20 mA < 500 Ohm bei Uv > 15 V
- 4 mA ... 20 mA < 350 Ohm bei Uv > 12 V
- 0 V ... +10 V > 750 Ohm bei Uv \ge 14 V

Parametrierung

- 1. Menü QAMENU-TYP mit den Pfeil-Tasten und Set-Taste aufrufen.
- 2. Menü QAMENU-TYP auf Auto? setzen.

Hinweis:

Die automatische Signalerkennung ist nur beim erstmaligen Einschalten aktiv. Danach kann diese Funktion im Menü QAMENU-Typ wieder mit Auto? aktiviert werden.

8.3.2 Stromausgang 4 mA ... 20 mA

Parametrierung

- 1. Oberen Grenzwert (20 mA) setzen.
 - Wert im Menü QAMENU-QAHIGH auf Füllstandhöhe in mm setzen (z. B. 500 mm).
- 2. Unteren Grenzwert (4 mA) setzen.
 - Wert im Menü QAMENU-QALOW auf Füllstandhöhe in mm setzen (z. B. 10 mm).
- Signal invertieren.
 Im Menü QAPOL kann das Analogsignal invertiert werden.
 Parameter im Menü QxMENU-QAPOL auf QA-INV setzen.
 - QA-NRM = Analoges Ausgangssignal wie parametriert
 - QA-INV = Analoges Ausgangssignal wird invertiert; QAHIGH 4 mA und QALOW 20 mA
- 4. Elektrisches Signal auswählen.
- 5. Parameter im Menü QxMENU-QATYP auf 4 mA ... 20 mA setzen.

8.3.3 Spannungsausgang 0 V ... +10 V

Parametrierung

- 1. Oberen Grenzwert (10 V) setzen.
 - Wert im Menü QAMENU-QAHIGH auf Füllstandhöhe in mm setzen (z. B. 500 mm).

- 2. Unteren Grenzwert (0 V) setzen.
 - Wert im Menü QAMENU-QALOW auf Füllstandhöhe in mm setzen (z. B. 10 mm).
- Signal invertieren.
 Im Menü QAPOL kann das Analogsignal invertiert werden.
 Parameter im Menü QxMENU-QAPOL auf QA-INV setzen.
 - QA-NRM = Analoges Ausgangssignal wie parametriert
 - QA-INV = Analoges Ausgangssignal wird invertiert; QAHIGH OV und QALOW 10V
- 4. Elektrisches Signal auswählen. Parameter im Menü QxMENU-QATYP auf 0 ... +10 V setzen.

8.4 Erweiterte Funktionen

8.4.1 Experten-Modus

Um spezielle Funktionen zu aktivieren, muss zunächst der Experten-Modus eingestellt werden.

Experten-Modus anmelden

- 1. Menü PASSW mit den Pfeil-Tasten aufrufen.
- 2. Passwort 000537 eingeben.

Mit einem falschen Passwort oder durch spannungslos Schalten kann der Experten-Modus wieder verriegelt werden.

8.4.2 Messwerte filtern

Filterung aktivieren

Glättung des Messwertes z. B. bei welligen Füllstandoberflächen. Bei schnellen Füllstandsänderungen wird der Durchschnitt der Messwerte über X Sekunden ausgegeben.

Parameter im Menü Filter einstellen.
 Mögliche Werte sind Off, 400 ms, 600 ms, 1.000 ms, 1.400 ms, 2 s, 5 s, 10 s.

Maximum change of level (Plausibilitätsprüfung)

Bei Anwendungen, die durch starke Störeinflüsse am LS-5 Füllstandsprünge verursachen. Eingabe der max. Füllstanddynamik in der Anwendung und/oder die maximal zulässige Änderungsrate des Füllstands.

- 1. Experten-Modus anmelden, siehe "8.4.1 Experten-Modus".
- 2. Parameter im Menü EXPRT-CONFIG-MaxCol reduzieren. AnySpd (50 cm/s) (default), 10 cm/s, 5 cm/s, 2 cm/s

Hinweis:

i

- MeasMd = HiSpd alle max. Änderungsrate möglich
- MeasMd = HiAcc max. 10 cm/s

8.4.3 Automatische Einstellung der Störsignalgrenze

Die Einstellung der Störsignalgrenze (TrsHld) kann in vielen Anwendungen automatisiert vorgenommen werden.

Parametrieren

- 1. Füllstand von 30 % einstellen.
- 2. Experten-Modus anmelden, siehe "8.4.1 Experten-Modus".
- 3. Im Menü EXPRT-Pulse-AutoTn ausführen.

Der Sensor ermittelt einen geeigneten Wert für TrsHld.

1 Hinweis:

Diese Einstellung kann nur im Puls-Modus verwendet werden.

8.4.4 Ausblenden von Störsignalen in maskierter Zone

Um Störsignale aus dem Bereich oberhalb des maximal zu erwartenden Füllstands auszublenden, kann eine Zone maskiert werden (Totzone). Diese Zone beginnt am Prozessanschluss und erstreckt sich bis zum parametrierten Punkt. Treten innerhalb dieses Bereichs Signalwerte oberhalb des festgelegten Grenzwerts (TrsHld) auf, geht der Sensor in den sicheren Zustand und der Sensor signalisiert den Fehler !MaskZ.

MaskTr	1			2)	3	
	DZ	MR	DZ	MR	DZ	MR
20 %	х	\bigcirc	\bigcirc	х	\bigcirc	х
100 %	х	\bigcirc	х	\bigcirc	\bigcirc	х
200 %	х	\checkmark	х	\checkmark	х	\bigcirc

- ① Keine/sehr schwache Reflexion
- 2 Schwache Reflexion (z. B. Spritzwasser)
- ③ Starke Reflexion (z. B. dicke Schicht Ketchup)
- DZ Totzone
- MR Aktiver Messbereich
- x Keine Detektion/ Messung
- Detektion/ Messung

Parametrierung

- 1. Experten-Modus anmelden, siehe "8.4.1 Experten-Modus".
- 2. Parameter im Menü EXPRT-Pulse-MaskZn festlegen.

Hinweis:

Diese Einstellung kann nur im Pulse-Modus verwendet werden.

8.4.5 Auswahl des Auswerteverfahrens

Als Auswerteverfahren kann zwischen Puls-Modus und Schaum-Modus umgeschaltet werden. Je nach gewähltem Modus werden andere Auswertealgorithmen verwendet.

Parametrierung

- 1. Experten-Modus anmelden, siehe "8.4.1 Experten-Modus".
- 2. Im Menü EXPRT-Config-Mode zwischen Pulse und Foam wählen.

Dabei gilt:

- Mode = Pulse: Der Sensor misst entweder mit oder ohne AutCal.
- Mode = Foam: Der Sensor misst nur mit gültigem CalEmp+CalMed. Liegen keine gültigen Kalibrierungen vor, wird die Meldung CalPIs angezeigt und der Sensor geht in den sicheren Zustand.

i

Hinweis:

Wenn AutCal aufgerufen wird, während sich der Sensor im Modus Foam befindet, wird AutCal mit der Fehlermeldung !Denid abgelehnt.

8.4.6 Testen der Parametrierung

Ausgänge testen

Schalt-/Analogausgang können simuliert werden. Dadurch können die Verdrahtung und die Signalwerte an die angeschlossenen Systeme wie SPS, Relais und Lampen überprüft werden.

