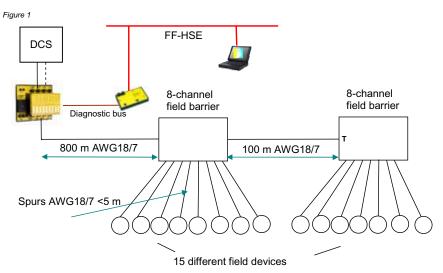


Examiner

R. Becker


Test laboratory

PR09016

page 1 of 4

Test setup:

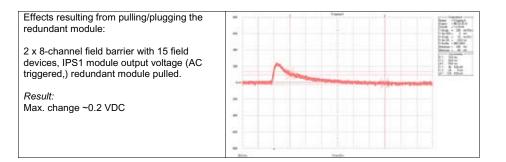
General scheme:

15 field devices of different manufacturers were mounted to the field barriers, the last channel of the second field barrier was left unassigned. The type of module rack used for the DPC-49 depends on the type of connection to the DCS. The DPC-49-4RMB/SY was used with redundant connection, whereas the DPC-49-4RMB was used with simple connection. The total current consumption of the segement was ~240 mA.

Implementation:

<u>Communication tests:</u> Tested control systems: Emerson DeltaV, V9.3 ABB Freelance, V9.1, redundant connection Honeywell Experion PKS, Release 310.1-65.28 Yokogawa CS3000, R3.08.50, redundant connection

15 field devices were fully operated at the above mentioned control systems and the communication was monitored for several days according to failure. The following cases of redundancy were additionally tested at the redundantly connected system: Failure of controller I/O card, wire-break of H1 cable between I/O card and DPC-49 rack and failure of IPS1module at DPC-49.


Result: No failures were observed, the DPC system worked properly on all control systems.

PR09016

Functional test: Output response

In addition to the communication tests, the electrical values of the IPS1 module were tested according to the manufacturer's specification. Moreover, the system was tested according to unwanted retroactive effects of the adjacent channels and the performance under high inrush currents.

Current/ voltage characteristic:	Strom-/Spannungkennlinie
Single IPS1 module with plugged redundant module. <i>Result:</i> Output voltage at 800 mA: 28.3 V DC Current limiting is activated at approx. 850 mA	28,00 28,00 28,00 20
Inrush current of single field barrier: Red: Output voltage Blue: Output current (voltage over 10 ohm)	
Single multibarriers MB48-T415/Ex in neutral, IPS1 module with redundant module.	
Result: Inrush current limited to max. ~890 mA. Output voltage drops to 7 VDC then increases again to 28.5 V. Duartion of process ~4 ms.	
Inrush current entire segment (figure 1):	in the loss
Red: Output voltage Blue: Output current (voltage over 10 ohm)	*** **********************************
2 x 8-channel field barrier with 11 field devices, IPS1 module with redundant module.	
Result: Inrush current limited to max. ~80 mA. Output voltage drops to ~20 VDC then increases immediately to 28.5 V.	
Retroactive effect on adjacent channel:	
2 x 8-channel field barrier with 15 field devices, IPS1 module with redundant module on channel 4; channel 3 short- circuited resp. IPS1 module pulled/plugged.	No measurable retroactive effects

Result:

The electrical output values as declared by the manufacturer are observed. High inrush currents are limited by the IPS1 modules, controlled start-up of connected fieldbus segement. No measurable cross-talk between the trunk outputs, single segment failures had no effect on the other segments. Replacing the redundant IPS1 module has only minor physical effects, any influence on the communication was not measurable.

Summary of results

The DPC-49 system showed good results. The rack structure allowing modules to be plugged flexibly is a very good solution. Smooth integration, operation and handling of the DPC system with all tested FF control systems, even in redundant operation mode. The diagnostic DTM delivers good results but still has potential for improvement with regard to operability and display of results. The hardware description and the operating manual of the diagnostic DTM are both very good.

