

TURCK

Industri<mark>elle
Automation</mark>

BENUTZER-HANDBUCH RFID-SYSTEM

INBETRIEBNAHME IN PROFIBUS-DP

0 Zu diesem Handbuch

0.1	Dokumentationskonzept	-
	·	
0.2	Erklärungen zu den verwendeten Symbolen	2
0.3	Allgemeine Hinweise	3
0.3.1 0.3.2	Bestimmungsgemäßer GebrauchHinweise zur Projektierung/ Installation des Produktes	
1	Das TURCK-BL ident®-System	
1.1	BL ident® - Modulares RFID-System	2
1.1.1 1.1.2 1.1.3 1.1.4	BL ident® – Flexibilität für Ihre Anwendung, Sicherheit für Ihre Investition! BL ident® – Datenträger BL ident® – Schreib-Lese-Köpfe BL ident® – Interfaces - Interfaces für die Feldbusanbindung: Sets und Einzelkomponenten	
1.2	Schematische Darstellung des Identifikationssystems <i>BL ident</i> ®	8
1.2.1 1.2.2	Unterstützung für <i>BL ident</i> *-Projekte	8
1.3	Identifikationssysteme mit Radiofrequenztechnologie (RFID)	9
1.4	Leistungsmerkmale und Einsatzbereiche des <i>BL ident</i> ®-Systems	10
1.4.1	Schutzart	
1.4.2	Lebensdauer	
1.4.3 1.4.4	Übertragungsfrequenz	
1.4.4	Bauformen – Datenträger	
	- Schreib-Lese-Köpfe	
1.4.5	Speicherplatz	11
1.5	Nutzerdatenbereiche der Datenträgervarianten	12
1.5.1	Übersicht zu den HF-TURCK-Datenträgern	12
1.5.2	Übersicht zu den UHF-TURCK-Datenträgern	15
1.6	Schreib-/Lesezeit im Erfassungsbereich des HF-Schreib-Lese-Kopfes	1 <i>6</i>
1.6.1	EEPROM-I-Code-SL2-Datenträger	17
1.6.2	EEPROM-I-Code-SL1-Datenträger	
1.6.3	FRAM-Datenträger	21
1.7	Geschwindigkeit des Datenträgers zum Schreib-Lese-Kopf	23
1.7.1	Lesereichweite / Schreibreichweite	
1.7.2 1.7.3	BL ident®-Simulator für HF-RFID	24
1.7.3		
1.8	Kompatibilität	27
1.9	Einsatzbereiche (Beispiele):	2 7

2 Montage und Installation

2.1	Interfaces in der Schutzart IP20	3
2.1.1	Abbildungen und Ausführungen der Interface-Module	3
	- Standard-Module	
	- ECONOMY-Module	
2.1.2	Versorgungsspannung	5
	- Standard-Module	
	- ECONOMY-Module	6
2.1.3	Feldbusanschluss	7
	- Standard-Module	
	- ECONOMY-Module	
2.1.4	Adressierung	
	- Standard-Module	
0.4.5	- ECONOMY-Module	
2.1.5	Serviceschnittstelle	
21/	- Verbindung mit BL20-Kabel	
2.1.6	Anschlüsse der Schreib-Lese-Köpfe – Vorkonfektionierte Verbindungsleitungen	
	Verbindungsleitungen zur Montage einer Kupplung	
	 Anschlussklemmen bei Verwendung der Verbindungsleitungen RK4.5T und WK4.5T 	
	Anschlussklemmen bei Verwendung der Verbindungsleitungen FB4.5T und WR4.5T Anschlussklemmen bei Verwendung der Verbindungsleitungen FB4.5T	17 17
2.1.7	Diagnosen über LEDs	
2.1.7	- LEDs der Feldbusseite	
	– LEDs zu den RFID-Anschlüssen	
2.1.8	Diagnosemeldungen und Parametrierung des Gateways	
2.1.9	Parametrierung der BL20-2RFID-A/BL20-2RFID-S-Module	
	– BL20-2RFID-A	
	- BL20-2RFID-S	
	Diagnosemeldungen der <i>BL ident</i> [®] -Kanäle	
2.1.11	Technische Daten	
	- Zulassungen und Prüfungen des Interface-Moduls	
	- Standard-Gateway-Anschlussebene	
	- ECONOMY-Gateway-Anschlussebene	
	- Anschlussebene Schreib-Lese-Kopf	30
2.2	Interfaces in der Schutzart IP67	22
2.2.1	Abbildungen und Ausführungen der Interface-Module	
	- BL67-Module	32
	- BL67-Module - Prinzipschaltbild	
2 2 2	- BL compact-Module	
2.2.2	Versorgungsspannung	
	BL67-ModuleBL compact-Module	
2.2.3	Feldbusansschluss	
2.2.3	- M12-Busanschluss für BL67-Module und <i>BL compact</i> -Module	
	- Busabschluss für BL67-Module und <i>BL compact</i> -Module	
2.2.4	Adressierung	
	- BL67-Module	
	- BL compact-Module	
2.2.5	Service-Schnittstelle	
	- BL67-Module	
	- BL compact-Module	
2.2.6	Anschlüsse der Schreib-Lese-Köpfe für BL67-Module und BL compact-Module	42

