

A-GAGE[™] MINI-ARRAY[®]

Messender Lichtvorhang (Kontroller der MAC-Serie und Analog-Kontroller des Typs MACV-1 und MACI-1) Bedienungsanleitung – Europäische Version

- Messender Lichtvorhang f
 ür Inspektionsaufgaben und zur Konturenerfassung.
- Kompaktes System bestehend aus einem Kontroller und zwei Sensoren.
- Sensoren mit einem Strahlabstand von 1 cm oder 2 cm. Überwachungsfeldhöhen von 15 bis zu 120 cm (in Abstufung von jeweils 15 cm) und Versionen mit Überwachungsfeldhöhen von 150 und 180 cm.
- Der Kontroller ist für einen oder gleichzeitig zwei der insgesamt acht verfügbaren Erfassungsmodi (Scan-Analysemodi) und für jeweils einen der vier Scanmodi mit einem PC-kompatiblen Rechner unter Windows[®] 3.1 oder Windows[®] 95, oder OS/2[®] und der beigelieferten Software programmierbar.
- Kontroller und Sensoren verfügen über LEDs zur Anzeige des Systemsstatus und der Sensorausrichtung.
- Die Software ist im Lieferumfang enthalten und umfasst sowohl Menüs zur Fehlerdiagnose (mittels Kontroller-Selbstüberwachungsfunktion) als auch zur Sensorausrichtung.
- Das System ist f
 ür die serielle Kommunikation mit einem Hostrechner oder SPS
 über eine RS-232C-Schnittstelle (oder RS-485-Schnittstelle bei Versionen mit Schaltausgang) ausgelegt und erm
 öglicht dem Rechner oder der SPS, die Scan-Daten zu verarbeiten und/oder Scanvorg
 änge auszul
 ösen. Die seriellen Daten sind ASCII- oder bin
 är formatiert.
- Programmierbare Blanking-Funktion (Ausblendfunktion), um Bewegungen in einem oder zwei Bereichen im Überwachungsbereich auszublenden.

- Die MAC-1, MACP-1 und MACN-1-Kontroller verfügen über zwei Ausgänge, denen jeweils ein Scan-Analysemodus separat zugewiesen werden kann. Abhängig vom verwendeten Kontroller stehen pnp-, npn-Transistorausgänge oder ein Relaisausgang zur Verfügung. Beide Ausgänge können invertiert werden (d.h. als Schließer oder Öffner programmierbar).
- Der MACV-1-Kontroller verfügt über zwei lineare analoge Spannungsausgänge (0...10 V) und einen elektronischen Schaltausgang.
- Der MACI-1-Kontroller verfügt über zwei lineare analoge Stromausgänge (4...20 mA) und einen elektronischen Schaltausgang.
- Die Analogausgänge passen sich automatisch der Länge der Sensoren an.
- Der Analogausgang (Null und Spanne) kann über die PC-Schnittstelle und die mitgelieferte Software eingestellt werden.
- Das Analogsignal kann entweder eine fallende oder steigende Signalkennlinie haben.
- Die MAC-1, MACP-1 und MACN-1-Kontroller verfügen über eine programmierbare Hysterese der oberen und/oder unteren Grenze des Messbereichs zur Stabilisierung des Ausgangssignals. Desweiteren kann die Anzahl aufeinanderfolgender Scans vor Aktualisierung des Ausgangs eingestellt werden.
- Der Schaltausgang kann als Alarm-, Trigger- oder Digital-Ausgang konfiguriert werden, wobei das Signal f
 ür den Digitalausgang invertiert werden kann.
- Anhand eines separaten Steuereingangs kann ein Scan gestartet werden (z.B. durch einen zusätzlichen Trigger-Sensor).

MINI-ARRAY®-Ausführungen

MINI-ARRAY Sensoren – 16 Strahlen pro 30,5 cm Typen mit 19,1 mm Strahlabstand				MINI-ARRAY Sensoren – 32 Strahlen pro 30,5 cm Typen mit 9,5 mm Strahlabstand					
Тур		ldentnr.	Überwa- chungs- feldhöhe	Anzahl Strahlen	Тур		ldentnr.	Überwa- chungs- feldhöhe	Anzahl Strahlen
BMEL616A BMRL616A	Sender Empfänger	30 399 19 30 399 20	143 mm	8	BMEL632A BMRL632A	Sender Empfänger	30 399 21 30 399 22	133 mm	16
BMEL1216A BMRL1216A	Sender Empfänger	30 385 41 30 385 42	295 mm	16	BMEL1232A BMRL1232A	Sender Empfänger	30 385 29 30 385 30	286 mm	32
BMEL1816A BMRL1816A	Sender Empfänger	30 395 74 30 395 82	448 mm	24	BMEL1832A BMRL1832A	Sender Empfänger	30 395 75 30 395 83	438 mm	48
BMEL2416A BMRL2416A	Sender Empfänger	30 385 43 30 385 44	600 mm	32	BMEL2432A BMRL2432A	Sender Empfänger	30 385 31 30 385 32	591 mm	64
BMEL3016A BMRL3016A	Sender Empfänger	30 395 76 30 395 84	752 mm	40	BMEL3032A BMRL3032A	Sender Empfänger	30 395 77 30 395 85	743 mm	80
BMEL3616A BMRL3616A	Sender Empfänger	30 385 45 30 385 46	905 mm	48	BMEL3632A BMRL3632A	Sender Empfänger	30 385 33 30 385 34	895 mm	96
BMEL4216A BMRL4216A	Sender Empfänger	30 395 78 30 395 86	1057 mm	56	BMEL4232A BMRL4232A	Sender Empfänger	30 395 79 30 395 87	1048 mm	112
BMEL4816A BMRL4816A	Sender Empfänger	30 385 47 30 385 48	1210 mm	64	BMEL4832A BMRL4832A	Sender Empfänger	30 385 35 30 385 36	1200 mm	128
BMEL6016A BMRL6016A	Sender Empfänger	30 385 49 30 385 50	1514 mm	80	BMEL6032A BMRL6032A	Sender Empfänger	30 385 37 30 385 38	1505 mm	160
BMEL7216A BMRL7216A	Sender Empfänger	30 385 51 30 385 52	1819 mm	96	BMEL7232A BMRL7232A	Sender Empfänger	30 385 39 30 385 40	1810 mm	192

MINI-ARRAY-Kontroller

Typ MAC-1	1630 VDC, 1 x Relaiskontakt, 1 x npn Transistorausgang	Identnr. 30 432 96
Typ MACP-1	1630 VDC, 2 x pnp Transistorausgang	Identnr. 30 478 20
Typ MACN-1	1630 VDC, 2 x npn Transistorausgang	Identnr. 30 479 99
Typ MACV-1	1630 VDC, 010 V, Null- und Bereichseinstellung möglich (Strombegrenzung von 20 mA)	Identnr. 30 463 27
Typ MACI-1	1630 VDC, 420 mA, Null- und Bereichseinstellung möglich (1630 V Eingang)	Identnr. 30 463 26

Kabel (2 Stück pro System erforderlich)			
Тур	Länge	ldentnr.	
QDC-515C	4,6 m Kabel, Steckverbinder, gerade	30 374 42	
QDC-525C	7,6 m Kabel, Steckverbinder, gerade	30 374 43	
QDC-550C	15,2 m Kabel, Steckverbinder, gerade	30 374 98	

GEWÄHRLEISTUNG: Banner Engineering Corporation bietet eine Gewährleistung von 1 Jahr. Banner Engineering Corporation repariert oder ersetzt kostenlos jedes Produkt (eigenes Fabrikat), das sich bei der Zurückgabe an das Werk innerhalb der Gewährleistungsfrist als defekt herausstellt. Schäden, die sich aus der fehlerhaften Anwendung des MINI-ARRAY®-Systems ergeben, sind nicht Bestandteil der Gewährleistung. Diese Gewährleistungserklärung tritt an Stelle einer jeder anderen Gewährleistung.

BANNER

1. MINI-ARRAY®-Produktbeschreibung	4
1.1 Scan-Analysemodi	5
1.2 Ausgangsprogrammierung	6
1.2.1 ΜΑΟ-Τ, ΜΑΟΡ-Τ UΠU ΜΑΟΝ-Τ	0
1.2.2.1 Programmierung des Schaltausgangs	
1.2.2.2 Einstellung NULL/SPANNE (NULL/SPAN)	8
1.3 Scanmodi	9
1.4 Scansteuerung	10
2. Installation und Ausrichtung	11
2.1 Montage	11
2.2 Montage des Kontrollers	13
2.3 Verdrahtung und Anschluss	14
2.3.1 MAG-1, MAGP-1 UNU MAGN-1 KONUTONET	14 1/
2.3.4 Ausgänge	16
2.3.5 Serielle Kommunikation	16
3. MINI-ARRAY®-Software-Installation	17
3.1 Installation unter Windows [®] 3.1	17
3.2 Installation unter Windows [®] 95	18
3.3 Installation unter OS/2 [®]	18
4. Kontrollerkonfiguration	19
4.1 Kommunikationseinstellungen	19
4.2 Ausrichtungsanalyse	19
4.5 Palaliteter Selup Files (PSF)	20
4.4.1 Selektion der Scan-Analysemodi	22
4.4.2 Zuordnung der Ausgänge	23
4.4.3 Festlegung der Ausblendfunktion	24
4.4.4 Selektion der Scanmodi	24
4.4.5 Selektion des Steuermodus	25
4.4.0 Serielle Übertragung	20
4.4.8 PSF-Zuweisung und PSF-Speicherung	26
5. Systemdaten	.28
5.1 LEDs zur Anzeige des Systemstatus	28
5.2 Kontroller-LEDs zur Anzeige des Betriebsstatus	29
5.3 Die Diagnosesoftware	30
5.4 Anzeige serieller Daten	31
Spezifikationen	32
Anhang: Host-Befehlsmodus und serielles Datenformat	35

ACHTUNG!

Die MINI-ARRAY®-Systeme dürfen nicht als Personenschutzeinrichtungen eingesetzt werden, da sie nicht über die dafür notwendigen selbstüberprüfenden redundanten Sicherheitsschaltungen verfügen. Der Ausfall oder die Fehlfunktion eines Sensors oder Kontrollers kann sowohl zu einem aktivierten als auch deaktivierten Ausgangszustand führen. Benutzen Sie niemals die in diesem Handbuch beschriebenen Systeme als Personenschutzeinrichtung. Ihr Einsatz als Personenschutzeinrichtung könnte zu einem unsicheren Zustand führen, der schwere Körperverletzung oder den Tod zur Folge haben kann.

Nur die Systeme MINI-SCREEN®, MULTI-SCREEN®, MACHINE-GUARD (Personenschutzeinrichtungen), PERIMETER-GUARD (Zugangssicherungssystem) und andere für diesen Zweck eingesetzte Systeme entsprechen den Maschinenrichtlinien und sind als Personenschutzeinrichtungen für den Einsatz am Bedienort von Maschinen ausgelegt. Andere Sensoren oder Kontroller von Banner entsprechen diesen Normen nicht und dürfen demzufolge nicht als Personenschutzeinrichtung eingesetzt werden.

IBA MINIER

1. MINI-ARRAY®-Produktbeschreibung

Der MINI-ARRAY ist ein messender Lichtvorhang, der für bestimmte Einsatzgebiete wie zum Beispiel Größenbestimmung und Konturenerfassung von bewegten Objekten, Kanten- und Mittendetektion, Überwachung von Bandgeschwindigkeiten, Lochdetektion, Stückzahlzählung und Auswurfkontrollen und ähnliche Einsatzgebiete hervorragend geeignet ist. Ein MINI-ARRAY-System besteht aus fünf Komponenten: einem Kontroller (Typ MAC...), zwei Sensoren (Sender und Empfänger gleicher Länge und mit gleichem Strahlabstand) und zwei Anschlusskabeln.