Parametrierung

1

Schaltausgang Qx aktiv setzen

Parameter im Menü QxMENU-SimQx auf QxOn setzen.

Weitere Optionen:

- QxOff = Schaltausgang aus
- QxNorm = Schaltausgang im Messbetrieb
- QxOn = Schaltausgang ist aktiv

Hinweis:

Die Simulation wird automatisch abgeschaltet, wenn die Versorgungsspannung unterbrochen wird.

Analogausgang QA aktiv setzen

- Parameter im Menü QAMENU-SimCur oder SimVol auf gewünschen Signalwert setzen.
 - SimCur für Stromausgang
 - SimVol für Spannungsausgang

Hinweis:

Die Simulation wird automatisch abgeschaltet, wenn die Versorgungsspannung unterbrochen wird.

Füllstand simulieren

i

Auch wenn sich im Behälter noch keine Flüssigkeit befindet, kann im Menü eine Füllhöhe gewählt werden, um die Parametrierung des Sensors zu testen. Wenn ein Füllstandwert simuliert wird, dann werden am LS-5 alle Ausgänge gemäß der festgelegten Parametrierung gesetzt. Die Funktion sollte erst am Ende einer Parametrierung gewählt werden.

Parametrierung

Parameter im Menü SimLev auf gewünschte Füllhöhe in % setzen.

Hinweis:

- Simulation des Füllstands bezieht sich auf die Sondenlänge und/oder auf den Behälterfüllstand (Sondenlänge + Offset) bei parametriertem Offset.
- Die Simulation ist nur aktiv, wenn keine Fehlermeldungen anstehen. Die Simulation wird automatisch abgeschaltet, wenn die Versorgungsspannung unterbrochen wird.

Parameterauswahl

- SimOff: Aus
- 0 % Füllhöhe
- 25 % Füllhöhe
- 50 % Füllhöhe
- 75 % Füllhöhe
- 100 % Füllhöhe

8.4.7 Parametrierung der Sondenlänge

- 1. Experten-Modus anmelden, siehe "8.4.1 Experten-Modus".
- 2. Menü EXPRT-Config-Length mit den Pfeil-Tasten und Set-Taste aufrufen.
- 3. Sondenlänge im Menü Length eingeben. Bitte die Definition der Sondenlänge in Kapitel "15 Maßzeichnungen" beachten.

i Hinweis:

- HiSpd: max. Length = 2.005 mm, Ansprechzeit < 400 ms
- HiAcc: max. Length = 6.005 mm, Ansprechzeit < 2.800 ms

8.4.8 Statische Störsignale einlernen

Statische Störsignale im Tank erzeugt von Rohren, Streben, Stutzen oder einer Reinigungskugel können eingelernt werden. Dabei ist die Sondenlänge der Wert für die Einlerntiefe.

- 1. Experten-Modus anmelden, siehe "8.4.1 Experten-Modus".
- 2. Menü EXPRT-Pulse-CalRng mit den Pfeil-Tasten und Set-Taste aufrufen.
- 3. Wertebereich: 95 mm ... 6.005 mm einstellen.

Hinweis:

- Wert beginnend ab Prozessanschluss des LS-5.
- Der Wert sollte alle Störsignale abdecken.
- Maximaler Wert = Sondenlänge 100 mm.
- AutCal-Funktion muss danach ausgeführt werden, siehe "7 Inbetriebnahme".
- Der Parameter CalRng sollte bei LS-5s mit abgesetzter Elektronik immer der Sondenlänge entsprechen.

8.4.9 Signalqualität auswerten

Parameter beschreiben die Qualität des Messsignals.

Experten-Modus anmelden, siehe "8.4.1 Experten-Modus".

SigQa1

Kennzahl für Robustheit der EXPRT-Pulse-TrsHld-Einstellung.

Bei Schaummodus nicht aktiv. Der angezeigte Wert ist nur gültig, sofern der Sensor den korrekten Füllstandwert anzeigt.

- Wertebereich: 0 % ... 100 %
- Gutes Signal: > 40 % (Mit der aktuellen TrsHld-Einstellung ist eine hohe Pulsreserve gegeben.)
- Maßnahmen: EXPRT-Pulse-TrsHld reduzieren, dadurch wird SigQa1 erhöht.

Hinweis:

i

- Eine Veränderung von TrsHld hat Auswirkungen auf SigQa2 und SigQa3.
- Sofern sich in Verbindung mit den SigQa-Werten durch Anpassung von TrsHld kein zufriedenstellender Wert für SigQa1 erzielen lässt, ist die Einbaubedingung zu überprüfen. Der Einsatz eines Koaxialrohrs verbessert die Signaldetektion insbesondere bei Medien mit kleinen DK-Werten (z. B. Öl).

SigQa2

Kennzahl für Robustheit der Echopulserkennung bzgl. Störpulsen.

Bei Schaummodus nicht aktiv. Der angezeigte Wert ist nur gültig, sofern der Sensor den korrekten Füllstandwert anzeigt.

- Wertebereich: 0 % ... 100 %
- Gutes Signal: > 50 %
- Maßnahmen: AutCal ausführen; Einbaubedingungen überprüfen; Anhaftungen an Sonde und Prozessanschluss entfernen.

SigQa3

Kennzahl für Rauschen und elektromagnetische Störer.

- Wertebereich: 0 % ... 100 %
- Gutes Signal: > 75 %
- Schlechtes Signal: < 50 %

Bei Schaummodus nicht aktiv. Der angezeigte Wert ist nur gültig, sofern der Sensor den korrekten Füllstandwert anzeigt.

- Wertebereich: 0 % ... 100 %
- Maßnahmen:
 - EXPRT-Config-TrsHld erhöhen
 - EXPRT-Config-MeasMd = HiAcc
 - Filterung verbessern
 - Filter einschalten
 - EXPRT-Config-MaxCol reduzieren

8.4.10 Displayschutz aktivieren

Um den Sensor gegen Manipulation zu schützen, ist es möglich einen Passwortschutz für das Display zu aktivieren.

Ist der Schutz aktiv, muss vor dem Aufrufen des Menüs das Experten-Passwort 000537 eingegeben werden.

Nur nach Eingabe des korrekten Passworts wird das Menü freigegeben.

Parametrierung

i

- 1. Expertenmodus anmelden, siehe "8.4.1 Experten-Modus".
- 2. Schutz wird über Menü EXPRT-Config-Lock (de)aktiviert.

Hinweis:

- Der Anwender wird nach 5 Minuten Inaktivität wieder ausgeloggt.
- Im gesperrten Zustand ist lediglich die parametrierte Messwertanzeige (DspVal) sichtbar.

8.4.11 Anzeigeeinheit auswählen (Millimeter/ inch)

Diese Einstellung ermöglicht es, alle Längenmaße in der Einheit Millimeter oder Inch darzustellen und zu parametrieren.

Parametrierung

- 1. Experten-Modus anmelden, siehe "8.4.1 Experten-Modus".
- 2. Einheit im Menü EXPRT-Config-Unit einstellen (mm/ inch).

8.4.12 Offset einstellen

Diese Einstellung ermöglicht es, den Füllstandwert am Display bezogen auf den Tankboden anstelle des Sondenendes auszugeben. Damit kann der tatsächliche Behälterfüllstand am Display ausgegeben werden.