	 Vorkonfektionierte Verbindungsleitungen mit Kupplung und Stecker 	
	- Vorkonfektionierte Verbindungsleitungen mit Kupplung	
	- Verbindungsleitungen zur Montage eines Steckers und einer Kupplung	45
	- Anschlussebene - Basismodul BL67-B-2M12	45
2.2.7	Diagnosen über LEDs	
	- BL67-Module - LEDs der Feldbusseite	47
	– BL67 – LEDs zu den RFID-Anschlüssen	51
	- BL compact-Module - Stations-LEDs	52
	- BL compact-Module - LEDs zu den RFID-Anschlüssen	53
2.2.8	Diagnosemeldungen und Parametrierung des BL67-Gateways	54
2.2.9	Parametrierung der BL67-2RFID-A/BL67-2RFID-S-Module	54
	– BL67-2RFID-A	54
	- BL67-2RFID-S	
2.2.10	Diagnosemeldungen der BL ident®-Kanäle	55
	Technische Daten	
	- BL67-Module - Zulassungen und Prüfungen des Interface-Modul	57
	- BL67-Module - Gateway-Anschlussebene	
	- BL67-Module - Anschlussebene Schreib-Lese-Kopf	
	- BL compact-Module	
3 I 3.1	Inbetriebnahme eines TURCK <i>BL ident</i> ®-Systems DPV1-Beispielinbetriebnahme für <i>BL ident</i> ® A-Module mit STEP7 und PIB	3
3.1.1 3.1.2	Hardwarebeschreibung des Beispielprojektes Speicherbedarf für eine <i>BL ident</i> ®-Inbetriebnahme	
3.1.2	- Grundspeicherbedarf	
	- Speicherbedarf pro PIB-Instanz (Kanal)	
	- Speicherbedarf für die Lese- und Schreibdaten	
3.1.3	Speicherbedarf für das Hardware-Beispiel	
3.1.4	Laden des Beispielprojektes und Download der aktuellen GSD-Datei	
3.1.5	Starten der S7-Software und Laden des Beispielprojektes	
3.1.6	Hardware-Konfiguration und E/A-Adressen	
3.1.7	Einrichten des Funktionsbausteins PIB	
3.1.7	– PIB Variablentabelle mit dem FB10	
	Beobachten und Steuern mit der Variablentabelle vartable_pibX	
	Aktivieren und Deaktivieren des Schreib-Lese-Kopfes über Konfigurationsdaten	
	- Initialisierung des 1. Kanals	
3.1.8	Lesen des UID vom Datenträger / Kanal 1	
3.1.9	Schreiben auf den Datenträger / Kanal 1	
	Lesen vom Datenträger / Kanal 1	
	Parameter	
5.1.11	- Überbrückungszeit Kx[n*4ms]	
	- Ermittlung des Parameterwertes "Ueberbrueckungszeit Kx[n*4ms]"	
	- Parameter "Betriebsart", "Datenträgertyp" und "Antikollision ein"	
	- Farameter "Detriebbart", "Datentragertyp" und "Antikombien en Finne	27
3.2	DPV0-Beispielinbetriebnahme für <i>BL ident</i> ® C-Module mit STEP7 und PIB	
3.2.1	Hardwarebeschreibung des Beispielprojektes	
3.2.2	Speicherbedarf für eine <i>BL ident</i> [®] -Inbetriebnahme	
	- Grundspeicherbedarf	
	- Speicherbedarf pro PIB-Instanz (Kanal)	
_	- Speicherbedarf für die Lese- und Schreibdaten	
3.2.3	Speicherbedarf für das Hardware-Beispiel	27
3.2.4	Laden des Beispielprojektes und Download der aktuellen GSD-Datei	27
3.2.5	Starten der S7-Software und Laden des Beispielprojektes	28