Die Lichtvorhänge sind mit Überwachungsfeldhöhen von 140 mm bis 1210 mm (in Abstufungen von jeweils 150 mm) erhältlich. Desweiteren gibt es Modelle mit Überwachungsfeldhöhen von 1514 mm und 1819 mm (siehe Modellübersicht Seite 2). Die Sensoren sind mit einem Strahlabstand von 9,5 mm bei 32 Strahlen pro 30,5 cm der Feldhöhe oder mit einem Abstand von 19,1 mm bei 16 Strahlen pro 30,5 cm der Feldhöhe verfügbar. Die Sensoren mit einem Strahlabstand von 9,5 mm haben eine maximale Reichweite* von 6 Metern. Sensoren mit einem Strahlabstand von 19,1 mm haben eine maximale Reichweite* von 17 Metern. Die Modelle mit einer Überwachungsfeldhöhe von 1514 mm und 1819 mm verfügen über eine geringere Reichweite (siehe Spezifikationen, Seite 32-34).

*Reichweite mit einer Funktionsreserve von 3.

Die Ansprechzeit leitet sich aus der Zahl der abgefragten Strahlen (d.h. "Stufen") pro Scan ab. Die Zeit pro Lichtstrahl beträgt 55 μ s (0,000055 Sekunden). Dies bedeutet, dass Lichtvorhänge mit einem Strahlabstand von 9,5 mm die höchste Auflösung erzeugen, wohingegen die Lichtvorhänge mit einem größeren Strahlabstand von 19,1 mm eine schnellere Ansprechzeit bieten.

4 - Mini-Array Bedienungsanleitung - Europäische Version

1.1 Scan-Analysemodi

Der MAC... ist ein mit einem Mikrokontroller ausgestattetes und äußerst vielseitiges Modul, welches über einen PCkompatiblen Rechner unter Windows[®] 3.1 oder Windows[®] 95, oder OS/2[®] konfiguriert werden kann. Das Banner MINI-ARRAY-System ist je nach Anforderung für einen oder zwei der folgenden Scan-Analysemodi programmierbar (siehe Abbildung 2 für Beispiele):

<u>First Beam Blocked</u> (FBB): (erster unterbrochener Strahl) der Kontroller lokalisiert die Position des ersten unterbrochenen Lichtstrahls. Die Lichtstrahlen werden vom Steckverbinder bis zum Ende des Lichtvorhangs fortlaufend numeriert.

Last Beam Blocked (LBB): (letzter unterbrochener Strahl) der Kontroller detektiert die Position des letzten unterbrochenen Lichtstrahls.

<u>Total Beams Blocked (TBB)</u>: (Summe unterbrochener Strahlen) der Kontroller detektiert die Summe unterbrochener Lichtstrahlen.

Contiguous Beams Blocked (CBB): (Summe aneinandergrenzender unterbrochener Strahlen) der Kontroller detektiert die Summe aneinandergrenzender unterbrochener Lichtstrahlgruppen innerhalb der Überwachungsfeldhöhe und registriert den Maximalwert.

<u>First Beam Made (FBM)</u>: (erster freier Strahl) der Kontroller detektiert die Position des ersten freien Lichtstrahls.

Last Beam Made (LBM): (letzter freier Strahl) der Kontroller detektiert die Position des letzten freien Lichtstrahls.

Total Beams Made (TBM): (Summe freier Lichtstrahlen) der Kontroller detektiert die Summe freier Lichtstrahlen.

Contiguous Beams Made (CBM): (Summe aneinandergrenzender freier Strahlen) der Kontroller detektiert die Summe aneinandergrenzender freier Lichtstrahlgruppen innerhalb der Überwachungsfeldhöhe und registriert den Maximalwert.

All Data (ALL): der Kontroller stellt über die serielle Schnittstelle alle Strahlstatusdaten pro Scan zur Analyse durch einen Host-Rechner oder Kontroller zur Verfügung.

<u>Vehicle Separation (VHS)</u>: der Kontrollerausgang 1 wird aktiviert, wenn aneinandergrenzende Lichtstrahlen über einen zusammenhängenden Bereich von 15,2 cm (und mehr) unterbrochen sind; und deaktiviert, wenn alle Lichtstrahlen frei sind.

Die **Blanking-Funktion** ermöglicht das Ausblenden von einem oder zwei Bereichen des Lichtvorhangs (der Lichtvorhang ignoriert jede Bewegung in diesem Bereich).

Abb. 2. Beispiele zu den Scan-Analysemodi

1.2 Ausgangsprogrammierung

1.2.1 MAC-1, MACP-1 und MACN-1

Der MAC-1 Kontroller verfügt über zwei Ausgänge (siehe Abbildung unten). Ausgang 1 ist ein Relaiskontakt, der mit max. 125 VAC oder DC und max. 500 mA spezifiziert ist (max. 10 VA Widerstandslast). Ausgang 2 ist ein npn Halbleiterausgang und mit max. 30 VDC und 150 mA spezifiziert. Bei den Ausführungen MACP-1 und MACN-1 sind ausgansseitig entweder 2 pnp- oder 2 npn-Transistorausgänge vorhanden.

Ein Scan-Analysemodus wird Ausgang 1 zugewiesen und ein zweiter, anderer Analysemodus wird Ausgang 2 zugeordnet. Für jeden Scan-Analysemodus können folgende Ausgangsschaltfunktionen programmiert werden:

Im Menüpunkt Schaltpunkt (Untergrenze und Obergrenze) - **Set Point (Low and High)** - wird definiert, wo innerhalb des Lichtvorhangs der Ausgang/die Ausgänge schalten. Bei den Modi Total Beams Blocked, Contiguous Beams Blocked, Total Beams Made und Contiguous Beams Made bestimmen diese Einstellungen die minimal oder maximal benötigte Anzahl der Lichtstrahlen für eine Aktivierung des Ausgangs.

Der Menüpunkt Hysterese (Untergrenze und Obergrenze) - **Hysteresis (Low and High)** - definiert die Grenzwerte der zulässigen Sollwertabweichungen, bei deren Unter- oder Überschreitung der entsprechende Ausgang einen anderen Zustand annimmt. Diese Einstellung unterdrückt unstabile Ausgangszustände (z.B. Ausgangsflattern), die auftreten, wenn das Scanergebnis exakt einem der Sollwerte entspricht.

Der Menüpunkt Anzahl Scans - **Scan #** - definiert die Anzahl aufeinanderfolgender Scanvorgänge des Überwachungsfeldbereiches, bevor der entsprechende Ausgang aktualisiert wird. Der Kontroller kann für 1 bis 9 aufeinanderfolgende Scans programmiert werden. Die Scandaten müssen für alle aufeinanderfolgenden Scans identisch sein, um eine Ausgangsaktualisierung auszulösen.

Mit der Option Invertieren (J/N) - **Invert (Y/N)** - wird der Ausgang entweder als Schließer ("N" - nein), oder Öffner ("J" - ja) programmiert.

Der Ausgang 2 ist auf dem Kontroller mit **Alarm** gekennzeichnet (siehe unten), da er als Alarmausgang für die Selbstüberwachungsfunktion des Kontrollers programmiert werden kann. Voraussetzung ist jedoch, dass diesem Ausgang kein Scan-Analysemodus zugewiesen ist. Alternativ kann Ausgang 2 als Triggereingang zur Auslösung des Scanverfahrens eines weiteren MINI-ARRAY-Systems programmiert werden.

Abb. 3. MAC-1 Kontroller

1.2.2 MACV-1 und MACI-1

Der MACV-1 und MACI-1 verfügen über zwei unabhängige Analogausgänge. Jeder Ausgang ist einem der Analysemodi zugeordnet, die im PSF-Konfigurationsmenü (Edit PSF) der Software eingestellt werden (siehe Abbildung 4). Wenn der Scan-Analysemodus (Analysis Mode Selection) im Eingabefeld Modus 1 und Modus 2 (Meas1 und Meas2) festgelegt wurde, kann der Analogausgang (Analog Output) spezifiziert werden.

Als Scan-Analysemodi des Analogausgangs 1 (**Output #1**) wird entweder Modus 1 oder Modus 2 eingestellt (**Meas1 oder Meas2**) oder der Analogausgang wird deaktiviert (**disabled**), d.h. der Ausgang wird nicht vewendet. Die anderen beiden Parameter entsprechen den bei der Einstellung des Scan-Analysemodus (**Analysis Mode Selection**) vorgenommen Einstellungen. Die Einstellung der Anzahl von Scans (**Scan#**) bietet die Möglichkeit, eine Scanzahl zwischen 1 und 9 zu mitteln, bevor der Analogausgang aktualisiert wird.

Der gewählte Invertier-Parameter (Invert Y/N) entspricht einer steigenden oder fallenden Signal-Kennlinie.

Der Programmiervorgang des Analogausgangs 2 (**Output #2**) ist identisch zu dem von Analogausgang 1.

Abb. 4. PSF-Konfigurationsmenü

Null/Span					
	Analog Output#1				
Null	83	*	0-1000		
Span	3911	• •	2000-4095		
	An	alog Output#2			
Null	772	+ +	0-1000		
Span	2239	•	2000-4095		
Null Update	Span Upd	late C	OK ancel		

Abb. 5. NULL/SPAN-Menü

1.2.2.1 Programmierung des Schaltausgangs

Der Schaltausgang der Analogkontroller hat die gleichen Funktionen wie der Ausgang 2 des MAC-1.

1.2.2.2 Einstellung NULL/SPANNE (NULL/SPAN)

Der Anwender hat die Möglichkeit, sowohl einen Nullmodus als auch einen Bereichsmodus zum Auslesen der beiden Analogausgänge einzustellen. Diese Einstellung wird im Menü zur Erstellung der PSF **(Edit PSF)** vorgenommen, indem der NULL/SPAN-Knopf angeklickt wird. Das Menü ist in Abbildung 5 dargestellt.

Die Einstellung des NULL/SPAN-Menüs veranlasst den MACV-1 oder den MACI-1-Kontroller, die dort vorgenommen Skalierungseinstellungen testweise zu übernehmen. Die Null- und Bereicheinstellungen können wie folgt vorgenommen werden:

	NULL		SPANN	E
Тур	min.	max.	min.	max.
MACV-1	10 mV	2,3 V	4,8 V	10,1 V
MACI-1	3,9 mA	7,8 mA	11,9 mA	20,2 mA

Diese Einstellungen werden jeweils separat für Ausgang 1 und Ausgang 2 über die Scroll-Leiste vorgenommen. Testweise können diese dann über den Knopf **Null Update** oder **Scan Update** übernommen werden. Zwei weitere Knöpfe ermöglichen es, diese Einstellungen entweder zu löschen (**Cancel**) oder zu speichern (**OK**). Über den OK-Knopf werden die Einstellungen gespeichert und der MAC-Kontroller geht wieder zum Normalbetrieb über. Über den Cancel-Knopf werden die Einstellungen gelöscht, der Kontroller greift dann auf die voreingestellten Null/Span-Einstellungen zurück und geht zum Normalbetrieb über.

Der MAC-Kontroller hat für die Null/Span-Einstellungen eine Time-Out-Funktion. Diese Funktion veranlasst den Kontroller, die Null/Span-Einstellung zu ignorieren, wenn die Null-Update- oder Span-Update-Einstellung nicht innerhalb von 4 Minuten durchgeführt wird. Der MAC-Kontroller ignoriert und löscht dann automatisch die Null/Span-Programmierung und greift auf die vorher eingestellten Werte zurück.

1.3 Scanmodi

Das Kontrollermodul ist für einen von vier verfügbaren Scanmodi konfigurierbar:

Der **direkte Scan (Straight Scan)** ist die Standardeinstellung, wobei alle Strahlen linear vom Steckverbinder bis zum Ende des Lichtvorhangs fortlaufend abgefragt werden.

Im **Zeilensprung-Scan (Interlaced Scan)** alterniert ein gerader Standardscan mit einem diagonal versetzten Scan. Ein diagonal versetzter Scan beginnt mit dem Strahl zwischen Kanal 2 des Senders und Kanal 1 des Empfängers, geht dann zu dem Strahl zwischen Kanal 3 des Senders und Kanal 2 des Empfängers über und endet mit dem Strahl zwischen dem letzten Senderkanal und dem vorletzten Empfängerkanal. Zur Komplettierung des Scans wird dann vom letzten Senderkanal ein Strahl zum letzten Empfängerkanal generiert. Das alternierende Scanverfahren erhöht die Auflösung im mittleren Drittel des Überwachungsbereichs (siehe Abbildung 6 unten).