Parametrierung

- Experten-Modus anmelden, siehe "8.4.1 Experten-Modus". 1.
- 2. Offset im Menü EXPRT-Config-Offset einstellen (0 mm ... +3.000 mm).

IAE: Inaktiver Bereich am Sondenende

Hinweis: i

Wird der Parameter Offset geändert, dann werden automatisch die Parameter SPx/ RPx/ FLx/ FHx/ QALOW/ QAHIGH angepasst.

8.4.13 Zurücksetzen der Kalibrierung

AutCal zurücksetzen

- 1. Experten-Modus anmelden, siehe "8.4.1 Experten-Modus".
- 2. AutCal im Menü EXPRT-Pulse-Reset zurücksetzen.

CalEmp+CalMed zurücksetzen

- 1. Experten-Modus anmelden, siehe "8.4.1 Experten-Modus".
- 2. CalEmp+CalMed im Menü EXPRT-Foam-Reset zurücksetzen.

9 Menü-Übersicht

1) Sichtbare Elemente hängen von der OUx Parameter-Wahl ab

2) Sichtbare Elemente hängen von der QATYP Parameter-Wahl ab.

3) Passwortgeschützter Messbereich.

Q3 und Q4 sind nur vorhanden, wenn es sich um einen LS-5 mit vier Schaltausgängen handelt.

1) Sichtbare Elemente hängen von der OUx Parameter-Wahl ab

2) Sichtbare Elemente hängen von der QATYP Parameter-Wahl ab.

3) Passwortgeschützter Messbereich.

Q3 und Q4 sind nur vorhanden, wenn es sich um einen LS-5 mit vier Schaltausgängen handelt.

1) Sichtbare Elemente hängen von der OUx Parameter-Wahl ab

2) Sichtbare Elemente hängen von der QATYP Parameter-Wahl ab.

3) Passwortgeschützter Messbereich.

Q3 und Q4 sind nur vorhanden, wenn es sich um einen LS-5 mit vier Schaltausgängen handelt.

10 Übersicht der Parameter

Parameter	Beschreibung	
Q1MENU, Q2MENU,	Siehe "8.2 Parametrierung der Schaltausgänge".	
Q3MENU, Q4MENU		
SPx	Schaltpunkt Schaltausgang 1 oder 2 oder 3 oder 4 (SPx > RPx). Hinweis: Erscheint nicht mehr, wenn der Schaltausgang im Menü OUx auf Error oder Fenster gestellt ist.	
RPx	Rückschaltpunkt Schaltausgang 1 oder 2 oder 3 oder 4.	
	Hinweis: Erscheint nicht mehr, wenn der Schaltausgang im Menü OU2/3/4 auf Error oder Fenster gestellt ist.	
FHx	Fensterfunktion obere Schwelle (high) Schaltausgang	
FLx	 2/3/4 (FHx > FLx) Fensterfunktion untere Schwelle (low) Schaltausgang 2/3/4 Hinweis: Erscheint nicht mehr, wenn der Schaltausgang im Menü OU2/3/4 auf Error oder Hysterese gestellt ist. 	
OUx	 Schaltfunktion Schaltausgang. Qx-Hno = Hysteresefunktion, Schließer Qx-Hnc = Hysteresefunktion, Öffner Qx-Fno = Fensterfunktion, Schließer (Funktion nur für Q2/3/4 verfügbar) Qx-Fnc = Fensterfunktion, Öffner (Funktion nur für Q2/3/4 verfügbar) Qx-Eno = Fehlersignal, Schließer (Funktion nur für Q2/3/4 verfügbar) Qx-Enc = Fehlersignal, Öffner (Funktion nur für Q2/3/4 verfügbar) Qx-Enc = Fehlersignal, Öffner (Funktion nur für Q2/3/4 verfügbar) Qx-Enc = Fehlersignal, Öffner (Funktion nur für Q2/3/4 verfügbar) Qx-Enc = Fehlersignal verwendet, so wird SPx/ FHx und RPx/ FLx im Menü ausgeblendet. 	
SimQx	Siehe "8.4.6 Testen der Parametrierung".	
TYP2/3/4	 Qx-PNP = Schaltausgang in PNP-Schaltung Qx-NPN = Schaltausgang in NPN-Schaltung Qx-Drv = Schaltausgang in Push-Pull-Funktion ausgeführt 	
QAMENU	Siehe "8.3 Parametrierung des Analogausgangs".	
QAHIGH	Eingabe der Füllhöhe in mm für 20 mA/10 V Signal (QA- HIGH > QALOW).	
QALOW	Eingabe der Füllhöhe in mm für 4 mA/0 V Signal.	
QAPOL	 Das analoge Ausgangssignal kann invertiert werden. QA-Nrm = Analoges Ausgangssignal wie parametriert QA-Inv = Analoges Ausgangssignal wird invertiert: QA- High 4 mA/OV und QALow 20 mA/10V 	

Parameter	Beschreibung	
QATYP	Einstellung des Ausgangssignal.	
	• 4 mA 20 mA	
	• 0 V +10 V	
	 Auto V = Qa wird mit Spannungsausgang 0 V +10 V 	
	betrieben	
	 Auto A = Qa wird mit Stromausgang 4 mA 20 mA betrieben 	
	 Auto? = Automatische Signalerkennung anhand der 	
	vorhandenen Bürde	
	Bei der Abfrage des Menüs wird entweder	
	4 mA 20 mA oder 0 V +10 V angezeigt.	
QAFAIL	Ausgangsverhalten nach NE43 bei Störung (Funktion nur verfügbar wenn auch unter QATYP der Stromausgang gewählt wurde.)	
	3,5 mA gesetzt.	
	 21,5 mA = Analoger Stromausgang wird bei Störung auf 21,5 mA gesetzt. 	
SimCur	Siehe "8.4.6 Testen der Parametrierung".	
SimVol	Siehe "8.4.6 Testen der Parametrierung".	
DspVal	Einstellung des Displays.	
	Distan = Das Display zeigt die Distanz in mm bezogen	
	auf das Sondenende an.	
	• QaPerc = Das Display zeigt die Füllhöhe in % bezogen	
	auf den Analogausgang QA mit den entsprechenden	
	Schwellen QAHIGH und QALOW all.	
	auf den Analogausgang QA mit den entsprechenden	
	Schwellen QAHIGH und QALOW an.	
	 QaSign = Das Display zeigt den aktuellen Ausgangswert QA in mA oder V an. 	
	• QxSign = Das Display zeigt die Schaltzustände an.	
Filter	Siehe "8.4.2 Messwerte filtern".	
SimLev	Siehe "8.4.6 Testen der Parametrierung".	
RstFac	Rücksetzen der eingestellten Parameter auf die Werksein- stellungen.	
EXPRT	Siehe "8.4.1 Experten-Modus".	
Lock	Siehe "8.4.11 Displayschutz aktivieren".	
Unit	Siehe "8.4.12 Anzeigeeinheit auswählen (Millimeter/	
Offset	Siehe "8.4.13 Offset einstellen".	
Mode	Siehe "8.4.5 Auswahl des Auswerteverfahrens".	
MaxCol	Siehe "8.4.2 Messwerte filtern"	