3.2.6	Hardware-Konfiguration und E/A-Adressen	
3.2.7	Einrichten des Funktionsbausteins PIB – PIB Variablentabelle mit dem FB10	
	Beobachten und Steuern mit der Variablentabelle vartable_pibX	
	Aktivieren und Deaktivieren des Schreib-Lese-Kopfes über Konfigurationsdaten	
	- Initialisierung des 1. Kanals	
3.2.8	Lesen des UID vom Datenträger / Kanal 1	
3.2.9	Schreiben auf den Datenträger / Kanal 1	
	Lesen vom Datenträger / Kanal 1	
3.3	Ablaufdiagramm zur Funktionsweise des PIB	44
3.4	Definitionen in der Befehls- und Diagnoseebene	45
3.4.1	Write-Config	
	– Beispiel für Konfigurationsdaten	
3.4.2	Read-Config	
3.4.3	Inventory	47
3.4.4	Physical_Read	47
3.4.5	Physical_Write	47
3.4.6	Mem-Status	47
3.4.7	Dev-Status	47
	- Beispiel:	
3.4.8	Next	
3.4.9	Get	
3.4.10	Weitere Befehle	49
3.5	Beispielinbetriebnahme für <i>BL ident</i> ® S-Module mit STEP7	
3.5.1	Hardwarebeschreibung des Beispielprojektes	
3.5.2	Download der aktuellen GSD-Datei	
3.5.3	Starten der STEP7-Software und Anlegen eines neuen Projektes	
3.5.4	Konfigurieren der Hardware	
3.5.5	Erstellen der Variablentabellen für die Prozessdaten	
3.5.6	Aktivieren des Schreib-Lese-Kopfes	
3.5.7 3.5.8	Initialisierung/RESET Kanal 1	
3.5.8	Lesen des UIDs vom Datenträger / Kanal 1	
	Lesen von dem Datenträger / Kanal 1	
	Fehlermeldungen über die Eingangsdaten	
	DPV1-Diagnose-Meldungen	
	Parametrierung	
3.6	Ablaufdiagramme zur Ausführung der Befehle - BL67-2RFID-S/BL20-2RFID-S-Module	65
3.7	Prozessabbild der BL67-2RFID-S/BL20-2RFID-S-Module	66
3.7.1	Prozess-Eingangsdaten	66
	- Bedeutung der Status-Bits	
3.7.2	Prozess-Ausgangsdaten	
	- Bedeutung der Befehls-Bits/Steuer-Bits	
3.7.3	Parameter	
	– Überbrückungszeit Kx[n*4ms]	
	 Ermittlung des Parameterwertes "Ueberbrueckungszeit Kx[n*4ms]" 75 	
	- Parameter "Betriebsart" und "Datenträgertyp"	
3.7.4	Diagnosen	77

3.8	Warnungen und Fehlermeldungen	.78
3.8.1	IEC-konforme Fehlermeldungen	. 81
3.9	Nutzerdatenbereiche der Datenträgervarianten	.85
3.9.1 3.9.2	Zugriff auf die Datenbereiche der Datenträger Übersicht zu den Turck Datenträgern	
3.10	Schreib-/Lesezeit im Erfassungsbereich des Schreib-Lese-Kopfes	.88
3.10.2	EEPROM-I-Code-SL2-Datenträger EEPROM-I-Code-SL1-Datenträger FRAM-Datenträger	. 91
4	Auszug aus der Spezifikation	
4.1	Allgemeines	2
4.1.1	Funktionsanforderungen – Allgemeine Anforderungen – Anforderungen durch die Verwendung von RFID-Systemen	2
4.2	Modellierung des Proxy-Ident-Blocks (PIB)	5
4.2.1 4.2.2 4.2.3	Grundsätze der Modellierung Allgemeines PIB-Modell Darstellung	5
4.3	Definition des Proxy-Ident-Blocks (PIB)	6
4.3.1	Parameter	
4.3.2	Fehler und Warnungen	
4.3.3 4.3.4	BefehleZeitliche Steuerung des PIB	
4.3.4	Zettilche Steuerung des PID	. 3 1
4.4	Kommunikation zwischen PIB und Gerät	
4.4.1	Datenzugriff im Feldgerät	
	- Allgemeines Gerätemodell	
	Block-Abbildung zum zyklischen PROFIBUS-DP DatentransferBlock-Abbildung zum azyklischen PROFIBUS-DP Datentransfer	
	- Definition des Identkanals	
4.5	Identifikations- & Wartungsfunktionen (I&M-Funktionen)	.36
4.5.1	PROFILE_ID	
4.5.2	Kanalbezogene Informationen	
4.6	Anhang A - Konformitätstabelle	.37
4.7	Anhang B - Elementare Datentypen dieser Spezifikation	.39
5 (Glossar	

Sicherheitshinweise!