Der Konturenscan-Modus (Edge Scan) aktiviert nur die Strahlen nahe der oberen Kante des zu detektierenden Objektes innerhalb des Lichtvorhangs (*BEMERKUNG:* Der Begriff "obere Kante" bezieht sich auf die dem oberen Ende der Sensoren nächstgelegene Objektkante). Jeder Scan beginnt sechs Strahlen vor dem beim vorangegangenen Scan blockierten letzten Strahl. Der Scan wird ab diesem Punkt weitergeführt und bewegt sich aufwärts bis zum ersten freien Strahl, wo der Scanzyklus dann vollendet wird. Wenn der Überwachungsbereich frei ist, wird das System im Standardmodus weiterarbeiten (Direkter Scan - Straight Scan). Der Konturenscan-Modus beginnt erneut, wenn ein unterbrochener Kanal detektiert wird. Der Konturenscan-Modus verringert die Scandauer und wird dann verwendet, wenn nur eine Kante eines Objektes lokalisiert werden soll. Die Einstellung des Konturenscan-Modus beschränkt die Auswahl der Scan-Analysemodi auf die LBB-Option (Last Beam Broken).

Im **Überspringmodus (Skip Scan)** verringert sich nicht nur die Scandauer sondern auch die Auflösung des Lichtvorhangs. In diesem Modus können 1 bis 7 Strahlen bei einem Scan übersprungen werden. So werden z. B. bei der Überspringung eines Strahls jeweils nur die Strahlen 1, 3, 5, 7 usw. abgefragt. Beim Überspringen von zwei Strahlen werden nur die Strahlen 1, 4, 7, 10 usw. abgefragt.

Abb. 6. Zeilensprung-Scanmodus (Interlaced Scan)

1.4 Scansteuerung

Der Kontroller ist für kontinuierliches Scannen oder für den Ansteuermodus programmierbar. Der Kontroller verfügt über einen optisch isolierten Steuer-Eingang (Abbildung 3 Seite 6), der durch Anlegen einer Versorgungsspannung von 10...30 VDC aktiviert wird. Diese Ansteuerung wird üblicherweise durch Einsatz eines Triggersensors realisiert. Alternativ ist das MINI-ARRAY-System für den Hostmodus (Host Mode) programmierbar, in dem der Lichtvorhang von einem Host-Rechner oder einer SPS angesteuert wird.

Host-Ansteuerung

Das MINI-ARRAY-System kann mit einem Host-Rechner oder einer SPS über ein serielles Protokoll (RS232 oder RS485) kommunizieren. Der Host kann das MINI-ARRAY-System zum Scanverfahren auffordern und/oder die Scandaten direkt vom MINI-ARRAY-System im Binär- oder ASCII-Format empfangen. Die selektierbaren Baudraten betragen 9600, 19200 und 38400.

Abb. 7. Kontroller der MAC-Serie - Eigenschaften

Programmierung des Kontrollermoduls

Der MINI-ARRAY-Kontroller wird mit einer Windows[®]-Software konfiguriert, die zum Lieferumfang gehört. Benötigt wird hierzu ein PC-kompatibler Rechner unter Windows[®] 3.1, Windows[®] 95 oder OS/2[®]. Die serielle Datenverbindung zwischen dem Rechner und dem Kontrollermodul wird über den DB9-Steckverbinder am Kontroller realisiert (siehe Abbildung 7).

Eine programmierte Konfiguration wird als **"Parameter Setup File"** oder **PSF** bezeichnet, die im nicht-flüchtigen Speicher des Kontrollers abgelegt werden kann. Die Banner-Software verfügt über die Möglichkeit, verschiedene PSF-Dateien als PC-Dateien zu speichern, um diese dann bei Bedarf sofort aufrufen zu können.

Die mitgelieferte Software verfügt über zwei weitere Funktionen. Das Menü Ausrichtung **(Alignment)** zeigt den individuellen Status jedes einzelnen Lichtstrahls über die gesamte Länge des Lichtvorhangs an. Weiterhin werden die Anzahl aller blockierten und freien Strahlen, die Nummern des ersten blockierten Lichtstrahls (TBB), des ersten freien Lichtstrahls (FBB), des letzten blockierten Lichtstrahls (LBB) und des letzten freien Lichtstrahls (LBM) angezeigt. Dieses Menü ist für die Inbetriebnahme unverzichtbar, um analysieren zu können, was der Lichtvorhang detektiert. Die zweite Funktion ist das Menü Diagnose **(Diagnostics)**, das Probleme mit dem Sender oder Empfänger signalisiert.

Abb. 8. MINI-ARRAY Sender- und Empfänger-Montagezubehör

Abb. 9. MINI-ARRAY Abmessungen der Sender/Empfänger-Montagewinkel

2. Installation und Ausrichtung

2.1 Montage

Die Sender und Empfänger der Banner MINI-ARRAY-Systeme sind zugleich kompakt, leicht und einfach zu montieren. Die Montagewinkel (im Lieferumfang enthalten) ermöglichen eine Rotation von ± 30 Grad. Von einem gemeinsamen Referenzpunkt ausgehend, positionieren Sie den Sender und Empfänger mittels Ausmessung auf einer Ebene und in einer Linie einander direkt gegenüber. Montieren Sie die Befestigungsklemmen des Senders und Empfängers zusammen mit den Schwingmetallen und den M4-Montagemuttern (im Lieferumfang enthalten - siehe Abbildung 8). Das mitgelieferte Zubehör kann durch anderes ersetzt werden, wenn Sender und Empfänger keinerlei Vibrationen oder Stößen ausgesetzt sind. Auch wenn die internen Stromkreise des Senders und Empfängers starken Stoßkräften widerstehen können, dämpfen die Rüttelsicherungen jedoch diese Stoßkräfte zusätzlich und beugen somit möglichem Schaden vor, der auf die Resonanzschwingung des Senders oder Empfängers zurückzuführen ist.

Setzen Sie den Sender und Empfänger in die Befestigungsklemmen und richten Sie die roten Linsen beider Einheiten direkt aufeinander aus. Die Anschlussenden beider Sensoren müssen in die gleiche Richtung weisen. Messen Sie von einer oder mehreren Bezugsebenen (z.B. Gebäudeboden) zu gleichen Punkten auf Sender und Empfänger zur Kontrolle der mechanischen Ausrichtung. Wenn die Einheiten genau waagerecht oder senkrecht zum Fußboden positioniert sind, ist eine Wasserwaage hilfreich, um die Ausrichtung zu kontrollieren. Ein

Metermaß oder ein Faden zwischen den Sensoren dient ebenfalls der Positionierung. Kontrollieren Sie die Ausrichtung auch mit bloßem Auge. Nehmen Sie die evtl. notwendige Endausrichtung vor und ziehen Sie dann die Befestigungsklemmen an. Siehe Punkt 5 bezügl. der Ausrichtungsanzeigen und Punkt 4 bezügl. der Ausrichtungssoftware. die zum Lieferumfang gehört.

MINI-ARRAY®-Sensor-Abmessungen

Abb. 10. Sender- und Empfänger-Montageabmessungen und Anordnung des Überwachungsbereichs

X (Abstand zum ersten optischen Kanal)		
9,5 mm Strahlabstand 38,1 mm		
19,1 mm Strahlabstand	42,9 mm	

Тур	Gehäuse- länge mm L1	Bohrungsabstand N L2	Aontagewinkel mm L3
BMEL6A Sender BMER6A Empfänger	201	233,9	177
BMEL12A Sender BMER12A Empfänger	356	389,7	332,8
BMEL18A Sender BMER18A Empfänger	505	538,7	481,8
BMEL24A Sender BMER24A Empfänger	659	693,2	636,3
BMEL30A Sender BMER30A Empfänger	810	843,5	786,6
BMEL36A Sender BMER36A Empfänger	963	997,4	940,5
BMEL42A Sender BMER42A Empfänger	1115	1148	1091
BMEL48A Sender BMER48A Empfänger	1267	1301	1244
BMEL60A Sender BMER60A Empfänger	1572	1606	1549
BMEL72A Sender BMER72A Empfänger	1877	1910	1853

Abb. 11. Konfektionierung des Sender- und Empfängerkabels

Verbinden Sie die geschirmten Kabel mit dem Sender und Empfänger und verlegen Sie diese von dort (entsprechend den Richtlinien für Niederspannungs-DC-Kabel) zum Kontroller. Für Sender und Empfänger wird der gleiche Kabeltyp benutzt (zwei Kabel pro System). Bei der Montage können die Kabel auf Länge geschnitten werden. Erst wenn alle Kabel exakt verlegt sind, können die Kabel abgeschnitten werden (siehe Abbildung 16 Seite 15). Entfernen Sie das Kabelgeflecht an den Kontrolleranschlussstellen.

2.2 Montage des Kontrollers

Der Kontroller muss in einem Gehäuse montiert werden, das den Vorgaben der IEC-Norm entspricht und für die jeweiligen Umgebungsbedingungen geeignet ist.

Die Montage-Abmessungen für den Kontroller sind in Abbildung 12 wiedergegeben. Zum Lieferumfang des Kontrollers gehören M3,5 x 0,6 Befestigungsschrauben für die Bodenmontage. Der Kontroller kann auch auf einer 35 mm Hutschiene befestigt werden.

Abb. 12. Kontrollerabmessungen und Anordnung der Lochdurchführungen

2.3 Verdrahtung und Anschluss

2.3.1 MAC-1, MACP-1 und MACN-1 Kontroller

Die Anschlüsse an den MAC-1, MACP-1 und MACN-1 Kontroller werden über 15 Klemmen auf der Vorderseite des Moduls realisiert (siehe Abbildung 16 Seite 15).

2.3.2 MACV-1 und MACI-1 Kontroller

Der Sender und Empfänger werden entsprechend Abbildung 16 angeschlossen. Der Anschluss des **MACV-1** ist in Abbildung 13 dargestellt. Die beiden analogen Spannungsausgänge sind als **V out 1** and **V out 2** gekennzeichnet. Die Lastversorgung für den analogen Spannungsausgang 1 wird zwischen Klemmen 9 und 10 angeschlossen; die Last für den analogen Spannungsausgang 2 wird zwischen Klemmen 13 und 14 angeschlossen. Der Alarmausgang ist ein npn Transistorschalter mit offenem Kollektor und gemeinsamer Bezugsmasse mit der Eingangsversorgung.

Abb. 13. Verdrahtung des MACV-1

Der Anschluss des **MACI-1** ist in Abbildung 14 dargestellt. Die beiden analogen Stromausgänge sind als **I out 1** und **I out 2** gekennzeichnet. Die Last für den analogen Stromausgang 1 wird zwischen einer externen 16...30 V-Versorgung und Pin 9 angeschlossen; die Last für den analogen Stromausgang 2 wird zwischen einer externen 16...30 V-Versorgung und Pin 13 angeschlossen. Die externe Lastversorgung sollte ein gemeinsames Bezugspotential mit der Kontrollerversorgung haben.

Abb. 14. Verdrahtung des MACI-1

Abb. 15. Steckverbinderkabel - Abmessungen und Abstände

Abb. 16. Sender- und Empfängeranschluss an den MAC-1 Kontroller

2.3.3 Eingänge

- Systemversorgung: Schließen Sie eine Spannungsversorgung von 16...30 VDC an die Kontrollerklemmen 1 (+) und 2 (-) an. Der Erdschutzleiter wird an Klemme 3 des Kontrollers angeschlossen. Eine sichere Erdung ist unerläßlich, um Störeinstrahlungen zu unterdrücken und das MINI-ARRAY-System gegen Hochfrequenzstörungen zu schützen. Die DC-Spannungsquelle muss in der Lage sein, 1,25 A zu liefern, wenn Sensoren mit der längsten Überwachungsfeldhöhe eingesetzt werden (siehe Spezifikationen auf Seiten 32 - 34 für weitere Informationen).
- Sensoren: Die Sender- und Empfängerleitungen werden parallel an die Anschlussklemmen 4 bis 8 angeschlossen. Schliessen Sie die Leiter beider Sensorleitungen wie folgt an:

Nummer Anschlussklemme	Leitungsfarbe
4	braun
5	blau
6	blank
7	schwarz
8	weiß

Der Folienschirm und Flechtschirm müssen bündig zum Leiteraustritt entfernt werden (siehe Abbildung 11 Seite 13).