Parameter	Beschreihung
	Mesomodus (Mesouring Mede)
Measiviu	Messihodus (Measuring Mode).
	• HISpu: max. Length = 2.005 mm,
	An spire $12 \text{ end} + 400 \text{ ms}$
	• HIACC: max. Length = 6.005 mm,
	Alispieulizeli < 2.000 Ilis (stabilere Messwerte, empfohlen hei Elüssigkeiten mit
	(Stabilete Messwerte, emptorilet bei Flussigkeiten mit kleinen DKs und hei TrsHld < 70)
	• mode 1: night unterstützt: deaktiviert aktuellen AutCal/
	 Mode-1. Mont unterstutzt, deaktivient aktuellen Autoal/ Schaumkalibrierung
Dulas	Ciche 9.4.5 Augusch des Augustauerfehrene"
Pulse	Siene "8.4.5 Auswahl des Auswerteverlahrens .
AutCal	Siehe "7 Inbetriebnahme".
TrsHld	Dieser Wert beschreibt einen Faktor, welcher bestimmt,
	wie stark ein Echo sein muss, um vom Gerät erkannt zu
	werden. Der Wertebereich liegt zwischen 20 % und 500 %.
	Default ist nier 100 %. Nur mit Passworteingabe sichtbar.
	• 20 % = none Emptinalionkeit
	• 100 % = Standard
	 500 % = geringe Empfindlichkeit
AutoTn	Siehe "8.4.3 Automatische Einstellung der Störsignalgren-
	ze".
CalRng	Kalibrierbereich/Kalibrierlänge (Calibration Range).
	Wertebereich: 95 mm 6.005 mm
	Bereich beginnend ab Prozessanschluss, in dem bei dem
	AutCal-Vorgang statische Störsignale (Einbaustutzen,
	Schweißnähte, Sprühkugel etc.) ausgeblendet werden.
	Beim AutCal-Vorgang darf sich kein Medium in dem festge-
	legten Bereich +200 mm befinden.
	Siehe "8.4.8 Statische Störsignale einlernen".
MaskZn	Siehe "8.4.4 Ausblenden von Störsignalen in maskierter
	Zone".
MaskTr	Siehe "8.4.4 Ausblenden von Störsignalen in maskierter
	Zone".
Reset	Setzt den Wert für AutCal zurück.
Foam	Siehe 7.3 Schauminbetriebnahme (mit Werkseinstel-
	lung)".
CalEmp	Siehe 7.3 Schauminbetriebnahme (mit Werkseinstel-
	lung)".
CalMed	Siehe 7.3 Schauminbetriebnahme (mit Werkseinstel-
	lung)".
Limit	Grenzwert von Schaum zu Elüssigkeit (Limit between foam
	and fluid)
	• Range: 20 % 100 %
	Werkseinstellung, 90 %
	Mediumsoherfläche: 90 %
	Schaumoberfläche: < 90 %
	- Sunaumobernaune. > 30 /0 Rei der Messung der Schaumaborfläche kann es netwon
	dig sein das Limit zu reduzieren Zeigt der Sensor einen zu
	geringen Füllstandwert an so ist das Limit zu reduzieren
Reset	Setzt die Werte für CalEmp und CalMed zurück
NESEL	Setzi die werte für Galling und Galwied zurück.

Parameter	Beschreibung	
Probe	Sondeneinstellungen.	
Length	• Siehe "7.3 Schauminbetriebnahme (mit Werkseinstel- lung)" (LS-5).	
CblLen	Siehe "8.4.10 Koaxialkabellänge editieren".	
Туре	Auswahl zwischen Rod (Stabsonde) und Rope (Seilsonde).	
Info	Sensorinformationen.	
FrmVer	Zeigt die Firmware-Version.	
SerNo	Zeigt die Seriennummer.	
CalSta	Zeigt den Status der Behälterkalibrierung.	
	 Pulse = AutCal (kalibriert), NoCal (nicht kalibriert) 	
	 Foam = FomCal (kalibriert), CalMis (nicht kalibriert) 	
AppTag	Messstellenbezeichnung, nur über IO-Link beschreibbar.	
DevTag	Gerätebezeichnung, nur über IO-Link beschreibbar.	
SigQua	Parameter beschreibt die Qualität des Messsignals.	
SigQa1	Siehe "8.4.9 Signalqualität auswerten".	
SigQa2	Siehe "8.4.9 Signalqualität auswerten".	
SigQa3	Siehe "8.4.9 Signalqualität auswerten".	
PASSW	Siehe "8.4.1 Experten-Modus".	

11 Fehlerbehebung

11.1 Fehlermeldung am Display

Fehlerbild	Ursache	Lösungsmöglichkeit
!InvEc &	Kein AutCal ausgeführt, Störer überlagert die	Inbetriebnahme durchführen
Füllstand vorhanden	Mediumsreflektion.	(Siehe "7.1 Kurzinbetriebnahme (mit Werkseinstellung)").
	TrsHld-Einstellung passt nicht zum Medium.	Erweiterte Inbetriebnahme durchführen
		(Siehe "7.2 Erweiterte Inbetriebnahme").
linvEc & Tank leer	Sondenlänge falsch parametriert.	Sondenlänge überprüfen und mit Parametrierung in EXPRT-Config-LENGTH abgleichen.
	Sonde nicht vorhanden.	Sonde überprüfen.
!ATTNT	Ein Parameter wurde außerhalb des gültigen Wer- tebereichs geschrieben und deshalb angepasst	Wert erneut in gültigem Bereich schreiben.
	Ein anderer Parameter wurde aufgrund einer Ab- hängigkeit automatisch angepasst (SPx, RPx).	Parameter erneut überprüfen.
!WRONG	Falsches Passwort eingegeben.	Korrektes Passwort eingeben.
!NoCal	Infomation: Der AutCal-Vorgang und/oder die Schaumkalibration wurde verworfen, da die Son- denlänge, die Einlerntiefe oder der Messmodus geändert wurden.	Erneut Inbetriebnahme durchführen, wenn erfor- derlich.
!Denid	AutCal wurde im Sensormodus Foam aufgerufen.	AutCal ist nur im Pulse-Modus verfügbar. Im Foam- Modus Schaumkalibrierung durchführen.
CalPls	Keine gültigen Kalibrationen für CalEmp und CalMed.	Schaumkalibrierung durchführen.
!CalOk	Der Einlernvorgang war erfolgreich.	
!NoSig	AutCal fehlgeschlagen.	Inbetriebnahme wiederholen.
!faild	Menüpunkt Foam-CalEmp oder FoamCalMed fehlgeschlagen.	Anweisungen der Schauminbetriebnahme befol- gen.
!SC-Q1 !SC-Q2	Kurzschluss am Ausgang.	Kurzschluss entfernen.
ISC-Q3 ISC-Q4 ISC-Qa	Lastwiderstand am Ausgang zu niedrig.	Lastwiderstand erhöhen.
!IOLOf	Versorgungsspannung zu gering für IO-Link-Kommunikation.	Versorgungsspannung erhöhen, um gewünschte Funktionalität zu erhalten.
!QaOff	Versorgungsspannung zu gering für Analogausgang.	Versorgungsspannung erhöhen, um gewünschte Funktionalität zu erhalten.
!QxOff	Versorgungsspannung zu gering für Schaltausgänge.	Versorgungsspannung erhöhen, um gewünschte Funktionalität zu erhalten.
!QaOvf	Der analoge Stromausgang Qa hat eine zu hoch- ohmige Last.	Last an Qa verringern.
	Der analoge Stromausgang Qa ist nicht verdrahtet.	Last an Qa anschließen.
!MaskZ	Störer/Puls überschreitet Wert für MaskTr.	MaskTr erhöhen oder Störer identifizieren und beseitigen.
!Range	Der maximal mögliche Messbereich wurde über- schritten. Eine Messung in dieser Konfiguration ist nicht möglich.	Sondenlänge und/oder Koaxialkabellänge reduzie- ren, Siehe "8.4.10 Koaxialkabellänge editieren"
!Cable	Das Koaxialkabel ist beschädigt/defekt.	Koaxialkabel tauschen .
	Die Koaxialkabellänge wurde falsch parametriert.	Siehe "8.4.10 Koaxialkabellänge editieren".