Vor Beginn der Installationsarbeiten

- Gerät spannungsfrei schalten
- Gegen Wiedereinschalten sichern
- Spannungsfreiheit feststellen
- Erden und kurzschließen
- Benachbarte, unter Spannung stehende Teile abdecken oder abschranken.
- Die für das Gerät angegebenen Montagehinweise sind zu beachten.
- Nur entsprechend qualifiziertes Personal gemäß EN 50 110-1/-2 (VDE 0105 Teil 100) darf Eingriffe an diesem Gerät/System vornehmen.
- Achten Sie bei Installationsarbeiten darauf, dass Sie sich statisch entladen, bevor Sie das Gerät berühren.
- Die Funktionserde (FE) muss an die Schutzerde (PE) oder den Potentialausgleich angeschlossen werden. Die Ausführung dieser Verbindung liegt in der Verantwortung des Errichters.
- Anschluss- und Signalleitungen sind so zu installieren, dass induktive und kapazitive Einstreuungen keine Beeinträchtigung der Automatisierungsfunktionen verursachen.
- Einrichtungen der Automatisierungstechnik und deren Bedienelemente sind so einzubauen, dass sie gegen unbeabsichtigte Betätigung geschützt sind.
- Damit ein Leitungs- oder Aderbruch auf der Signalseite nicht zu undefinierten Zuständen in der Automatisierungseinrichtung führen kann, sind bei der E/A-Kopplung hard- und softwareseitig entsprechende Sicherheitsvorkehrungen zu treffen.
- Bei 24-Volt-Versorgung ist auf eine sichere elektrische Trennung der Kleinspannung zu achten. Es dürfen nur Netzgeräte verwendet werden, die die Forderungen der IEC 60 364-4-41 bzw. HD 384.4.41 S2 (VDE 0100 Teil 410) erfüllen.
- Schwankungen bzw. Abweichungen der Netzspannung vom Nennwert dürfen die in den technischen Daten angegebenen Toleranzgrenzen nicht überschreiten, andernfalls sind Funktionsausfälle und Gefahrenzustände nicht auszuschließen.
- NOT-AUS-Einrichtungen nach IEC/EN 60 204-1 müssen in allen Betriebsarten der Automatisierungseinrichtung wirksam bleiben. Entriegeln der NOT-AUS-Einrichtungen darf keinen Wiederanlauf bewirken.
- Einbaugeräte für Gehäuse oder Schränke dürfen nur im eingebauten Zustand, Tischgeräte oder Portables nur bei geschlossenem Gehäuse betrieben und bedient werden.
- Es sind Vorkehrungen zu treffen, dass nach Spannungseinbrüchen und -ausfällen ein unterbrochenes Programm ordnungsgemäß wieder aufgenommen werden kann. Dabei dürfen auch kurzzeitig keine gefährlichen Betriebszustände auftreten. Ggf. ist NOT-AUS zu erzwingen.
- An Orten, an denen in der Automatisierungseinrichtung auftretende Fehler Personen- oder Sachschäden verursachen können, müssen externe Vorkehrungen getroffen werden, die auch im Fehler- oder Störfall einen sicheren Betriebszustand gewährleisten beziehungsweise erzwingen (z. B. durch unabhängige Grenzwertschalter, mechanische Verriegelungen usw.).
- Die elektrische Installation ist nach den einschlägigen Vorschriften durchzuführen (z. B. Leitungsquerschnitte, Absicherungen, Schutzleiteranbindung).
- Alle Arbeiten zum Transport, zur Installation, zur Inbetriebnahme und zur Instandhaltung dürfen nur von qualifiziertem Fachpersonal durchgeführt werden. (IEC 60 364 bzw. HD 384 oder DIN VDE 0100 und nationale Unfallverhütungsvorschriften beachten).
- Während des Betriebes sind alle Abdeckungen und Türen geschlossen zu halten.

D101578 1209 - *BL ident*® vii

0 Zu diesem Handbuch

0.1	Dokumentationskonzept	2
0.2	Erklärungen zu den verwendeten Symbolen	2
0.3	Allgemeine Hinweise	3
0.3.1	Bestimmungsgemäßer Gebrauch	3
0.3.7	Hinweise zur Proiektierung/ Installation des Produktes	3

0.1 Dokumentationskonzept

Im ersten Kapitel dieses Handbuch bekommen Sie einen Überblick zu dem TURCK *BL ident* [®]-System.

Das zweite Kapitel liefert alle Informationen für die Montage und Installation.

Das dritte Kapitel enthält im ersten Teil eine Anleitung zur Inbetriebnahme eines *BL ident* [®]-Systems unter Verwendung des Standard-Funktionsbausteins "Proxy Ident Function Block". Im zweiten Teil wird eine Anleitung zur Inbetriebnahme der Interface-Module mit dem Zusatz "-S" dargestellt. Die beispielhaften Inbetriebnahmen erfolgen auf einer SIMATIC S7/-300 Station (Siemens). Es wird die SIMATIC Basissoftware STEP 7 eingesetzt.

Das vierte Kapitel enthält einen Auszug aus der Spezifikation zum "Proxy Ident Function Block" übersetzt in die deutsche Sprache.

0.2 Erklärungen zu den verwendeten Symbolen

Gefahr

Dieses Zeichen steht neben Warnhinweisen, die auf eine Gefahrenquelle hindeuten. Dies kann sich auf Personenschäden und auf Beschädigungen der Systeme (Hardund Software) beziehen.

Für den Anwender bedeutet dieses Zeichen: Gehen Sie mit ganz besonderer Vorsicht zu Werke.

Achtung

Dieses Zeichen steht neben Warnhinweisen, die auf eine potenzielle Gefahrenquelle hindeuten.

Dies kann sich auf mögliche Personenschäden und auf Beschädigungen der Systeme (Hard- und Software) und Anlagen beziehen.

Hinweis

Dieses Zeichen steht neben allgemeinen Hinweisen, die auf wichtige Informationen zum Vorgehen hinsichtlich eines oder mehrerer Arbeitsschritte deuten.

Die betreffenden Hinweise können die Arbeit erleichtern und zum Beispiel helfen, Mehrarbeit durch falsches Vorgehen zu vermeiden.

0-2 D101578 1209 - BL ident®

0.3 Allgemeine Hinweise

Achtung

Diesen Abschnitt sollten Sie auf jeden Fall lesen, da die Sicherheit im Umgang mit elektrischen Geräten nicht dem Zufall überlassen werden darf.

Dieses Handbuch enthält die erforderlichen Informationen für die Inbetriebnahme des TURCK *BL ident* [®]-Systems.

Es wurde speziell für qualifiziertes Personal mit dem nötigen Fachwissen konzipiert.