Gate: Schließen Sie eine 10...30 VDC-Schaltspannung als Steuereingang (wenn benötigt) an die Klemmen 11 (+) und 12 (-) des Kontrollers an. Üblicherweise handelt es sich hierbei um einen DC-Triggersensor mit Transistorausgang.

2.3.4 Ausgänge

Out 1: Die Anschlussklemmen 9 und 10 des Kontrollers sind die Kontakte eines Relais, das mit max. 125 VAC/DC und einer Widerstandslast von max. 10 VA (d.h. induktionsfrei) belastbar ist. Das Relais kann als Schließer oder Öffner programmiert werden.

ALARM: Anschlussklemme 15 (ALARM) des Kontrollers ist ein npn Transistorschalter mit offenem Kollektor, der mit 30 VDC/150 mA max. spezifiziert ist. Er ist gegen Überlast- und Kurzschluss geschützt.

2.3.5 Serielle Kommunikation

Kommunikation: R\$485: Schließen Sie die R\$485-Leitungen (wenn benötigt) an die Klemmen 13 (+) und 14 (-) an.
 R\$232: Konfektionieren Sie ein R\$232-Kabel, wobei Sie einen DB-9-Steckverbinder mit folgenden Anschlüssen verwenden (siehe Tabelle rechts).

ANMERKUNG: Die Verwendung eines Nullmodem-RS232-Kabels ist **nicht** gestattet.

PIN-Nummer des DB9	Funktion	
2	Senden (TX)	
3	Empfangen (RX)	
5	Erdung (GND)	

3. MINI-ARRAY®-Software-Installation

Die MINI-ARRAY-Software-Diskette beinhaltet ein Installationsprogramm, mit dem das Programm schnell und einfach geladen werden kann. Das MINI-ARRAY-Programm benötigt 0,5 MB des Festplattenspeichers.

Die Software wird zur Konfiguration des MINI-ARRAY-Systems eingesetzt. Die Installation wird wie folgt durchgeführt:

Abb. 17. Installation der MINI-ARRAY-Software: "Welcome"

-	Enter Directory	
Testati	Nessage Please enter the directory where the files of Mini-Array will be copied to To accept the default, press enter	
		Help

Abb. 18. Installation der MINI-ARRAY-Software: "Enter-Directory"

Abb. 19. Installation der MINI-ARRAY-Software: "Installation Complete"

3.1 Installation unter Windows[®] 3.1

Führen Sie die Programmierdiskette in das Laufwerk **A** ein. Wählen Sie im Programmanager **<u>File</u>** und anschließend **<u>Run</u>**.

- 1. Das Run-Dialogfenster erscheint. Geben Sie a:\setup im <u>Command Line</u>-Fenster ein und wählen Sie <u>OK</u>.
- 2. Ein **Welcome**-Dialogfenster erscheint (Abbildung 17). Wählen Sie **Install**.
- 3. Ein **Enter Directory**-Dialogfenster erscheint (Abbildung 18). Das Standardverzeichnis ist **c:\Minia**. Wählen Sie **O**K um das Standardverzeichnis einzufügen, oder geben Sie ein anderes Verzeichnis ein und wählen Sie dann **O**K.
- 4. Nun dekomprimiert das Installationsprogramm die Dateien. Ein Status-Dialogfenster zeigt den Verlauf der Installation an.
- 5. Ein **Installation Completed**-Dialogfenster erscheint (Abbildung 19). Wählen Sie <u>O</u>K.
- 6. Die **MINI-ARRAY**-"Program Group" erscheint im Bildschirm. Um das Programm zu starten, klicken Sie zunächst zweimal auf das Icon der MINI-ARRAY-"Program Group", um das MINI-ARRAY Programm-Icon angezeigt zu bekommen. Anschließend klicken Sie zweimal auf das Programm-Item-Icon, um das Programm zu starten.

Software-Installation

3.2 Installation unter Windows® 95

Führen Sie die Programmierdiskette des MINI-ARRAY in das Laufwerk **A** ein. Wählen Sie **START** und danach **RUN**. Führen Sie Schritte 1 bis 5 entsprechend Seite 17 durch.

Um das Programm zu starten, wählen Sie START, danach PROGRAMS, anschließend die MINI-ARRAY-Kategorie (Category) und dann die MINI-ARRAY-Datei (File).

3.3 Installation unter OS/2®

Führen Sie die MINI-ARRAY-Programmdiskette in das Laufwerk **A** ein. Nach dem OS/2 Befehlsaufruf (command prompt) geben Sie **a:setup** und dann **Enter** ein. Führen Sie die Schritte 2 bis 5 entsprechend Seite 17 durch.

Um das Programm unter OS/2[®] laufen zu lassen, geben Sie **CD\minia** nach dem OS/2 Befehlsaufruf (command prompt) und danach **Enter** ein. Beim nächsten Befehlsaufruf geben Sie **minia** und dann **Enter** ein.

4. Kontrollerkonfiguration

4.1 Kommunikationseinstellungen

PIN-Nummer des DB9	Funktion	
2	Senden (TX)	
3	Empfangen (RX)	
5	Erdung (GND)	

ANMERKUNG: Die Verwendung eines Nullmodem-RS232-Kabels ist **nicht** gestattet. Die MINI-ARRAY-Software ermöglicht die serielle Kommunikation zwischen dem MAC...-Kontroller (über die RS-232-Schnittstelle auf dem Kontroller) und einem PC. Die PIN-Konfiguration des DB-9-Steckverbinder auf dem MAC... ist wie folgt (siehe Tabelle links).

Das COM-Port des PC wird mit Hilfe des Menüs Optionen (**Options**) konfiguriert (siehe Abbildung 20). Das Programm kommuniziert entweder über das COM1 oder COM2 Port des Rechners. Wählen Sie **Options**, danach Serielle Schnittstelle (**Serial Port**) (oder Enter). Selektieren Sie entweder COM1 oder COM2. Anschließend überprüfen Sie, ob die Einstellung "Bei Beenden speichern" (**Save Settings on Exit**) angeklickt ist, um die COM-Port Selektion tatsächlich speichern zu können.

🛏 Mini-Array				
<u>M</u> ini-Array	<u>O</u> ptions	<u>H</u> elp		
	Serial Port		COM <u>1</u>	
	√ <u>S</u> ave Settings on Exit		√COM <u>2</u>	

4.2 Ausrichtungsanalyse

Der Ausrichtungstatus wird kontinuierlich durch eine grüne LED auf dem Empfänger und (auch) auf dem Kontroller angezeigt. Wenn alle (nicht ausgeblendeten) Lichtstrahlen frei sind und die Funktionsreserve aller Lichtstrahlen dem Wert >3x entspricht, sind die grünen Ausrichtungs-LEDs illuminiert. Wenn die Funktionsreserve eines oder mehrerer Lichtstrahlen auf einen Wert zwischen 3x und 1x fällt, leuchtet die grüne **ALIGN**-LED auf dem Kontroller weiterhin, während die gelbe LED auf dem Empfänger zusammen mit der grünen LED aufleuchtet, um eine unzulängliche Ausrichtung anzuzeigen (siehe Abschnitt 5 für weitere Informationen zur Ausrichtung von Sensoren).

Die MINI-ARRAY-Software verfügt über ein Programm, das den Status eines jeden Lichtstrahls im Überwachungsfeld anzeigt. Diese Funktion ist bei der endgültigen Ausrichtung oder bei der Analyse, wie der MINI-ARRAY Objekte im Überwachungsfeld erkennt, ausgesprochen hilfreich. Das Ausrichtungsprogramm wird gestartet, indem man Ausrichtung (Alignment...) im <u>MINI-ARRAY-Menü</u> auswählt (siehe Abbildung 21), oder die **F3**-Taste betätigt.

0			Mini-Array
Mini-Array Options	s <u>H</u> e	lp	
Diagnostics	F2		
Alignment	F3		
Edit PSF	F4		
Set Part Number			
Exit			

Kontrollerkonfiguration

Klicken Sie im Fenster Ausrichtung (Alignment) (Abbildung 22) auf <u>R</u>un. Die linke obere Tabelle zeigt sowohl die Positionen der ersten und letzten freien als auch unterbrochenen Lichtstrahlen an. Zusätzlich wird die Summe der freien und unterbrochenen Lichtstrahlen angezeigt. Bitte beachten Sie, dass die Lichtstrahlen vom Steckverbinder bis zum Ende des Lichtvorhangs fortlaufend numeriert sind.

Das rechte Diagramm zeigt den Status (unterbrochen oder durchgehend) eines jeden Lichtstrahls im Überwachungsfeld an. Selektieren Sie unter der Statusanzeige Lichtstrahlen (Channel Status Options) entweder unterbrochen (Broken) oder durchgehend (Made) oder beide (Both). Der Lichtstrahlstatus wird nun ständig aktualisiert, um eine akkurate Darstellung der Anordnung des Lichtvorhangs zu erhalten und/oder das Ansprechverhalten zu analysieren. Wollen Sie das Ausrichtungsfenster (Alignment) verlassen, wählen Sie erst Stop und anschließend Exit.

4.3 Parameter Setup Files (PSF)

PSF = Parameterkonfigurationsdateien Das Eingangs- und Ausgangsverhalten des MAC... Kontrollers wird mittels des Fensters **PFS Configuration** programmiert (Abbildung 23). Um zum Fenster **PSF Configuration** zu gelangen, wählen Sie <u>Edit PSF</u> im MINI-ARRAY-Menü (Abbildung 21 Seite 19) oder betätigen Sie einfach die **F4**-Taste. Abschnitt 4.4.1 enthält eine ausführliche Übersicht der programmierbaren Parameter. Eine Aufstellung der programmierbaren Funktionen finden Sie auf Seite 21.

Alignment					rav		
Channel Total First Last	Broken 18 3 27	Made 14 1 32	Channe	l Status Op Broken 1 - 2 3 - 11 12 - 18 19 - 27 28 - 32	tions Made Status Made Broken Made Broken Made	® Bgth	
<u>Run</u> <u>Stop</u>							

Abb. 22. MINI-ARRAY-Software: das Ausrichtungsfenster

		Mini-Array
Mini-Array Options Hel	P	
	PSF Configuration	
Analysis Mode Selection Moas1 388 * Maas2 None *	Control Hode Selection Continuous Gate Heat Hode	Blanking Specifications Field Low High #1 0 0 #2 0 0
Scanning Mothod Straight Edge Skip	Serial Communication Baud Rate: 3600 ± Controller ID A ±	Secial Transmission No Secial Communication ASCII Transmission Suppress Clear Data Binary Transmission Suppress Clear Data Suppress Headler Compress Data
Dutput Assignments Analysis Mode Dutput #1 Disabled 1 Dutput #2 Disabled 1 Dutput #2 Other Features Alarm Trigger 1	Set Point Hysterosis Lose High Low High 1 0 2 1 1 0 2 File Save PSF File Interim PSF Execute	Scan II Invest (Y/N) 1 No Send PSF Egit Uplead PSF Quit

Abb. 23. MINI-ARRAY-Software: PSF-Konfiguration

Verzeichnis der programmierbaren Funktionen

Selektion des Scan-Analysemodus			
FBB	First Beam Blocked (erster unterbrochener Lichtstrahl)		
LBB	Last Beam Blocked (letzter unterbrochener Lichtstrahl)		
TBB	Total Beams Blocked (Summe unterbrochener Lichtstrahlen)		
CBB	Contiguous Beams Blocked (aneinandergrenzende unterbrochene Lichtstrahlen)		
FBM	First Beam Made (erster freier Lichtstrahl)		
LBM	Last Beam Made (letzter freier Lichtstrahl)		
ТВМ	Total Beams Made (Summe freier Lichtstrahlen)		
СВМ	Contiguous Beams Made (aneinandergrenzende freie Lichtstrahlen)		
ALL	All data passed to host (alle Daten zum Host gesendet)		
VHS	Vehicle Separation mode		

Zuweisung der Ausgänge (zwei Ausgänge)

Ausgang 1: Kann jedem Analysemodus zugewiesen werden.

Ausgang 2: Kann jedem Analysemodus zugewiesen werden oder in Verbindung mit der Kontrollerdiagnose als **Alarm**ausgang genutzt werden. Alternativ kann er als Triggerausgang zur Auslösung der Scansequenz eines angrenzenden MINI-ARRAY-Systems eingesetzt werden.