EMC acc. to NE21 was passed.

Enclosure: NE21 protocol

BIS Prozesstechnik GmbH

NE21 (2008)

EMC-Report

MSR und Analysentechnik, Prüflabor Industriepark Höchst, D710 / C584 65926 Frankfurt

Company:	TURCK		Tester:	SEI	BIS Prozesstechnik GmbH
Device:	FF Power supply		Date:	KW 51_2009	Test laboratory
Туре:	DPC		Folder:		
Serial-Nr:	ADU 682035 0018 0046-	3, IPS1 690814	Output:	FF H1	
Test Setup:	Battery. System T		and HSE De	vice. Power supply	nsmitter at one Spur. Supply 24V vi ines separate applied.
4.1 Housing 4.1.1 Magne X] passed 100 A/m no magne	tic sensitive	parts	
	not applicable	passed 80-3000MHz, 10V/ (1000-1400MHz, 2		lz: informative)	no influence
	ostatic Discharge tested X not tested not applicable	passed <u>+3,0/+6,0kV (C.D.)</u> <u>+4,0/+8,0kV (A.D.)</u>			no influence no influence
4.2.1 RFI as	ymmetrical	cess. measurement] passed 0,15-80MHz, 10V, 0,010-0,150MHz, 1	80%AM		evel (ca.53 to 250kHz), no influence no influence
	ransients (Burst) tested X not tested not applicable	passed <u>+</u> 0,5/ <u>+</u> 1,0kV (15/30 <u>+</u> 0,5/ <u>+</u> 1,0kV (0,75		kHz)	no influence no influence
4.2.3 Surge X	tested X not tested not applicable] passed <u>+</u> 0,5/ <u>+</u> 1,0kV, je 5In	np's, 1/60s	light up of all C	DM LEDs at the power supply module no influen
4.3.1 RFI <u>,</u> as		puts passed	<u>4.4 AC ne</u> 4.4.1	twork inputs and c	outputs
	not tested not applicable	0,15-80MHz, 10V, 0,010-0,150MHz,			evel (ca.53 to 250kHz), no influence no influence
	ransients (Burst) tested X not tested not applicable	passed <u>+</u> 0,5/ <u>+</u> 1,0/ <u>+</u> 2,0kV	4.4.2 (15/300ms, 5 (0,75/300ms,		no influenc no influenc

EMC-Report

no influence

no influence

NE21 (2008) BIS Prozesstechnik GmbH MSR und Analysentechnik, Prüflabor Industriepark Höchst, D710 / C584 65926 Frankfurt H. Seintsch, Tel.: 069 305 2663 4.4.3 4.3.3 Surge X tested X passed not tested 4.3.3 - DC: <u>+0,5/+1,0kV</u>, je 5lmp'e, 1/60s 4.4.3 - AC: <u>+0,5/+1,0/+2,0kV</u>, je 5lmp'e, 1/60s not applicable 4.4.4 4.3.4 Supply voltage tolerances X tested X passed not tested 4.3.4 - DC: +20% v. U_N 4.4.4 - AC: +10/-15% v. U_N not applicable 4.3.5 Supply voltage variations 4.4.5 X tested X passed a) 100-0-100% v U_N not tested

Restart, Performance criteria B b) 100-40-100% v U_N not applicable Restart, Performance criteria B 4.3.7 Voltage interruption 4.4.6 X tested X passed not tested 100%-0% v U_N, 20ms no influence not applicable

4.5 Inrush current limitation X tested X passed 15*Î_{STAT}

4.6 Emissions

test X not not

not tested	I _{EIN} : <
not applicable	

ed	passed	
eu	passeu	
tested	(EN61326) → EN 55011	
applicable	. ,	

Test result: (NE 21:2008)

X NAMUR NE21 is passed NAMUR NE21 is partly passed NAMUR NE21 is not passed

Remarks

TURCK

Side 2of 2

DPC FF Power supply