0.3.1 Bestimmungsgemäßer Gebrauch

Gefahr

Die in diesem Handbuch beschriebenen Geräte dürfen nur für die in diesem Handbuch und in der jeweiligen technischen Beschreibung vorgesehenen Einsatzfälle und nur in Verbindung mit zertifizierten Fremdgeräten und -komponenten verwendet werden.

Der einwandfreie und sichere Betrieb der Geräte setzt sachgemäßen Transport, sachgerechte Lagerung, Aufstellung und Montage sowie sorgfältige Bedienung und Wartung voraus.

0.3.2 Hinweise zur Projektierung/ Installation des Produktes

Gefahr

Die für den jeweiligen Einsatzfall geltenden Sicherheits- und Unfallverhütungsvorschriften sind unbedingt zu beachten.

D101578 1209 - BL ident®

Zu diesem Handbuch

1 Das TURCK-BL ident®-System

1.1	BL ident® - Modulares RFID-System	2
1.1.1	BL ident® – Flexibilität für Ihre Anwendung, Sicherheit für Ihre Investition!	2
1.1.2	BL ident® – Datenträger	
1.1.3	BL ident® – Schreib-Lese-Köpfe	
1.1.4	BL ident® – Interfaces – Interfaces für die Feldbusanbindung: Sets und Einzelkomponenten	
	- Interfaces for the Felabusanbindung: Sets und Einzerkomponenten	4
1.2	Schematische Darstellung des Identifikationssystems BL ident®	9
1.2.1	Unterstützung für <i>BL ident</i> *- Projekte	9
1.2.2	Vernetzung mit BL ident®-Systemen	10
1.3	Identifikationssysteme mit Radiofrequenztechnologie (RFID)	10
1.4	Leistungsmerkmale und Einsatzbereiche des <i>BL ident®</i> -Systems	11
1.4.1	Schutzart	
1.4.2	Lebensdauer	
1.4.3	Übertragungsfrequenz	
1.4.4	Bauformen	
	DatenträgerSchreib-Lese-Köpfe	
1.4.5	Speicherplatz	
1.5	Nutzerdatenbereiche der Datenträgervarianten	13
1.5.1	Übersicht zu den HF-TURCK-Datenträgern	
1.5.1	Übersicht zu den UHF-TURCK-Datenträgern	
1.6	Schreib-/Lesezeit im Erfassungsbereich des HF-Schreib-Lese-Kopfes	17
1.6.1	EEPROM-I-Code-SL2-Datenträger	
1.6.2	EEPROM-I-Code-SL1-Datenträger	
1.6.3	FRAM-Datenträger	22
1.7	Geschwindigkeit des Datenträgers zum Schreib-Lese-Kopf bei HF-RFID-Systemen	24
1.7.1	Lesereichweite / Schreibreichweite	
1.7.2	BL ident®-Simulator für HF-RFID	
1.7.3	BL ident®-Simulator für UHF-RFID (Ray-Tracer)	27
1.8	Kompatibilität	29
1.9	Einsatzbereiche (Beispiele):	29

1.1 BL ident® - Modulares RFID-System

BL ident[®] ist ein RFID-Komplettsystem, das seine besonderen Stärken vor allem auch in industrieller Umgebung zeigt. Basis des modular aufgebauten Systems sind die I/O-Systeme BL67 (Feldmontage) und BL20 (Schaltschrankmontage) bzw. die kompakten Feldbusmodule BL compact (Feldmontage).

Jedes *BL ident®*-System lässt sich flexibel aus Datenträgern, Schreib-Lese-Köpfen, Verbindungstechnik und Interfaces (Gateway und RFID-I/O-Module) zu einer maßgeschneiderten RFID-Lösung zusammenstellen.

Zur Auswahl stehen nicht nur extrem schnelle, nahezu unbegrenzt beschreibbare FRAM-Datenträger, sondern auch Hochtemperatur-Varianten bis 210 °C, die z. B. in Lackierstraßen eingesetzt werden können.

Ein weiteres Feature: *BL ident*[®] lässt sich problemlos in bestehende Anlagenkonfigurationen integrieren.

1.1.1 BL ident® - Flexibilität für Ihre Anwendung, Sicherheit für Ihre Investition!

Das RFID-System *BL ident®* sorgt in allen Ebenen für die Flexibilität, die Sie für Ihre Anwendung brauchen: Von der Auswahl der Datenträger über die Schreib-Lese-Köpfe bis zur Ankopplung an die Steuerungsebene: Sie haben immer die Möglichkeit, das System perfekt zu konfigurieren und an Ihre spezielle Aufgabenstellung anzupassen.

BL ident[®] ist zukunftssicher und interoperabel durch internationale, weltweit gültige Standards. Dadurch erreichen Sie höchsten Investitionsschutz.