Ausblendfunktion

Feldausblendung: Ein oder zwei Felder können ausgeblendet werden.

Scanmodi			
Direkter Scan (Straight Scan)	Konturenscan (Edge Scan)		
Scan mit Zeilensprung (Interlaced Scan)	Scan mit Überspringen (Skip Scan)		

Selektion des Steuermodus				
Kontinuierlich				
Ansteuermodus: Der Scanvorgang wird über den Spannungsimpuls (1030 VDC) des Steuereingangs gesteuert.				
Hostmodus: Der Scanvorgang wird vom Host-Rechner oder von der SPS aus gesteuert.				

Verzeichnis der programmierbaren Funktionen (Fortsetzung)

Serielle Kommunikation

Definition der Baudrate und Kontroller-Adresse

Serielle Übertragung

Zur Aktivierung der seriellen Datenübertragung und Definition des Datenformats

Nachdem ein PSF konfiguriert worden ist, kann es an den Kontroller übertragen werden. Die Parameter-Setup-Files können auch als PC-Dateien gespeichert werden, um diese bei Bedarf aufrufen zu können. Dies ermöglicht eine schnelle Konfiguration des Kontrollers, wenn der Aufbau geändert werden muss.

4.4 Erstellung neuer Parameter Setup Files - PSFs

4.4.1 Selektion der Scan-Analysemodi

Es ist möglich, einen oder zwei der verfügbaren Scan-Analysemodi (Measurement Analysis Modes) zu programmieren. Modus 1 (Meas1) oder Modus 2 (Meas2) können einem oder beiden Ausgängen zugewiesen werden. Wenn die Selektion "ALL" für beide Scan-Analysemodi getroffen wurde, werden sämtliche Scan-Daten über die serielle Schnittstelle an den Host-Rechner oder die SPS übertragen. Diesem Modus können keine Ausgänge zugewiesen werden.

Folgende Scan-Analysemodi können den Ausgängen zugewiesen werden:

<u>First Beam Blocked</u> (FBB): (erster unterbrochener Strahl) der Kontroller detektiert die Position des ersten unterbrochenen Lichtstrahls. Die Lichtstrahlen werden vom Steckverbinder des Lichtvorhangs fortlaufend bis zum Ende des Lichtvorhangs numeriert.

Last <u>Beam Blocked</u> (LBB): (letzter unterbrochener Strahl) der Kontroller detektiert die Position des letzten unterbrochenen Lichtstrahls.

Total Beams Blocked (TBB): (Summe unterbrochener Strahlen) der Kontroller detektiert die Summe unterbrochener Lichtstrahlen.

Contiguous Beams Blocked (CBB): (Summe aneinderandergrenzender unterbrochener Strahlen) der Kontroller detektiert die Summe aneinderandergrenzender unterbrochener Lichtstrahlen.

<u>First Beam Made</u> (FBM): (erster freier Strahl) der Kontroller detektiert die Position des ersten freien Lichtstrahls.

Last Beam Made (LBM): (letzter freier Strahl) der Kontroller detektiert die Position des letzten freien Lichtstrahls.

Total Beams Made (TBM): (Summe freier Lichtstrahlen) der Kontroller detektiert die Summe freier Lichtstrahlen.

<u>Contiguous Beams Made</u> (CBM): (Summe aneinderandergrenzender freier Strahlen) der Kontroller detektiert die Summe aneinderandergrenzender freier Lichtstrahlen.

_		
An	alysis Mod	le Selection
Meas1	FBB	±
Meas2	FBB	•
	TBB	
Scanr	CBB	+

Abb. 24. MINI-ARRAY-Software: Selektion des Scan-Analysemodus Im <u>Vehicle Separation (VHS)</u> Modus wird der Kontrollerausgang 1 (**Output #1**) aktiviert, wenn die Länge des Lichtvorhanges durchgängig über 15,2 cm (und mehr) unterbrochen ist (d.h. aneinderandergrenzende unterbrochene Lichtstrahlen) und deaktiviert, wenn alle Lichtstrahlen frei sind. Dieser Modus kann zum Beispiel für die Erfassung von Fahrzeugen in Produktionshallen verwendet werden. Der VHS-Modus kann nur im Modus 1-Menü (**Meas1**) selektiert werden. Der VHS Scan-Analysemodus ist direkt Ausgang 1 (**Output #1**) zugewiesen. Einstellungen des Ausgangsverhaltens sind nicht möglich. Ausgang 2 (**Output #2**) kann jedoch Modus 2 (**Meas2**) zugeordnet werden und somit als Alarm- oder Triggerausgang fungieren.

4.4.2 Zuordnung der Ausgänge

Die Ausgabezuordnungsfunktion (Output Assignments) im Fenster PSF Configuration ermöglicht die kundenspezifische Einstellung der Ausgangsfunktionen im ausgewählten Scan-Analysemodus. Bis auf den VHS Scan können Modus 1 (Meas1) oder Modus 2 (Meas2) sowohl Ausgang 1 (Output #1) als auch Ausgang 2 (Output #2) zugewiesen werden.

Abb. 25. MINI-ARRAY-Software: Zuordnung der Ausgänge

Ausgang 2 **(Output #2)** kann als **Alarm**ausgang für den Selbstüberwachungsschaltkreis des Kontrollers programmiert werden, vorausgesetzt, dass Ausgang 2 keinem Scan-Analysemodus zugewiesen ist.

Alternativ kann Ausgang 2 (**Output #2**) als Trigger-Eingang (**Trigger Input**) zur Auslösung der Scansequenz eines anderen MINI-ARRAY-Systems programmiert werden. Der **Trigger**-Wert entspricht der Position des Strahls im Lichtvorhang, bei der während des Scans die Triggerausgabe aktiviert wird.

Der Menüpunkt Schaltpunkt (Untergrenze und Obergrenze) - **Set Point (Low and High)** - definiert, wo innerhalb des Lichtvorhangs der Ausgang/die Ausgänge schalten. Bei den Modi Total Beams Blocked, Contiguous Beams Blocked, Total Beams Made und Contiguous Beams Made, bestimmen diese Einstellungen die minimal oder maximal benötigte Anzahl von Lichtstrahlen, um einen Schaltvorgang auszulösen.

Der Menüpunkt Hysterese (Untergrenze und Obergrenze) - **Hysteresis (Low and High)** - definiert die Grenzwerte der zulässigen Sollwertabweichungen, bei deren Unter- oder Überschreitung der entsprechende Ausgang einen anderen Zustand annimmt. Diese Einstellung unterdrückt unstabile Ausgangszustände (z.B. Ausgangsflattern), die auftreten, wenn das Scanergebnis exakt einem der Sollwerte entspricht. Die Standardeinstellung der Hysterese ist: Untergrenze **(Low Set Point)** minus einem Lichtstrahl/Obergrenze **(High Set Point)** plus einem Lichtstrahl.

Der Menüpunkt Anzahl Scans **(Scan #)** definiert die Anzahl aufeinanderfolgender Scans des Überwachungsfelds bevor der entsprechende Ausgang aktualisiert wird. Der Kontroller kann für 1 bis 9 aufeinanderfolgende Scans programmiert werden. Die Scandaten müssen für alle aufeinanderfolgenden Scans identisch sein, um eine Aktualisierung der Ausgänge auszulösen.

Mit der Option Invertieren (J/N) - **Invert (Y/N)** - wird der Ausgang entweder als Schließer ("N" - nein), oder Öffner ("J" - ja) programmiert.

4.4.3 Festlegung der Ausblendfunktion

Im Ausblendungsfenster (**Blanking Specifications**) kann man bei Bedarf einen oder zwei Bereiche des Lichtvorhangs ausblenden (das System ignoriert dann jegliche Aktivität in diesem Bereich). Die Lichtstrahlen werden vom Steckverbinder bis zum Ende des Lichtvorhangs fortlaufend numeriert. Geben Sie die untere (Low) und obere (**High**) Strahlennummer ein, um den auszublendenden Bereich (**Field**) zu definieren. Der Wert Null ist die Standardeinstellung, bei der keine Ausblendung stattfindet.

4.4.4 Selektion der Scanmodi

Im Scanmodi-Fenster **(Scanning Method)** kann man zwischen vier verfügbaren Scanmodi auswählen:

Der direkte Scan **(Straight Scan)** ist die Standardeinstellung, wobei alle Strahlen linear vom Steckverbinder bis zum Ende des Lichtvorhangs fortlaufend abgefragt werden.

Im Zeilensprung-Scan Modus (**Interlaced Scan**) alterniert ein gerader Standardscan mit einem diagonal versetzten Scan. Ein diagonal versetzter Scan beginnt mit dem Strahl zwischen Kanal 2 des Senders und Kanal 1 des Empfängers, geht dann zu dem Strahl zwischen Kanal 3 des Senders und Kanal 2 des Empfängers über und endet mit dem Strahl zwischen dem letzten Senderkanal und dem vorletzten Empfängerkanal. Zur Komplettierung des Scans wird dann vom letzten Senderkanal ein Strahl zum letzten Empfängerkanal generiert. Das alternierende Scanverfahren erhöht die Auflösung im mittleren Drittel des Überwachungsbereichs (siehe Abbildung 6 Seite 9).

Der Konturenscan-Modus (Edge Scan) aktiviert nur die Strahlen nahe der oberen Kante des zu detektierenden Objektes innerhalb des Lichtvorhangs (der Begriff "obere Kante" bezieht sich auf die dem oberen Ende der Sensoren nächstgelegene Objektkante). Jeder Scan beginnt sechs Strahlen vor dem beim vorangegangenen Scan letzten blockierten Strahl. Der Scan wird ab diesem Punkt weitergeführt und bewegt sich aufwärts bis zum ersten freien Strahl, wo der Scanzyklus dann vollendet wird. Wenn der Überwachungsbereich frei ist, arbeitet das System im Standardmodus weiter (Direkter Scan - Straight Scan). Der Konturenscan-Modus beginnt erneut, wenn ein unterbrochener Kanal detektiert wird. Der Konturenscan-Modus verringert die Scandauer und wird dann verwendet, wenn nur eine Kante eines Objektes lokalisiert werden soll. Die Programmierung des Konturenscan-Modus beschränkt die Auswahl der Scan-Analysemodi auf die LBB-Option (Last Beam Broken).

Im Überspringmodus **(Skip Scan)** verringert sich nicht nur die Scandauer sondern auch die Auflösung des Lichtvorhangs. In diesem Modus können 1 bis 7 Strahlen bei einem Scan übersprungen werden. So werden z. B. bei der Überspringung eines Strahl jeweils nur die Strahlen 1, 3, 5, 7 usw. abgefragt. Beim Überspringen von zwei Strahlen werden nur die Strahlen 1, 4, 7, 10 usw. abgefragt.

Scanning Method			
 Straight Interlact Edge 	ed		
🔿 Skip	₹		

Abb. 27. MINI-ARRAY-Software: Scanmodi

4.4.5 Selektion des Steuermodus

Control Mode Selection

- 🖲 Continuous 👘
- 🔾 Gate |
- 🔾 Host Mode
- Abb. 28. MINI-ARRAY-Software: Auswahl des Steuermodus

Im Steuermodus-Fenster **(Control Mode Selection)** hat der Benutzer die Wahl zwischen Scanauslösung über den Steuereingang oder kontinuierlichem Scan. Der Kontroller verfügt über einen optisch-isolierten Steuereingang **(Gate Input)**, der bei Anliegen eines Steuersignals von 10...30 VDC (7,5 K Ω Eingangwiderstand) aktiviert. Der Ansteuermodus wird üblicherweise durch den Anschluss eines DC-Sensors realisiert. Das Steuersignal muss für einen Zeitraum > 55 ms anliegen. Die Zeit zwischen aufeinanderfolgenden Steuersignalen muss größer sein als die minimale Scanzeit des Überwachungsfelds.

Alternativ kann der Kontroller auch für den Host-Modus **(Host Mode)** programmiert werden. Im Host-Modus wird der Scanvorgang durch einen Host-Rechner oder eine SPS gesteuert.