Fehlerbild	Ursache	Lösungsmöglichkeit
Das Display zeigt nur RUN an. Sonst ist die Anzeige leer.	Der Menüparameter Menü DspVal steht auf QaBarG und der Füllstand befindet sich unterhalb von QALOW.	QALOW oder DspVal ändern.
Display aus	Temperatur zu hoch.	Temperatur reduzieren.
	Temperatur zu niedrig.	Temperatur erhöhen.
	Keine Versorgungsspannung.	Sensor korrekt anschließen.
!Err[xx] !ErM[xx] !Erl[xx] !ErO[xx]	Systemfehler.	Das Gerät ist defekt und muss ausgetauscht werden.
NVFail	Speicherfehler.	Das Gerät ist defekt und muss ausgetauscht werden.

11.2 Bedienung am Display

Fehlerbild	Ursache	Lösungsmöglichkeit
Der Menüpunkt SPx/ RPx wird nicht angezeigt.	QxMENU/OUx ist nicht auf Qx-Hno und/oder Qx-Hnc parametriert.	Parametrierung von Qx durchführen (Siehe "8.2 Parametrierung der Schaltausgänge").
Der Menüpunkt FHx/ FLx wird nicht angezeigt.	QxMENU/OUx ist nicht auf Qx-Fno und/oder Qx-Fnc parametriert.	Parametrierung von Qx durchführen (Siehe "8.2 Parametrierung der Schaltausgänge").
QAFAIL wird nicht angezeigt.	Der Analogausgang Qa befindet sich im Span- nungsmodus (QATYP = 0 V +10 V).	Parametrierung von Qa durchführen (Siehe "8.3 Parametrierung des Analogausgangs").
SimVol wird nicht angezeigt.	Der Analogausgang Qa befindet sich im Strommo- dus (QATYP = 4 mA 20 mA).	Parametrierung von Qa durchführen (Siehe "8.3 Parametrierung des Analogausgangs").
SimCur wird nicht angezeigt.	Der Analogausgang Qa befindet sich im Span- nungsmodus (QATYP = 0 V +10 V).	Parametrierung von Qa durchführen (Siehe "8.3 Parametrierung des Analogausgangs").
EXPRT-Config wird nicht angezeigt.	Kein korrektes Passwort eingegeben.	Siehe "8.4.1 Experten-Modus".
EXPRT-Foam wird nicht angezeigt.	Kein korrektes Passwort eingegeben.	Siehe "8.4.1 Experten-Modus".
Die Darstellung der Längenangaben erfolgt als Komma- zahl.	Als Anzeigeeinheit ist Inch aktiviert.	Parametrierung der Einheit durchführen (Siehe "8.4.12 Anzeigeeinheit auswählen (Millimeter/ inch)").
Das Menü zeigt nur noch PASSW an.	Der Displayschutz ist aktiviert.	Siehe "8.4.11 Displayschutz aktivieren".

11.3 Ausgänge

Fehlerbild	Ursache	Lösungsmöglichkeit
Schaltausgang ver-	Fehlerhafte Parametrierung.	Parametrierung des Schaltausgangs durchführen
hält sich nicht wie		(Siehe "8.2 Parametrierung der Schaltausgänge").
erwartet	Fehler liegt an, die Ausgänge des Sensors befin- den sich im sicheren Zustand.	Fehlerursache beseitigen.
	Leitungsbruch.	Leitung überprüfen.
Analogausgang	Fehlerhafte Parametrierung.	Parametrierung des Analogausgangs
verhält sich nicht		(Siehe "8.3 Parametrierung des Analogaus-
wie erwartet		gangs").
	Fehler liegt an, die Ausgänge des Sensors befin-	Fehlerursache beseitigen.
	den sich im sicheren Zustand.	
	Leitungsbruch.	Leitung überprüfen.

11.4 Fehlerverhalten

Fehlerbild	Ursache	Lösungsmöglichkeit
Sensor zeigt nach Einbau einen hohen Füllstand an, obwohl der Tank leer ist.	Kein AutCal ausgeführt.	Inbetriebnahme durchführen (Siehe "7 Inbetriebnahme").
Sensor zeigt bei Verwendung mit Koaxi- alrohr einen hohen Füllstand an, obwohl der Tank leer ist.	Kein AutCal ausgeführt.	Inbetriebnahme durchführen (Siehe "7 Inbetriebnahme").
Füllstandwert auf dem Display schwankt.	Unruhige Mediumsoberfläche.	Filterung aktivieren (Siehe "7.1 Kurzin- betriebnahme (mit Werkseinstellung)").
Der angezeigte Füllstandwert/SPx/RPx/ FHx/FLx/QALOW/QAHIGH/ist größer als die Sondenlänge.	Es wurde ein Offset auf den Füllstand- wert parametriert.	Offset anpassen (Siehe "8.4.13 Offset einstellen").
	Falsche Sondenlänge parametriert.	Sondenlänge anpassen (Siehe "8.4.7 Parametrierung der Sondenlänge").
Füllstand springt gelegentlich auf höhe- ren Wert.	Verschmutzungen im Bereich des Pro- zessanschlusses.	Reinigen.
	Sprühkugel oder Zulauf benetzen Sonde oberhalb der Mediumsoberfläche mit Medium.	Einbaubedingungen beachten Plausibilitätsfilter MaxCoL parametrie- ren (Siehe "8.4.2 Messwerte filtern").
	Geänderte Umgebungsbedingungen ge- genüber Situation beim AutCal-Vorgang.	Erneute Inbetriebnahme durchführen (Siehe "7 Inbetriebnahme").
	Starke Schaumbildung.	Schauminbetriebnahme durchführen (Siehe "7.3 Schauminbetriebnahme (mit Werkseinstellung)").
	TrsHld zu niedrig gewählt, der Echo-Algo- rithmus erkennt Störreflektionen.	TrsHld erhöhen.
Füllstand springt gelegentlich auf 0 mm.	TrsHld zu hoch gewählt.	Erweiterte Inbetriebnahme durchführen (Siehe "7 Inbetriebnahme").
	Starke Schaumbildung.	Schauminbetriebnahme durchführen.
Keine Messung von geringen Füllstän- den bei Medien mit kleinen DKs.	Erhöhter inaktiven Bereich am Sonde- nende bei Medien mit kleinem DK.	
Erhöhte Messungenauigkeit.	Verwendung des Schaum-Algorithms.	