1.1.2 BL ident® – Datenträger

- Besonders kleine Bauformen (Ø 7,5 mm bei HF)
- EEPROM-Datenträger für hohe Stückzahlen
- FRAM-Datenträger für hohe Geschwindigkeiten und viele Schreibzyklen
- Hochtemperaturdatenträger zur durchgängigen Prozesskontrolle bei -40...+210 °C
- Autoklaven-Datenträger zum Einsatz bei unter Druck stehendem, 121 °C heißem Wasserdampf
- Direkte Montage auf Metall
- Offene und weltweit gültige Standards (ISO 15693 und ISO 18000-6C)

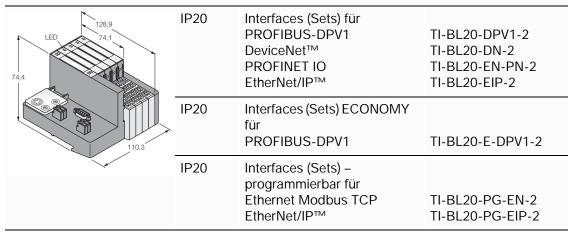
1.1.3 BL ident® - Schreib-Lese-Köpfe

- Industriegerechtes und robustes Design
- Vollvergossene Schreib-Lese-Köpfe (HF)
- Schreib-Lese-Reichweiten bis zu 500 mm (HF) oder mehrere Meter (UHF)
- Einsatz in Lebensmittelapplikationen, Wash-Down (IP69K)

1.1.4 BL ident® - Interfaces

- Modulares Konzept (BL20 und BL67) mit bis zu 16 Kanälen pro Gateway
- *BL ident*® zur Montage im Schaltschrank
- BL67 zur Montage direkt im Feld
- BL compact zur Montage direkt im Feld (z.T. mit integrierten I/Os)
- Leitungslänge zum Schreib-Lese-Kopf bis zu 50 m
- Gemischter Betrieb von HF- und UHF-Schreib-Lese-Köpfen an den selben Interfacemodulen möglich
- Vielfältige und einfache Feldbusankopplungen (PROFIBUS-DP, DeviceNet™, CANopen, PROFINET IO, Ethernet Modbus TCP, EtherNet/IP™)
- Programmierbare Gateways für dezentrale und autarke Steuerungsaufgaben
- Zusätzliche Integration von I/O-Modulen auf gleichem Gateway bzw. Busknoten
- Module für platzsparende und einfache Montage im Feld (BL compact)

Interfaces für die Feldbusanbindung: Sets und Einzelkomponenten


Für den Anschluss an den Feldbus stehen Interfaces als komplette Sets zur Verfügung. Ein bestehendes Set kann auch nachträglich mit zusätzlichen Kanälen erweitert werden (für je zwei Kanäle wird ein Elektronik- und ein Basismodul benötigt).

Maximal können bei den Interfaces 8 Kanäle bestückt werden; bei den Interfaces mit einfacher I/O-Kommunikation sind – abhängig vom Feldbustyp – maximal 16 Kanäle möglich.

Table 1:
Erweite-
rungen und
Interfaces in
IP20

Abmessungen/ Gehäuselänge	Schutz- art	Beschreibung	Typenbezeichnung
128,9	IP20	BL20-Basismodul	BL20-S4T-SBBS
74,1 55,4 12,6	IP20	RFID-Elektronikmodul zur Verwendung mit Funktionsbaustein bzw. mit programmierbarem Gateway für PROFIBUS- DPV1, DeviceNet™, PROFINET IO, Ethernet Modbus TCP, EtherNet/IP™	BL20-2RFID-A

Interfaces in 2-, 4-, 6- und 8-kanaliger Ausführung erhältlich (die letzte Ziffer in der Typenbezeichnung bezeichnet die Kanalanzahl; als Beispiel hier nur die 2-kanaligen Versionen)

1-4 D101578 1209 - *BL ident*®

Table 2: Erweite- rungen und Interfaces in IP20 für einfache Kommunikati on	Abmessungen/ Gehäuselänge	Schutz- art	Beschreibung	Typenbezeichnung
	128,9	IP20	BL20-Basismodul	BL20-S4T-SBBS
	74,1 55,4 12,6	IP20	RFID-Elektronikmodul für einfache I/O- Kommunikation	BL20-2RFID-S

Interfaces in 2-, 4-, 6- und 8-kanaliger Ausführung erhältlich (die letzte Ziffer in der Typenbezeichnung bezeichnet die Kanalanzahl; als Beispiel hier nur die 2-kanaligen Versionen)

128,9 74,1	IP20	Interfaces (Sets) für einfache Kommunikation PROFIBUS-DPV1 DeviceNet™ Ethernet Modbus TCP PROFINET IO EtherNet/IP™	TI-BL20-DPV1-S-2 TI-BL20-DN-S-2 TI-BL20-EN-S-2 TI-BL20-EN-PN-S-2 TI-BL20-EIP-S-2
110,3	IP20	Interfaces (Sets) ECONOMY für einfache Kommunikation PROFIBUS-DPV1 DeviceNet™ CANopen	TI-BL20-E-DPV1-S-2 TI-BL20-E-EN-S-2 TI-BL20-E-EIP-S-2
	IP20	Interfaces (Sets) – programmierbar für Ethernet Modbus TCP EtherNet/IP™	TI-BL20-PG-EN-S-2 TI-BL20-PG-EIP-S-2