4.4.6 Serielle Kommunikation

Serial Communication Baud Rate 9600 👱 Controller ID A 🛨

Abb. 29. MINI-ARRAY-Software: Parameterselektion für die serielle Kommunikation Das MINI-ARRAY-System kann über eine RS-232- oder eine RS-485-Schnittstelle mit einem Host-Rechner oder einer SPS kommunizieren. Der Host-Rechner kann den Lichtvorhang zum Scanvorgang auffordern und/oder die Scandaten direkt vom MINI-ARRAY-System im **Binär**- oder **ASCII**-Format anfordern. Die verfügbaren Baudraten sind **9600**, **19200** und **38400**. Das Protokoll besteht aus einem Startbit, einem Stoppbit, 8 Datenbits und einem geraden Paritätsbit (siehe Anhang für weitere Informationen zu Datenformaten).

Wird die RS485-Schnittstelle zur Kommunikation benutzt, kann jedem Kontrollermodul eine Kontrolleradresse **(Controller ID)** zugewiesen werden. Über die Eingabe **A...0** wird max. 15 Kontrollern auf einer RS-485-Gemeinschaftsleitung eine eigene Adresse zugewiesen und somit die Identifizierung ermöglicht.

4.4.7 Serielle Übertragung

Im Fenster Serielle Übertragung (Serial Transmission) werden das serielle Interface aktiviert und das Datenformat definiert. Weiterhin können verschiedene Funktionen deaktiviert werden. Wird die Standardeinstellung keine serielle Kommunikation (No Serial Communication) selektiert, werden keine Scandaten über das serielle Interface übertragen.

Wird ASCII-Übertragung **(ASCII Transmission)** angeklickt, werden die Scandaten im ASCII-Format übertragen. Dieses Format verfügt über die Option, die Anzeige "Lichtvorhang frei unterdrücken" **(Supress Clear Data)** auszublenden, d.h. Daten werden nur einmal übertragen, wenn das Überwachungsfeld durchgängig frei ist (d.h. keine Strahlen sind unterbrochen). Die nächste Datenübertragung findet erst dann statt, wenn wieder ein oder mehrere Strahlen unterbrochen sind.

Binäre Übertragung (Binary Transmission) bedeutet, dass die Scandaten binär formatiert sind. Dieses Format verfügt über drei Deaktivierungsoptionen. Die erste ist die Option "Lichtvorhang frei unterdrücken" (Suppress Clear Data), d.h. Daten werden nur einmal übertragen, wenn das Überwachungsfeld durchgängig frei ist (d.h. keine Strahlen sind unterbrochen). Die nächste Datenübertragung findet erst dann wieder statt, wenn ein oder mehrere Strahlen unterbrochen sind. Die Option "Header unterdrücken" (Suppress Header) reduziert den Umfang der seriellen Kontrollermessage um 3 Bytes. Headerbytes bestehen aus 2 Bytes Startstring und 1 Endbyte. Die Option "Daten komprimieren" (Compress Data) reduziert die Anzahl der für jeden Analysemodus versandten Datenbytes von 2 auf 1 Byte.

Siehe auch Anhang: Host-Mode-Command und serielles Datenformat für zusätzliche Informationen.

- No Serial Communication
- ASCII Transmission
- O Suppress Clear Data
- O Binary Transmission
 - Suppress Clear Data
 - Suppress Header
 - Compress Data
- Abb. 30. MINI-ARRAY-Software: Einstellmöglichkeiten für die serielle Kommunikation

4.4.8 PSF-Zuweisung und PSF-Speicherung

Die PSF-Befehle befinden sich in der rechten Ecke des PSF-Konfigurations-fensters (**PSF Configuration**).

Übertragung eines PSF zum Kontroller

Nachdem die PSF mittels der zuvor beschriebenen Parameter konfiguriert wurden, wird die PSF mit der Option **Send PSF** zum MINI-ARRAY-Kontroller übertragen. Dieser Befehl lädt die PSF in den nicht-flüchtigen Speicher des Kontrollers und überschreibt automatisch jede PSF, die sich in diesem Speicher befindet. Das Programm bestätigt, dass die PSF akzeptiert wurde oder teilt ggfs. die Änderungen mit, die an der PSF vorgenommen werden müssen.

• Öffnen einer PSF

Um die aktuell im Kontroller gespeicherte PSF zu überprüfen, wählt man die Option **Upload PSF**. Die aktuelle PSF wird im Fenster **PSF Configuration** angezeigt.

Speichern einer PSF auf Diskette

Mit der Option File Save PSF wird die angezeigte PSF in einer Datei gespeichert, die dann zu jedem Zeitpunkt schnell aufgerufen werden kann. Es erscheint die Frage, ob man die PSF in einer Datei speichern möchte. Die Option Yes anwählen. Ein zweites Fenster FileSave (Datei speichern) erscheint (Abbildung 31). Im Eingabefeld File Name wird "*.psf" mit dem Namen der zu speichernden Datei (max. 8 Buchstaben) und der Erweiterung .psf überschrieben und OK angeklickt (oder die Enter-Taste betätiaen).

Sie könnten zum Beispiel den Namen "Inspect1.psf" eingeben und dann Enter betätigen. Die PSF-Datei wird dann auf dem angegebenen Laufwerk (Standardeinstellung ist C:) gespeichert und das Programm kehrt automatisch zum Fenster **PSF Configuration** zurück.

_	Mini-Array				
	PSF Configuration				
Analyzis Made Selection (Cantral Marine References	Plastics Considerations			
Herel L	FileSave	ligh			
File Name:	Directories:				
Hoas2 N inspect2.pd	c:\minia				
inspect1.psf	7 (Del) 7	Cancel			
scanny profile1.pd	📄 🖻 minia				
(Straig	C decesamp	anicution			
Č Educ		Baad Only or Data			
Ó Skip	-	tion			
		ar Data			
Save File as Lype:	Drigen:	pder			
o	🗄 🔤 c nudou 🔳	, m			
Curput Act					
Analyziz Node Low	High Low High	Scan # Invert (Y/N)			
Disabled 1					
Output #2 Disabled ± 1		1 No			
Output #2 Other Features					
O Alam	File Save PSF	Send PSF Exit			
O Trigger 1					
	File Retreive PSF	Upload PSF Quit			
	Execute				

Abb. 31. MINI-ARRAY-Software: Speichern einer PSF-Konfiguration

-			Mini-Array	
		PSF Configuration		
Analysis	Mada Coloctica Pea	EleDev	Blacking Encolligations	•
Mear2 R Mear2 R Scanning Straig Intert Skip	File Manue: 2021 inspect1.paf profile1.paf profile2.paf # List Files of Lype: #	Directories: c:\ninia C:\ninia C:\ minia dosessamp Driges: E:: midos E:: midos	Cancel D Cancel D Cancel D artical ion ar Da obr ar Da obr ta	lion 6a
Output As	anthrain Martin	High Face High	Care & James MAR	
Output #1	Dicabled ±	High Low High	1 No	
Output #2	Disabled 👱 1	1 0 2	1 No	
Output #2 Oti Alarm Trigger	her Featurez	File Save PSF File Betreive PSF Esecute	Send <u>P</u> SF Egit	

Abb. 32. MINI-ARRAY-Software: PSF-Suchfenster

• Wiederaufrufen einer PFS-Datei von Diskette

Um eine gespeicherte PSF-Datei aufzurufen, ist die Option **File** <u>Retrieve</u> **PSF** (PSF-Datei öffnen) auszuwählen. Ein **FileBox** Fenster erscheint (Abbildung 32 Seite 26). Anschließend die gewünschte PSF aus der Dateinamensliste selektieren und <u>O</u>K anwählen (oder die **Enter**-Taste betätigen). Die selektierte PSF erscheint im Fenster **PSF Configuration** und kann dann mit dem Befehl **Send** <u>PSF</u> an den Kontroller übertragen werden.

• PSF Ausgabeanalyse

Um die Aktivität im Überwachungsbereich gemäß der aktuell geladenen PSF-Datei anzuzeigen, ist die Option **Execute** auszuwählen. Das Messausgangsfenster (Measurement output) erscheint (Abbildung 33), in dem **Run** auszuwählen ist. In dieser Tabelle wird der Status des selektierten Scan-Analysemodus inklusive des aktuellen Werts (**Present**), der Höchstwert (**High**) und der Mindestwert (**Low**) für die **RUN**-Dauer angezeigt.

Stop anwählen, um die Daten einzufrieren. **Step** selektieren, um einen einzelnen Scan des Überwachungsbereichs auszulösen, um eine Momentaufnahme über die aktuelle Detektion des Lichtvorhangs zu erhalten.

Der Befehl **Execute** ist besonders geeignet, um die Reaktion eines eingangsgesteuerten Systems zu überprüfen. **<u>R</u>un** simuliert den kontinuierlichen Scanmodus und **<u>S</u>tep** einen gesteuerten Eingangsbefehl.

Um das Fenster **PSF Configuration** zu schließen, ist entweder Beenden ohne Speichern (Quit) oder Beenden und Speichern (Exit) auszuwählen.

-	Mini-Arrey
Mini-Array Options Help	
PSF Configuration	
Measurement Output	ing Specifications
Measurement Low High Present FBB 2 11 6 CBM 13 32 18	Law High 0 0 0 0 ransmission Satial Communication II Transmission uppress Clear Data or Suppress Clear Data Suppress Clear Data Compress Data
Set Point Hysteresis	
Analysis Hode Low High Low High Output #1 Disabled 1 1 0 2 Output #2 Disabled 1 1 0 2	Scan II Invert (Y/N) 1 No 1 No
Output II2 Other Features O Alores Trigger I File Batraive PSF Emerute	Send PSF Egit

Abb. 33. MINI-ARRAY-Software: PSF-Ausgabeanalyse

5. Systemdaten

5.1 LEDs zur Anzeige des Systemstatus

BEMERKUNG: Die LEDs zur Anzeige des Systemstatus sind scheinbar außer Funktion, wenn der Kontroller für den **Ansteuer- oder Hostmodus** (siehe Abschnitt 4.4.5) konfiguriert wurde und kein Signal für eine Scan-Aktualisierung anliegt.

Sender: Die rote Sender-LED leuchtet kontinuierlich: die Betriebsspannung liegt an und der Sender funktioniert korrekt.

Die rote Sender-LED ist aus: es liegt ein Senderfehler vor.

Die rote DIAG3-LED auf dem Kontroller (siehe Abbildung 35 Seite 29) muss aufleuchten, wenn die rote LED auf dem Sender erlischt. Mit der **Diagnostics**-Software (siehe Abschnitt 5.3) kann die Ursache des Senderfehlers festgestellt werden.

Die rote Sender-LED blinkt: kurzfristige Spannungsunterbrechung des Senders, das System wartet auf eine Reaktion des Kontrollers. Dies kann im Ansteuer- oder Hostmodus auftreten, wenn der Sender kurzfristig ab- und wieder angekoppelt wurde und bevor der Sender den nächsten Steuerimpuls empfängt.

Empfänger: (siehe Abbildung 34)

(nur) grüne LED ständig an: das System wurde korrekt ausgerichtet und es wurden keine Strahlen unterbrochen.

(nur) grüne LED blinkt: die gleiche Bedeutung wie eine rote blinkende Sender-LED.

Die grüne und gelbe LED leuchten gleichzeitig und kontinuierlich: geringe Funktionsreserve, d.h. das MINI-ARRAY-System wird zwar weiterhin normal funktionieren, die gelbe LED leuchtet jedoch auf, um vor einem möglichem Verlust von Signalen infolge sich verschlechternder Ausrichtung des Lichtvorhangs und/oder verschmutzter Linsen usw. zu warnen.

Die rote LED (nur) leuchtet kontinuierlich: ein oder mehrere Strahlen sind unterbrochen oder das System ist nicht ausgerichtet (wobei sich keine Objekte im Überwachungsbereich befinden).

Alle drei LEDs (gelb, rot und grün) gleichzeitig an: Empfängerfehler. Mit der <u>D</u>iagnostics-Software (siehe Abschnitt 5.3) ist die Ursache des Fehlers festzustellen.

Abb. 34. LEDs zur Anzeige des Systemstatus

5.2 Kontroller-LEDs zur Anzeige des Betriebsstatus

Out 1 (rot) zeigt den Status des **Ausgangs 1** an.