12 Instandsetzung

12.1 Wartung

Der LS-5 ist wartungsfrei. Wir empfehlen in regelmäßigen Abständen

- die Sonde auf Verschmutzung zu überprüfen.
- die Verschraubungen und Steckverbindungen zu überprüfen.

12.2 Rücksendung

Ist die Rücksendung eines Geräts erforderlich, so können nur Geräte entgegengenommen werden, die mit einer Dekontaminationserklärung versehen sind. Diese steht unter http://www.turck.de/de/produkt-retoure-6079.php

zur Verfügung und muss vollständig ausgefüllt, wetter- und transportsicher an der Außenseite der Verpackung angebracht sein.

13 Entsorgung

Entsorgen Sie Gerätekomponenten und Verpackungsmaterialien entsprechend den einschlägigen landesspezifischen Abfallbehandlungs- und Entsorgungsvorschriften des Anliefergebietes.

Technische Daten 14

14.1 Merkmale

Medium	Flüssigkeiten
Erfassungsart	Grenzstand, kontinuierlich
Sondenlänge	
Monostabsonde	200 mm 1.000 mm
Einstellbarer Messbereich	95 mm 6.005 mm
Prozessdruck	-1 bar +10 bar
Prozesstemperatur	-20°C +100°C
GOST-Zertifikat	\odot
RoHS-Zertifikat	\odot
IO-Link	\odot
UL-Zertifikat	\odot

14.2 Performance

Genauigkeit ¹⁾	± 5 mm
Reproduzierbarkeit ¹⁾	≤ 2 mm
Auflösung	< 2 mm
Ansprechzeit ²⁾	< 400 ms
Dielektrizitätskonstante	≥ 5 bei Monostabsonde/Seilsonde ≥ 1,8 mit Koaxialrohr
Leitfähigkeit	Keine Einschränkung
Maximale Füllstandänderung ³⁾	500 mm/s
Inaktiver Bereich am Sondenende ¹⁾	10 mm

¹⁾ Unter Referenzbedingungen mit Wasser, siehe "14.7 Messgenauigkeit".
 ²⁾ Abhängig vom Messmodus (High-Speed < 400 ms, High Accuracy < 2800 ms)
 ³⁾ Abhängig von der Parametrierung (MaxCol - Maximum change of level)

14.3 Mechanik/ Werkstoffe

Medienberührende Werkstoffe	1.4404, PTFE
Prozessanschluss	G 3/4 A, 3/4" NPT
Gehäusematerial	Kunststoff PBT
Max. Sondenbelastung	≤ 6 Nm
Schutzart	IP67: EN 60529
Gewicht	max. 1,3 kg

14.4 Referenzbedingungen

Behälter mit Durchmesser	1 m
Mindestabstand zu Einbauten	> 300 mm
Abstand Sondenende zu Tankboden	> 15 mm
Luftfeuchte	65 % ± 20 %
Temperatur	+20°C ± 5°C
Druck	1013 mbar abs. ± 20 mbar
Medium	Wasser, DK = 80
Zentrischer Einbau des Sensors	\odot
Behälterparametrierung vorgenommen	\odot

14.5 Umgebungsbedingungen

Umgebungstemperatur Betrieb ¹⁾	-20°C +60°C
Umgebungstemperatur Lager	-40°C +80°C

¹⁾ Gemäß UL-Listing: Verschmutzungsgrad 3 (UL61010-1: 2012-05); Luftfeuchtigkeit: 80 % bei Temperaturen bis zu 31 °C; Einsatzhöhe: max 3.000 m ü. M.; nur für Indoor-Anwendungen

14.6 Elektrische Anschlusswerte

Versorgungsspannung.	12 V DC 30 V DC	
Stromaufnahme	≤ 100 mA bei 24 V ohne Ausgangslast	
Initialisierungszeit	≤5s	
Schutzklasse	III	
Anschlussart	M12 x 1, 5-pol.	
	M12 x 1, 8-pol.	
Hysterese	Min. 3 mm, frei einstellbar	
Ausgangssignal ¹⁾	4 mA 20 mA /0 V +10 V automatisch umschaltbar je nach Ausgangslast ¹⁾ 1 PNP-Transistorausgang (Q1) und 1 PNP/NPN- Transistorausgang (Q2) umschaltbar oder 1 PNP-Transistorausgang (Q1) und 3 PNP/ NPN- Transistorausgang (Q2Q4) umschaltbar (typbabhängig) ¹⁾	
Signalspannung HIGH	Uv –2 V	
Signalspannung LOW	≤ 2 V	
Ausgangsstrom	< 100 mA	
Induktive Last	<1H	
Kapazitive Last	100 nF	
Temperaturdrift	< 0,1 mm/K	
Ausgangslast	4 mA 20 mA < 500 0hm bei Uv > 15 V	
	4 mA 20 mA < 350 0hm bei Uv > 2 V	
	0 V +10 V > 750 Ohm bei Uv \geq 14 V	
Unterer Signalpegel	3,8 mA 4 mA	
Oberer Signalpegel	20 mA 20,5 mA	
EMV	EN 61326-2-3, 2014/30/EU	

¹⁾ Alle Anschlüsse sind verpolsicher. Alle Ausgänge sind überlast- und kurzschlussgeschützt.
 ²⁾ Verwenden Sie zur Stromversorgung einen energiebegrenzten Stromkreis gemäß UL61010-1
 3nd Ed, Abschn. 9.3

14.7 Messgenauigkeit

14.7.1 Messgenauigkeit bei parametriertem Behälter

1 Genauigkeit in mm

2 Füllstand in mm

- ① Genauigkeit in mm
- 2 Füllstand in mm
- ③ Inaktiver Bereich

15 Maßzeichnungen

mit Koaxialrohr

Monosonde

- M Messbereich
- L Sondenlänge
- IA Inaktiver Bereich am Prozessanschluss 25 mm
- IAE Inaktiver Bereich am Sondenende 10 mm

16 Werkseinstellung

Parameter	Werkseinstellung
SP1	80 % der Sondenlänge gemessen ab dem Sondenende
RP1	5 mm unterhalb von SP1
0U1	Q1_Hno
SP2	bei 5-polVersion: 20 % der Sondenlänge gemessen ab dem Sondenende bei 8-polVersion: 60 % der Sondenlänge gemessen ab dem Sondenende
RP2	5 mm unterhalb von SP2
0U2	Q2_Hno
TYP2	Q2_PNP
SP3	40 % der Sondenlänge gemessen ab dem Sondenende
RP3	5 mm unterhalb von SP3
0U3	Q3_Hno
SP4	20 % der Sondenlänge gemessen ab dem Sondenende
RP4	5 mm unterhalb von SP4
0U4	Q4_Hno
ТҮРЗ	Q3_PNP
TYP4	Q4_PNP
QAHigh	50 mm unterhalb Sondenanfang
QALOW	10 mm über Sondenende
QAPOL	QA_Nrm
QATYP	Auto
QAFAIL	3,5 mA
SimCur	SimOff
SimVol	SimOff
DspVal	Distan
Filter	Off
SimLev	SimOff
TrsHld	100
MaskZn	0 mm
MaskTr	50 %
Mode	Pulse
CalSta	noCal
Probe/Type	Abhängig vom Sondentyp: Rod/ Rope
MaxCol	Abhängig vom Messmodus: HiSped = AnySped, HiAcc = 10 cm/s
MeasMd	HiSpd
CalRng	6005 mm
FomSta	inactive
Limit	90
Offset	0 mm
Unit	mm
Lock	inactive

17 Medienliste

Diese Mediumsliste gibt Ihnen eine Orientierung der **Dielektrizitätskonstante (DK-Wert)** von Flüssigkeiten. Wasserbasierte Flüssigkeiten haben immer einen DK-Wert > 5, was einen einfachen Einsatz von LS-5 ermöglicht. Bei DK-Werten < 5 ist immer ein Koaxialrohr oder ein metallisches Tauchrohr/ Bypass zu verwenden.