Table 3: Erweite- rungen und Interfaces in IP67	Abmessungen/ Gehäuselänge	Schutz- art	Beschreibung	Typenbezeichnung		
		IP67	BL20-Basismodul	BL67-B-2M12		
	77.5 P91	IP67	RFID-Elektronikmodul zur Verwendung mit Funktionsbaustein bzw. mit programmierbarem Gateway für PROFIBUS- DPV1, DeviceNet™, PROFINET IO, Ethernet Modbus TCP, EtherNet/IP™	BL67-2RFID-A		
	Interfaces in 2-, 4-, 6- und 8-kanaliger Ausführung erhältlich (die letzte Ziffer in der Typenbezeichnung bezeichnet die Kanalanzahl; als Beispiel hier nur die 2-kanaligen Versionen)					
	77.5 LED 13	IP67	Interfaces (Sets) für PROFIBUS-DPV1 DeviceNet™ PROFINET IO EtherNet/IP™	TI-BL67-DPV1-2 TI-BL67-DN-2 TI-BL67-EN-PN-2 TI-BL67-EIP-2		
		IP67	Interfaces (Sets) – programmierbar für PROFIBUS-DP Ethernet Modbus TCP EtherNet/IP™	TI-BL67-PG-DP-2 TI-BL67-PG-EN-2 TI-BL67-PG-EIP-2		

D101578 1209 - BL ident® 1-6

Table 4: Erweiterungen und Interfaces in IP67 für einfache Kommunikation

Abmessungen/ Gehäuselänge	Schutz- art	Beschreibung	Typenbezeichnung
	IP67	BL20-Basismodul	BL67-B-2M12
32 LED 77.5 145	IP67	RFID-Elektronikmodul für einfache I/O- Kommunikation	BL67-2RFID-S

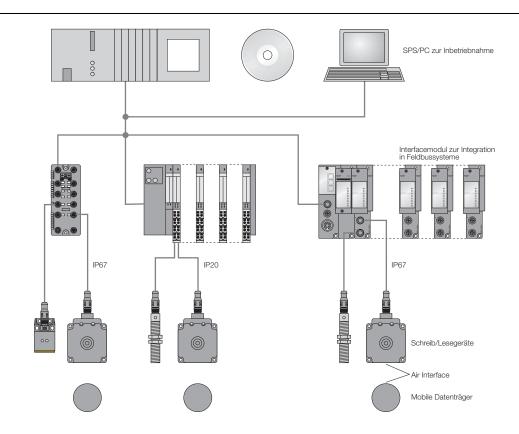
Interfaces in 2-, 4-, 6- und 8-kanaliger Ausführung erhältlich (die letzte Ziffer in der Typenbezeichnung bezeichnet die Kanalanzahl; als Beispiel hier nur die 2-kanaligen Versionen)

77.5 77.5 145	IP67	Interfaces (Sets) für einfache Kommunikation PROFIBUS-DPV1 DeviceNet™ PROFINET IO EtherNet/IP™ Ethernet Modbus TCP Modbus TCP-Slave mit DeviceNet™-Master EtherNet/IP™-Slave mit DeviceNet™-Master	TI-BL67-DPV1-S-2 TI-BL67-DN-S-2 TI-BL67-EN-PN-S-2 TI-BL67-EIP-S-2 TI-BL67-EN-DN-S-2 TI-BL67-EN-IP-DN-S-2
	IP67	Interfaces (Sets) für einfache Kommunikation, programmierbar für PROFIBUS-DP Ethernet Modbus TCP EtherNet/IP™	TI-BL67-PG-DP-S-2 TI-BL67-PG-EN-S-2 TI-BL67-PG-EIP-S-2

Kompakte Feldbusstationen mit Interfaces zur Feldbusanbindung

Die Interfaces der kompakten Feldbusstationen *BL compact* sind 2-kanalig ausgeführt und verfügen z.T. außerdem über integrierte konfigurierbare, digitale I/Os.

Table 5: BL compact – Kompakte Feldbus- stationen mit RFID- Interface in IP67	Abmessungen/ Gehäuselänge	Schutz- art	Beschreibung	Typenbezeichnung
	44,5 1 32,5 1 71 102 113	IP67	Kompakte Feldbusstation für PROFIBUS-DP (BL compact, Advanced RFID Interface = azyklischer Datenaustausch)	BLCDP-2M12MT- 2RFID-A
		IP67	Kompakte Feldbusstation für PROFIBUS-DP (BL compact, Simple RFID Interface = einfache Kommunikation)	BLCDP-2M12MT- 2RFID-S
	44,5 32,5 71 157 168	IP67	Kompakte Feldbusstation für PROFIBUS-DP (BL compact, Simple RFID Interface = einfache I/O- Kommunikation und 8 digitale Eingänge(Ausgänge, konfigurierbar, PNP mit Diagnosefunktion)	BLCDP-6M12LT- 2RFID-S-8XSG-PD
	44,5 32,5 71 82 93	IP67	Kompakte Feldbusstation fürDeviceNet™ (BL compact,Simple RFID Interface = einfache I/O- Kommunikation)	BLCDN-2M12S- 2RFID-S


1-8 D101578 1209 - *BL ident*®

1.2 Schematische Darstellung des Identifikationssystems BL ident®

Das TURCK *BL ident* [®]-System besteht aus mehreren Ebenen. Jede Ebene bietet Variationsmöglichkeiten. Eine dem Gesamtsystem angepasste Applikation ist möglich.