ALARM (rot) zeigt den Status des Ausgangs 2 (**Output # 2**) an. Ausgang 2 kann einem Analyse-Modus zugewiesen werden oder als Alarmausgang zur Systemdiagnose oder als Triggerausgang zur Steuerung eines weiteren MINI-ARRAY-Systems verwendet werden.

GATE (rot) zeigt den Status des **Steuereingangs** an.

ALIGN (grün) zeigt eine korrekte Ausrichtung des Systems und einen freien Überwachungsbereiches an. Diese Kontroller-LED ist an, wenn die grüne oder die grüne und die gelbe LEDs des Empfängers aufleuchten.

DIAG 1, DIAG 2, DIAG 3 zeigen wie folgt den Status des Systems an:

Status	DIAG1 (grün)	DIAG2 (rot)	DIAG3 (rot)
normaler Betrieb	ON	OFF	OFF
Empfängerfehler	ON	ON	OFF
Senderfehler	ON	OFF	ON
Sender/Empfänger Ausrichtungsfehler	ON	ON	ON
Kontrollerfehler	OFF	ON	OFF
EEPROM-Fehler	OFF	OFF	ON
ROM/RAM-Fehler	OFF	ON	ON

Abb. 35. Kontroller-LEDs zur Anzeige des Betriebsstatus (MAC-1 Kontroller)

5.3 Die Diagnosesoftware

Probleme mit dem Sender oder Empfänger können anhand der Diagnoseroutinen, die in der MINI-ARRAY-Software integriert sind, genauer untersucht werden. Das Programm wird entweder mit dem Befehl **Diagnostics...** im <u>MINI-ARRAY-Menü</u> (siehe Abbildung 36) oder einfach durch Betätigen der Funktionstaste **F2** gestartet.

Das Diagnosefenster (**Diagnose**), siehe Abbildung 37, listet jeden Sender- und Empfängertyp (**Board**) und dessen Funktionsstatus (**State**) auf. Tritt ein Fehler auf, so wird der betreffende Strahl (**Channel**) identifiziert. Gibt es Probleme mit einer Sender- oder Empfängerkabelverbindung, so wird die Nachricht "keine Rückmeldung" (**No Response**) angezeigt.

Die Diagnosesoftware zeigt weiterhin die Identnummer und den Produktionscode des Kontrollers an. Diese Informationen sind besonders nützlich, wenn z.B. Probleme über das Telefon gelöst werden sollen.

		Mini-Array
Mini-Array Optic	ons <u>H</u> elp	
Diagnostics	F2	
Alignment	F3	
Edit PSF	F4	
Set Part Number	fana -	
Egit		

Abb. 36. MINI-ARRAY-Software: das Hauptmenü

_					Mini-Arrav		
	Diagnostics						
	(Number Of Er	System State: Op nitter Boards: 2	erational		Est		
	Number Of Rec	iever Boards: 2			Tenesu		
Bo	oard Num Char	nels Type	State	+			
1	16	E	0 No Errors				
2	16	E	0 No Errors				
1	16	R	0 No Errors				
2	16	R	0 No Errors				
				٠			
	Part Number:	000000	Date Code		9625		

Abb. 37. MINI-ARRAY-Software: das Diagnosefenster

5.4 Anzeige serieller Daten

Wird der Hostmodus (**Host Mode**) benutzt, kann das serielle Datenformat angezeigt werden, um die Programmierung des Hostrechners oder des Kontrollers zu erleichtern. Dies kann mit dem auf DOS basierendem Programm **dminia.exe** durchgeführt werden, das zusammen mit der MINI-ARRAY-Software geladen wurde.

Um das Datenformat einer bestimmten PSF anzuzeigen, sind folgende Schritte auszuführen:

- Im Fenster PSF Configuration unter PSF erstellen (Edit PSF) überprüfen, ob der Kontroller tatsächlich für den Hostmodus und die gewünschte serielle Übertragung programmiert wurde (z.B. ASCII, binäre Daten, Datenunterdrückung usw.).
- 2. Vom MINI-ARRAY-Programm zur DOS-Ebene gehen.
- Nach der DOS-Aufforderung cd\minia\dosexamp eingeben und die Returntaste betätigen.
- Bei der nächsten Aufforderung (C:\MINIA\DOSEXAMP>) dminia eingeben und die Returntaste betätigen.
- 5. Mit \mathfrak{g} (Null) den Kommunikationsport setzen, danach entweder \mathfrak{g} (Null) oder **1** je nach Vorgabe.
- 6. 1 eingeben, um die Scandaten anzuzeigen (siehe Abbildung 38).

Die seriellen Ausgangsdaten zur Darstellung von Änderungen im Lichtvorhang werden so angezeigt wie im kontinuierlichem Scan-Modus (Continuous Scan). Um die Ausgabe zu stoppen, ist die Enter-Taste zu betätigen. Um das Programm zu verlassen, 2 eingeben und die Return-Taste betätigen.

MS-DOS Prompt	•	\$
C:\MINIA\DOSEXAMP>dminia Ø) Set Communication Port 1) Display Scan Data 2) Exit Choose Menu Item (Ø - 2): Ø Ø) Com1 1) Com2 Choose Menu Item (Ø - 1): 1 Ø) Set Communication Port 1) Display Scan Data 2) Exit Choose Menu Item (Ø - 2): 1 Press the 'Enter' key to stop output. Øx1c A Ø Ø Ø ØxØa Øx1c A Ø Ø Ø ØxØa Øx1c A Ø I Ø ØxØa		

Abb. 38. DMINIA.EXE: serielles Datenformat

MINI-ARRAY®-Lichtvorhang-Spezifikationen

MINI-ARRAY Sensoren – 16 Strahlen pro 30,5 cm Typen mit 19,1 mm Strahlabstand			MINI-ARRAY Sensoren – 32 Strahlen pro 30,5 cm Typen mit 9,5 mm Strahlabstand						
Тур		ldentnr.	Überwa- chungs- feldhöhe	Anzahl Strahlen	Тур		ldentnr.	Überwa- chungs- feldhöhe	Anzahl Strahlen
BMEL616A BMRL616A	Sender Empfänger	30 399 19 30 399 20	143 mm	8	BMEL632A BMRL632A	Sender Empfänger	30 399 21 30 399 22	133 mm	16
BMEL1216A BMRL1216A	Sender Empfänger	30 385 41 30 385 42	295 mm	16	BMEL1232A BMRL1232A	Sender Empfänger	30 385 29 30 385 30	286 mm	32
BMEL1816A BMRL1816A	Sender Empfänger	30 395 74 30 395 82	448 mm	24	BMEL1832A BMRL1832A	Sender Empfänger	30 395 75 30 395 83	438 mm	48
BMEL2416A BMRL2416A	Sender Empfänger	30 385 43 30 385 44	600 mm	32	BMEL2432A BMRL2432A	Sender Empfänger	30 385 31 30 385 32	591 mm	64
BMEL3016A BMRL3016A	Sender Empfänger	30 395 76 30 395 84	752 mm	40	BMEL3032A BMRL3032A	Sender Empfänger	30 395 77 30 395 85	743 mm	80
BMEL3616A BMRL3616A	Sender Empfänger	30 385 45 30 385 46	905 mm	48	BMEL3632A BMRL3632A	Sender Empfänger	30 385 33 30 385 34	895 mm	96
BMEL4216A BMRL4216A	Sender Empfänger	30 395 78 30 395 86	1057 mm	56	BMEL4232A BMRL4232A	Sender Empfänger	30 395 79 30 395 87	1048 mm	112
BMEL4816A BMRL4816A	Sender Empfänger	30 385 47 30 385 48	1210 mm	64	BMEL4832A BMRL4832A	Sender Empfänger	30 385 35 30 385 36	1200 mm	128
BMEL6016A BMRL6016A	Sender Empfänger	30 385 49 30 385 50	1514 mm	80	BMEL6032A BMRL6032A	Sender Empfänger	30 385 37 30 385 38	1505 mm	160
BMEL7216A BMRL7216A	Sender Empfänger	30 385 51 30 385 52	1819 mm	96	BMEL7232A BMRL7232A	Sender Empfänger	30 385 39 30 385 40	1810 mm	192

Abstand Sender/Empfänger	9,5 mm Strahlabstand 0,6 bis 6,1 m für Sensoren < 121 cm 0,6 bis 4,6 m für Sensoren > 121 cm <i>BEMERKUNG:</i> max. Reichweite ist an dem Punkt defi- niert, wo eine Funktionsreserve von 3x erhalten bleibt.	19,1 mm Strahlabstand 0,9 bis 17 m für Sensoren < 122 cm 0,9 bis 14 m für Sensoren > 122 cm <i>BEMERKUNG:</i> max. Reichweite ist an dem Punkt defi- niert, wo eine Funktionsreserve von 3x erhalten bleibt.
Mindestobjektgröße	9,5 mm Strahlabstand 19,1 mm Zeilensprungmodus: 12,7 mm* <i>*BEMERKUNG:</i> vorausgesetzt, die Detektion findet im mittleren Drittel zwischen Sender und Empfänger statt.	19,1 mm Strahlabstand 38,1 mm Zeilensprungmodus: 25,4 mm* <i>*BEMERKUNG:</i> vorausgesetzt, die Detektion findet im mittleren Drittel zwischen Sender und Empfänger statt.
Spannungsversorgung 12 VDC ±2% durch Kontroller	Sender 0,1 A bei 12 VDC <i>BEMERKUNG:</i> max. Spannung für einen 183 cm Lichtvorhang.	Empfänger 9,5 mm Strahlabstand - 0,75 A bei 12 VDC max. 19,1 mm Strahlabstand - 0,5 A bei 12 VDC max. <i>BEMERKUNG:</i> max. Spannung für einen 183 cm Lichtvorhang.
Kabel	ACHTUNG: Verwenden Sie nur Banner Kabel mit RS485 Datenleitungen zu gewährleisten. Die Ver führen. Anschlusskabel für Sender und Empfänger 5-aderigen Banner-Kabel sind mit einem geraden S ausgestattet. Der Kabelquerschnitt beträgt 8,1 mr Mantel ausgestattet. Die Länge des Sender- und schreiten.	zweifach verdrillten Leitern, um Störfestigkeit auf rwendung anderer Kabel kann zu Fehlfunktionen müssen separat bestellt werden. Die geschirmten teckverbinder (0,91 mm²) für den Sensoranschluss m. Die Kabel sind geschirmt und mit einem PVC- Empfängerskabels darf jeweils 76 m nicht über-
LEDs zur Anzeige des Systemstatus	Sender rot: System funktioniert korrekt	Empfänger grün: Lichtvorhang ausgerichtet (> 3x Funktionsreserve) gelb: geringe Funktion (1x < Funktionsreserve < 3x) rot: Sensoren nicht ausgerichtet oder Strahl(en) unterbrochen
Gehäuse Sender und Empfänger	Abmessungen: siehe Abbildung 10, Seite 12 Material: Aluminium, schwarz eloxiert; Acryl-Schu Schutzart: IP65	ıtzlinsen
Zulässige Umgebungstemperatur Relative Feuchtigkeit	-20+70 °C 95% max. (nicht-kondensierend)	

MINI-ARRAY®-Lichtvorhang-Spezifikationen (Fortsetzung)