Substanz	DK- Wert
Acetal (25°C)	3,8
Acetaldehyd	15
Acetamid (77°C)	59,2
Acetessigsäureethylester	15
Aceton	21,5
Acetophenon	18
Acetylaceton	23
Acetylbromid	16,2
Acetylchlorid	15,9
Acetylendibromid	7,2
Acetylentetrabromid	5,6
Aconitsäureester	6,3
Adipinsäure	1,8
Aerosile	1
Aktivkohle	12
Alaune (60°C)	4,2
Allylalkohol	20,6
Allylchlorid	8,2
Allyljodid	6,1
Aluminiumbromid (100°C)	3,4
Aluminiumfolie	10,8
Aluminiumhydroxid	2,5
Aluminium-Späne	7,3
Aluminiumsulfat	2,6
Ameisensäure	57,9
Ammoniak	15
Ammoniaklösung (25%)	31,6
Ammoniaksalz	4,3
Amylalkohol	14,8

Substanz	DK- Wert
Amylamin	4,5
Anilin	7
Anisaldehyd	22,3
Anisol	4,5
Anthrazit	3,2
Antimonwasserstoff	1,8
Apfelsäurediethylester	10
Argon	1,5
Arsenwasserstoff	2,1
Arsol	2,3
Asbest	10
Ascorbinsäure (Vitamin C)	2,1
Azelainsäurediethylester	5
Azoxybenzol (36°C)	5,2
Basalt	2,5
Baumwoll-Fasermehl	3,2
Bauxit	2,5
Bentonit	8,1
Benzalchlorid	6,9
Benzaldehyd	17,6
Benzil (80°C)	10
Benzin	2
Benzol	2,3
Benzol, schwer	3,2
Benzylalkohol	13,5
Benzylamin	4,6
Benzylchlorid	7
Biersud	25
Bitumen	2,8

Substanz	DK- Wert
Blausäure	158
Bohröl-Emulsion	25
Bornylacetat	4,6
Brom	3,1
Buttersäure	3
Camphen	2,3
Capronsäure (71°C)	2,6
Caprylsäure	2,5
Carbazol	1,3
Carbonylcyanid	10,7
Cellit	1,6
Cetylalkohol (60°C)	3,6
Chinolin	8,8
Chlor, flüssig	2,1
Chloral	6,7
Chlorbenzol	5,7
Chloressigsäure	33,4
Chlorhydrin	31
Chlorkalk	2,3
Chloroform (Trichlormethan)	4,8
Cola-Essenz	17,3
Creme (Haut)	19
Cuminaldehyd	10,7
Cyan	2,5
Decalin	2,1
Degalan	3,1
Desmodur	10
Diacetonalkohol	18,2
Diamylether	3

Substanz	DK- Wert
Dibenzofuran (100°C)	3
Dibenzyl (60°C)	2,5
Dieselkraftstoff	2,1
Diethylamin	3,8
Dimethylether (Methylether)	5
Diofan	32
Dioxan	2
Diphenyl (75°C)	2,5
Druckerschwärze	4,6
Eiscreme (-20°C)	16,5
Eisen(III)Oxid rot	1,9
Emulphor	4
Epichlorhydrin	23
Erdnüsse, getrocknet	3,1
Erdnuss-Expeller	2,4
Essig	24
Essigsäure	6,2
Eternit	3,2
Ethanol (Ethylalkohol)	16,2
Ether	4
Ethylacetat	6
Ethylamin	6,9
Ethylbenzoat	6
Ethylbenzol	2,4
Ethylenchlorhydrin	25
Ethylenchlorid	10,6
Ethylendiamin	15
Ethylenoxid (-1°C)	13,9
Ethylmercaptan	6,9
Fenchon	12,8
Ferrit-Granulat	21
Ferrosilizium	10

Substanz	DK- Wert
Ferrosulfat (80°C)	32,4
Ferrozell	18,3
Fettkohle	3,4
Fettsäure (35°C)	1,7
Fischöl	2,6
Flachsschrot	1,4
Fleischknochenmehl	1,9
Fleischmehl	1,9
Flugasche	3,3
Fluor	1,5
Fluorbenzol	6,4
Fluorwasserstoff (0°C)	83,6
Flußspat	2,5
Formamid	109
Furan	3
Furfurol	41,7
Futtermittel-Schrot	2,4
Germaniumtetrachlorid	2,4
Getreideschrot	3
Gips	1,8
Glasfasermehl	1,1
Glasgranulat	4
Glasscherben	2
Glukose (50°C)	30
Glycerin	13,2
Glycerinwasser	37
Glykol	37
Glysantin	25
Granuform	4
Guajakol	11
Guano (Rohphosphat)	2,5
Hafer	4,9

Harnstoff2Harz1Haselnüsse2Heißleim (150°C)2Heizöl2Helium1Heptan1Heptanal9Heptansäure (71°C)2Hepten2Hexan1	,9 ,5 ,3 ,1 ,1 ,9 ,1
Harz1Haselnüsse2Heißleim (150°C)2Heizöl2Helium1Heptan1Heptanal9Heptansäure (71°C)2Hepten2Hexan1	,5 ,3 ,1 ,1 ,9 ,1
Haselnüsse2Heißleim (150°C)2Heizöl2Helium1Heptan1Heptanal9Heptansäure (71°C)2Hepten2Hexan1	,3 ,1 ,1 ,9 ,1
Heißleim (150°C)2Heizöl2Helium1Heptan1Heptanal9Heptansäure (71°C)2Hepten2Hexan1Hexen2	,3 ,1 ,1 ,9 ,1
Heizöl2Helium1Heptan1Heptanal9Heptansäure (71°C)2Hepten2Hexan1Hexen2	,1 ,1 ,9 ,1
Helium1Heptan1Heptanal9Heptansäure (71°C)2Hepten2Hexan1Hexen2	,1 ,9 ,1
Heptan1Heptanal9Heptansäure (71°C)2Hepten2Hexan1Hexen2	,9 ,1
Heptanal9Heptansäure (71°C)2Hepten2Hexan1Hexen2	,1
Heptansäure (71°C)2Hepten2Hexan1Hexen2	
Hepten 2 Hexan 1 Hexen 2	,6
Hexan 1 Hexen 2	,1
Hexen 2	,9
2 Z	,1
Hexylalkohol 1	2,5
Hibiskus 2	,8
Holzhackschnitzel 2	,3
Holzkohle 1	,3
Holzschleifstaub 1	,5
Holzspäne 1	,1
Honig 2	4
Hydrazin 5	8
Imidazol, rein (100°C) 2	3
Isoamylacetat 4	,8
Isoamylalkohol 1	5,6
Isoamylbromid 6	
Isoamylchlorid 6	,1
Isoamylether 2	,8
Isoamyljodid 5	,6
Isobuttersäure 2	,6
Isobutylalkohol 1	8,1
Isobutylamin 4	-
Isobutylbenzol 2	,4
Isobutylbromid 7	,4 ,3