MINI-ARRAY®-Kontroller-Spezifikationen

Typen und Identnr.	mit SchaltausgängenMAC-130 4MACP-130 4MACN-130 4	132 96 178 20 179 99	mit Analog MACV-1 MACI-1	jausgängen 30 463 27 30 463 26		
Versorgung	1630 VDC bei 1,25 / Eigenstromaufnahme	A max. (siehe Strombedarf d des Kontrollers (Sensoren n	ler Sensoren icht angesch	ı); nlossen): 0,1 A		
Eingänge	MINI-ARRAY Sensore 5 Klemmen angeschlo Generierung des Steue	ingang (5 Anschlüsse); Sen ssen. Steuereingang - optis ersignals (7,5 KΩ Eingangsi	der und Emp ch-isoliert, ⁻ mpedanz).	ofänger werden parallel verdrahtet an 1030 VDC notwendig zur		
Ansprechzeit	Die Bereitschaftszeit d zwei Scanzyklen. Ein S aktiviert), die nach jed	er Ausgänge beträgt 5 s. Die Scanzyklus umfaßt einen Sen em Scan erfolgt.	maximale Ai sorscan plus	nsprechzeit der Schaltausgänge beträgt s der seriellen Datenübertragung (wenn		
Scandauer	55 µs pro Strahl, plu Informationen (im Dir	us 1 ms Verarbeitungszeit ekt-Scanmodus, kontinuierlie	pro Scan. S chen Scanm	Siehe "Scanmodi" Seite 9 für weitere odus und TBB -Modus).		
Ausgangs-	MAC-1: 1 x Relaisk 1 x npn Tra MACP-1: 2 x pnp Tra	kontakt (OUT1) ansistorausgang (ALARM) ansistorausgang	MACV-1:	2 x Analogausgang, Spannung (VOUT1 und VOUT2) 1 x npn Transistorausgang (ALARM)		
konfiguration	MACN-1: 2 x npn Tra (OUT1 unc	ansistorausgang ALARM)	MACI-1:	2 x Analogausgang, Strom (IOUT1 und IOUT2) 1 x npn Transistorausgang (ALARM)		
Relaisausgang Transistorausgang Analogausgang	Max. 125 VAC/DC und Max. 150 mA, Reststr Restspa Spannungsausgang: 0 Stromausgang: 420 Auflösung: Bereich/(A Linearität: 0,1 % vom Temperaturabweichun	 Max. 125 VAC/DC und max. 10 VA Widerstandslast (nicht-induktiv) Max. 150 mA, Reststrom im Auszustand: < 10 μA bei 30 VDC Restspannung in Anzustand: < 1 V bei 10 mA; < 1,5 V bei 150 mA Spannungsausgang: 010 V, max. 20 mA Stromausgang: 420 mA, max. Bürde 1,5 KΩ Auflösung: Bereich/(Anzahl von Sensorkanälen) Linearität: 0,1 % vom Endwert 				
Serielle Datenausgänge	RS232, RS485 (nur beim MAC-1, MACP-1 und MACN-1), ASCII- oder binäres Datenformat, Baudraten: 9600; 19,2 K oder 38,4 K, 8 Datenbits, 1 Startbit, 1 Stopbit, 1 Bit gerade Parität, Anzeige "Lichtvorhang frei" (Suppress Clear Data) kann unterdrückt werden. Header String im binä- ren Format kann unterdrückt werden. Max. 15 Kontroller können einer eigenen Adresse für die RS485-Gemeinschaftsleitung zugewiesen werden.					
Kontroller- programmierung	Über die RS232-Schnittstelle mittels PC oder PC-kompatiblen Rechner mit Betriebssystem Windows [®] 3.1, Windows [®] 95 oder OS/2 [®] , mit beigelieferter Banner-Software (siehe Bedienungsanleitung).					
LEDs zur Anzeige des Systemstatus	Die folgenden LEDs befinden sich auf der Oberseite des Kontrollers:OUT1 (rot):Ausgang 1 ist durchgeschaltet (für MAC-1, MACP-1 und MACN-1)VOUT oder IOUT (rot):Analogausgänge aktiv (nur für MACV-1 und MACI-1)ALARM (rot):Ausgang 2 ist durchgeschaltetGATE (rot):Versorgungsspannung liegt am Steuereingang anALIGN (grün):Lichtvorhang ist ausgerichtet (Funktionsreserve > 1x)DIAG1 (grün):Versorgungsspannung liegt am Kontroller anDIAG2 (rot):EmpfängerfehlerDIAG3 (rot):Senderfehler(siehe Abschnitt 5.2 für zusätzliche Informationen)					
Gehäuse	Abmessungen: siehe Material: Polycarbona Schutzart: IP52	Abbildung 12, Seite 13 at				

Host-Befehlsmodus und serielles Datenformat

Host-Befehlsmodus

Der MINI-ARRAY-Kontroller kann über eine RS-232- oder RS-485-Schnittstelle mit einem Host-Rechner oder Kontroller kommunizieren (Anschluss siehe Seiten 14-16). Der Host reagiert auf die Kontrollerausgangsdaten, wenn der Kontroller entweder für kontinuierliches Scannen oder für den Ansteuermodus (**Continuous oder Gate Control Mode**) programmiert wurde (Abschnitt 4.4.5).

Desweiteren kann der Host das Scannen des Lichtvorhangs steuern. Wird der Hostmodus (Host Control Mode) selektiert (Abschnitt 4.4.5), dann startet der Hostrechner oder Kontroller die Scans mittels einer Befehlskette. Diese Befehlskette besteht aus einer 3-Bit-Nachricht, die wie folgt aufgebaut ist:

Steuerbyte mit dem Dezimalwert 248, Kontroller-ADRESSE (eine der 16 ASCII-Buchstaben von A bis O entsprechend der PSF-Definition)

Scan-Startbyte (ASCII Buchstabe S).

Die Befehlskette wird wie folgt definiert:

unsigned char msg[3]; /*declare three byte unsigned character array using C language*/ $\!\!$

msg[0]=248; /*control byte*/

msg[1]=65; /*assume the controller ID is the letter A*/

msg[2]=83; /*scan initiation byte which is the ASCII letter S*/

Der Host überträgt diese 3-Bytes-Nachricht mit der definierten Baudrate. Das Format besteht aus einem Startbit, einem Stopbit, einem geraden Paritätsbit und 8 Datenbits. Wenn diese Nachricht vom MINI-ARRAY-Kontroller empfangen wird, startet der Kontroller den Scanvorgang und aktualisiert dann die Ausgänge. Der MINI-ARRAY-Kontroller wartet dann auf die nächste Befehlskette.

Serielles Datenformat

Der programmierte Scanmodus oder Modi bestimmen die Art der zu übertragenden Information. Wenn z.B. Modus 1 (Meas1) auf FBB und Modus 2 (Meas2) auf LBB eingestellt sind, dann enthalten die zum Host übertragenen Daten die Werte des ersten und des letzten unterbrochenen Strahles.

Im Scanmodus Alle **(ALL)** wird der Status aller Strahlen zum Host übertragen. Im **VHS**-Modus ist die Übertragung serieller Ausgangsdaten nicht möglich.

Zusätzlich zu den Scanmodus-Daten werden auch ein Startstring und ein Endbyte übertragen. Der Startstring enthält zwei Zeichenbytes ohne Vorzeichen:

Hex-Wert 1C, Wert der **Kontroller-Adresse**.

Das Endbyte ist das ASCII-Zeichen für einen Zeilenvorschub (hex Wert øA) (NullA). Diese drei Bytes werden allgemein als Header bezeichnet.

Datenübertragung im ASCII Format

Es gibt zwei ASCII-Formate. Das verwendete Format hängt von den selektierten Scanmodi ab. Im Scanmodus Alle **(ALL)** wird jedes Datenbyte im 8-Bit ASCII-Format dargestellt, das den Status vier aufeinanderfolgender Kanäle (d.h. vier aufeinanderfolgende Strahlen) enthält. Das nächste Byte enthält den Status der vier nächsten Kanäle usw., bis der Status aller Kanäle übertragen ist.

Die zulässigen Datenwerte sind ASCII-Zahlen von 0 bis 9 und ASCII-Zeichen von A bis F. In der nebenstehenden Tabelle stellt eine "0" einen freien Strahl und eine "1" einen unterbrochenen Strahl dar.

Die anderen Scanmodi verwenden drei ASCII-Bytes zur Wertdarstellung. Zum Beispiel: sind Modus 1 (Meas1) = FBB und Modus 2 (Meas2) = LBB und die Scanwerte 6 und 120, wobei die Kontroller-Adresse A ist, dann ist der Datenstring wie folgt aufgebaut:

0x1c A 0 0 6 1 2 0 0x0a

Der Kontroller verfügt über die Möglichkeit der Datenunterdrückung. Dies bedeutet, dass Daten einmal gesendet werden, wenn der Überwachungsbereich völlig frei ist (d.h. wenn keine Strahlen unterbrochen sind) und keine weitere Datenübertragung stattfindet, bis wieder ein oder mehrere Strahlen unterbrochen sind.

Datenübertragung in binärem Format

Es gibt zwei binäre Formate. Das verwendete Format hängt von den selektierten Scanmodi ab. Im Scanmodus Alle **(ALL)** enthält jedes Datenbyte den Status acht aufeinanderfolgender Strahlen. Jedes Bit des Bytes stellt den Status eines einzelnen Kanals dar.

In diesem Beispiel haben die acht ersten Kanäle folgenden Status:

<u>Kanal</u>	<u>Status</u>	<u>Binärer Code</u>
1	unterbrochen	1
2	nicht unterbrochen	0
3	unterbrochen	1
4	unterbrochen	1
5	nicht unterbrochen	0
6	unterbrochen	1
7	nicht unterbrochen	0
8	nicht unterbrochen	0

Definition der ASCII-Datenwerte						
Im Scanmodus Alle (ALL)						
<u>Buchstaben</u>	<u>Buchstaben Kanal 4 Kanal 3 Kanal 2 Kanal 1</u>					
F	1	1	1	1		
Е	1	1	1	0		
D	1	1	0	1		
С	1	1	0	0		
В	1	0	1	1		
А	1	0	1	0		
9	1	0	0	1		
8	1	0	0	0		
7	0	1	1	1		
6	0	1	1	0		
5	0	1	0	1		
4	0	1	0	0		
3	0	0	1	1		
2	0	0	1	0		
1	0	0	0	1		
0	0	0	0	0		

Abb. 39. ASCII-Datenwerte

Das Datenbyte hat den hex-Wert **0x2d** oder **45** dezimal. Wenn der Lichtvorhang 32 optische Kanäle hat, sind 4 Datenbytes vorhanden, die den Status aller 32 Kanäle darstellen. Die anderen Scanmodi verwenden zwei Bytes zur Darstellung des Meßwerts. Das erste der zwei Bytes besitzt die höhere Wertigkeit. So würde zum Beispiel der Wert 262 im **FBB**-Scanmodus als Zweierbytezahl **0x01 0x06** codiert.

Die Abbildung 40 zeigt die drei Optionen, die die binäre Übertragungsmethode ermöglicht. Diese Optionen können unabhängig voneinander ausgewählt werden und ermöglichen so die kundenspezifische Konfiguration des seriellen Datenformats. Die Option, die Anzeige Lichtvorhang frei unterdrücken (Suppress Clear Data) auszublenden, kann gewählt werden, wenn die Strahlen des Lichtvorhangs frei sind. Wenn Strahlen unterbrochen sind, findet die serielle Datenübertragung statt. Sobald die Strahlen nicht mehr unterbrochen sind, wird die Nachricht "Lichtvorhang frei" einmal gesendet. Erst wenn wieder Strahlen unterbrochen sind, findet eine weitere Datenübertragung statt. Bei Selektion der Option Header unterdrücken (Suppress Header) findet zwar eine serielle Datenübertragung statt, die drei Header-Bytes werden jedoch nicht übertragen. Die Option Daten komprimieren (Compress Data) betrifft die Datenbytes aller Scanmodi mit Ausnahme des Modus Alle (ALL). Alle anderen Scan-Analysemodi benutzen zwei Bytes, um die benötigte Information zu übertragen. In den Fällen, wo das Scanergebnis kleiner als 255 ist, ermöglicht die Option Daten komprimieren (Compress Data) die Datenübertragung mittels eines Bytes.

Das folgende Beispiel setzt voraus, dass mit einem 48-kanaligen Lichtvorhang gearbeitet wird, wovon der letzte Strahl von insgesamt 35 unterbrochen ist und der Kontroller der Adresse B zugeordnet ist. Desweiteren werden zwei binäre Formatoptionen vorausgesetzt. Die erste ist das Standardformat "binäre Übertragung". Die zweite Formatoption umfaßt Header unterdrücken (Suppress Header) und Daten komprimieren (Compress Data). Die beiden Datenstrings sehen dann wie folgt aus:

Option 1: binäre Übertragung

0x1c B 0x00 0x23 0x0a (insgesamt 5 Bytes per Scan)

Option 2: **binäre Übertragung, Header unterdrücken, Daten komprimieren** 0x23 (1 Byte per Scan)

Serial Transmission

- No Serial Communication
- O ASCII Transmission
- O Suppress Clear Data
- O Binary Transmission
 - Suppress Clear Data
 - Suppress Header
 - Compress Data
- Abb. 40. Serielle Kommunikation -Optionen

the photoelectric specialist