Isobutylchlorid	6,5
Isobutylcyanid	18
Isobutyljodid	6,5
lsobutyInitrat	11,7
lsobutylsilan	2,5
Isochinolin	10,7
Isocyanat	6,1
Isopren	2,1
Isopropanol	18
Isosafrol	3,3
bol	11,1
Jodbenzol	4,6
Jodmethan	7,1
Jodwasserstoff	2,9
Kaffeebohnen	1,5
Kakaobohnen	1,8
Kalilauge	3,3
Kalisalz	2
Kalk	2
Kartoffelstärke	1,7
Keramikmasse	17
Ketchup	24
Kies	2,6
Kieselgur	1,4
Kieselsäure	2
Knochenfett	2,7
Knochenfuttermehl	1,7
Kochsalz	23
Kohle, 15 % Feuchtigkeit	4
Kohlensäurediethylester	2,8
Kohlenstaub	2,5
Kokosfett (raff.)	2,9

Substanz

DK-Wert

Substanz	DK- Wert
Koks	3
Korkmehl	1,7
Kraftfutter	3,2
Kreide	2,1
Kresol	11
Kresolharz	18,3
Kristallzucker	2
Kunstdünger	4,3
Kunststoffgranulat	1,2
Kupfererz	5,6
Lachgas	1,5
Lanolin	4,2
Latex	24
Laurinsäureethylester	3,4
Leim	2
Linolensäure	2,7
Lösungsmittel	18
Magermilchpulver	2,3
Mais	3,6
Maisschrot	2,1
Maisstärkesirup	18,4
Malz	2,7
Mandelsäurenitril	18
Marmorsteinchen (Korn 2)	2,5
Mäusefutter	2,3
Mehl	2,5
Melasse	31,3
Menthol (42°C)	4
Mesityloxid	15
Metallpulver	6
Methanol (Methylalkohol)	33
Methylacetat	8

Substanz	DK- Wert
Methylenbromid	7
Methylenchlorid	9
Methylenchlorid	9,1
Methylenjodid	5,3
Methylnitrat	23,5
Methylzellulose	3
Monochlormethan	9,8
Morpholin	7,3
Naphtensäure	2,6
Naphthalin	2,5
Natriumcarbonat	3
Natriummethylat	1,5
Natriumperborat	2,2
Natriumperoxid	2,7
Natriumsulfat	2,7
Nitrobenzol	35
Nitroethan	29
Nitroglykol	28,3
Nitroglyzerin	19,3
Nitrolack	5,2
Nitromethan	39
Nitrophoska	5,4
Nitrosylbromid (13°C)	15,2
Nitrosylchlorid	19
Nudeln, Hartweizengrieß	1,9
Octan	2
Octen	2,1
Octylbromid	5
Öl	2
Ölsäure	2,5
Öl-Wasserschlamm	24,2
Oxalessigester	6

rurck

Substanz	DK- Wert
Palmitinsäure	2,3
Palmkerne	2,2
Palmkerne	2,8
Palmöl	1,8
Papierschnitzel	1,2
Paraffin	1,6
Paraldehyd	15,1
Pelargon	2,8
Pentaboran	21
Pentachlorethan	3,8
Pentachlortoluol	4,8
Pentan	1,8
Pentanal (15°C)	11,8
Penten	2
Perchlorat	3,6
Perchlorbutadien	2,6
Perlite	1,7
PET-Pulver	1,5
Phenetol	4,2
Phenol	8
Phenolharz	7,4
Phosgen	4,3
Phosphat	4
Phosphor, flüssig	3,9
Phosphorsalz	4
Pinan	2,1
Piperidin	5,8
Polyamidgranulat	1,7
Polyethylen	1,2
Polypropylen	1,6
Polyrol	2,8
Polyvinylacetale	2,8

Substanz	DK- Wert
Popkorn	1,1
Pril	1,2
Propanal (15°C)	14,4
Propanol (Propylalkohol)	2,2
Propansäure	3,2
Propylamin	3
Propylen, flüssig	1,9
Propylenchlorid	9
Propylether	3,3
PVC-Pulver, rein	1,3
Pyridin	13,2
Pyrrol	8
Quarzsand	2
Quarzsteinmehl	2,7
Quecksilberdiethyl	2,1
Raps	3,3
Raps-Schrot	2,1
Reis	3
Roggen	6
Roggenkleie	2,2
Rübensamen	3,5
Rübenschnitzel	7,3
Ruß	18,8
Saccharoselösung	20
Sägemehl	1,3
Salpetersäure (98 %)	19
Salzsäure	5
Salzwasser	32
Sauerstoff	1,5
Schamotte	1,8
Schaumstoff-Flocken	1,1
Schmalz (80°C)	2,1

Substanz	DK- Wert
Schmierseife	32
Schokopulver	2
Schwarzlauge	32
Schwefel	3,5
Schwefeldioxid (Schweflige Säure)	14
Schwefelkohlenstoff, rein	2,6
Schwefelsäure	21,9
Schwefelsäure (15%)	31
Schwefelsäure (97%)	8,6
Schwefeltrioxid	3,1
Schwefelwasserstoff	6
Schweröl	2,2
Seifenflocken	9,2
Seifen-Pellets	3,5
Senf	24
Senfkörner	3,6
Silikonöl	2,7
Silikonkautschuk	2,9
Sojamehl	4,5
Soja-Schrot	2,9
Sonnenblumenkerne	2
Spreu	1,5
Stearinsäure	2,3
Steinsalz (0-25 mm)	4,3
Styrol	2,4
Tabakstaub	1,8
Talkum	1,5
Tee-Pulver	2
Teer, roh	4
Terephtalsäure	1,5
Terpentin-Ersatz	2
Terpinen	2,7

Substanz	DK- Wert
Terpinolen	2,3
Tetrachlorethylen	2,5
Tetrachlorkohlenstoff	2,3
Thomaskalistaub	3,4
Thujon (0°C)	10,8
Tierkörpermehl	2,2
Titantetrachlorid	2,8
Toluol	2,4
Tonerde	2,3
Transformatorenöl	2,1
Trichloretylen	3,2
Triethylaluminium	2,9
Triptan	1,9
Trockenhefe	2
Ultrasil	1,4
Undekan	2
Valeriansäure	2,7
Viskose	34,5
Wachs	1,8
Waschbenzin	2
Wasser	80,3
Wasser (360°C)	10
Wasser, entmineralisiert	29,3
Wasser, schwer	78,3
Wasserglas (Natriumsilikat)	16
Wasserstoff	1,2
Wasserstoffperoxyd, rein (0°C)	84,2
Wein	25
Weinsäure	35,9
Weizen	4
Weizenstärke	2,5
Xylit	40

Substanz	DK- Wert
Xylol	2,3
Zahnpasta	18,3
Zellulose	1,2
Zement	2,2
Zinkoxid	1,5
Zink-Puder	4,4
Zucker	1,8
Zunder	12

Over 30 subsidiaries and over 60 representations worldwide!

www.turck.com