Abbildung 1: Systemübersicht

1.2.1 Unterstützung für BL ident [®]-Projekte

Bei der Projektierung, Installation und Inbetriebnahme finden Sie weitere Unterstützung durch die folgende Software und die folgenden Dokumente:

- Zur Simulation und Optimierung einer Applikation steht im Internet unter http://www.turck.com... ein "BL ident [®]-Simulator" kostenlos zur Verfügung.
- D101580 "Interface-Module zum Feldbusanschluss". Dieses Handbuch beschreibt den fachgerechten Betrieb von *BL ident* [®]-Interface-Modulen.
- D101606 Dieses Handbuch beinhaltet eine Softwarebeschreibung zu einem sogenannten "Handheld" (Programmiergerät), mit dem sich Daten ortsunabhängig auslesen und schreiben lassen.
- D101584 Dieses Handbuch umfasst eine Hardwarebeschreibung zu einem sogenannten "Handheld" (Programmiergerät), mit dem sich Daten ortsunabhängig auslesen und schreiben lassen.
- D101639 "Inbetriebnahme mit der CoDeSys für programmierbare Gateways"
- D101641 "Inbetriebnahme mit DeviceNetTM"
- D101643 "Inbetriebnahme mit EtherNet/IPTM"
- D101647 "Inbetriebnahme in PROFINET"

Die aufgeführten Handbücher stehen im Internet zum Download zur Verfügung.

D101578 1209 - *BL ident*[®]

1.2.2 Vernetzung mit BL ident @-Systemen

Aufgrund der Möglichkeit, *BL ident* *-Systeme in (bestehende) Bussysteme zu integrieren, kann eine Vernetzung mehrerer *BL ident* *-Systeme stattfinden.

Es gelten die Richtlinien zum Maximalausbau des jeweils eingesetzten Bussystems.

Ein PROFIBUS-DP-System kann ohne Repeater z. B. maximal 31 Stationen und einen Master umfassen.

1.3 Identifikationssysteme mit Radiofrequenztechnologie (RFID)

RFID ist die Abkürzung für Funkidentifikation (Radio Frequency Identification).

Ein RFID-System besteht aus einem Datenträger, einem Gerät zum Auslesen und Beschreiben des Datenträgers sowie weiteren Geräten, die die Übertragung und Verarbeitung der Daten leisten.

Die Übertragung der Daten von dem Datenträger zu dem Schreib-Lese-Kopf erfolgt berührungslos mittels elektromagnetischer Wellen. Diese Art der Übertragung ist unempfindlich gegenüber mechanischen Verschmutzungen und Temperaturschwankungen.

Die Datenträger können direkt an einem Objekt befestigt sein. Aus diesem Grund wird auch die Bezeichnung "Mobiler Datenspeicher" verwendet. Weitere Begriffe für den Datenträger sind TAG oder Transponder. Der Dateninhalt kann aus Produktions- und Fertigungsdaten bestehen. Wichtig sind dabei diejenigen Daten, die das Produkt identifizieren. Daher kommt die Bezeichnung "Identifikations-System".

Weiter reichende Möglichkeiten ergeben sich dadurch, dass der Dateninhalt durch Schreiben auf den Datenträger verändert werden kann. Hierdurch können Produktions-/ Fertigungsprozesse nachvollzogen werden. Logistik/ Distribution können optimiert werden.

Die "Identifikations-Systeme" können in (bestehende) Feldbus-Automatisierungssysteme (z. B. PROFIBUS-DP) eingebunden werden. Die Anbindung an das jeweilige Feldbussystem erfolgt mit geeigneten Interface-Modulen.

Standardisierte Softwarebausteine (z. B. der Proxy Ident Function Block für PROFIBUS-DP) ermöglichen eine einfache Systemintegration und Inbetriebnahme.

1.4 Leistungsmerkmale und Einsatzbereiche des BL ident®-Systems

Um den Anforderungen in unterschiedlichen Anwendungsgebieten gerecht zu werden, bietet das TURCK *BL ident* **-System zahlreiche Kombinationsmöglichkeiten von Datenträgern und Schreib-Lese-Köpfen sowie Interface-Modulen zur Anbindung an Automatisierungssysteme (z. B. PROFIBUS-DP). Software-Bausteine ermöglichen eine einfache Integration und Inbetriebnahme.

Im Folgenden werden die Leistungsmerkmale des TURCK BL ident®-Systems aufgeführt:

1.4.1 Schutzart

Einige Datenträger sowie die passenden Schreib-Lese-Köpfe weisen eine hohe mechanische Schutzart (z. B. **IP67**) auf und können damit auch unter rauesten industriellen Bedingungen eingesetzt werden.

Die Schreib-Lese-Köpfe sind auch in IP69K verfügbar (Wash-Down-Ausführung).

Die Anbindung an ein Feldbussystem wird mit geeigneten TURCK Interface-Modulen realisiert. Die Interface-Module für CANopen sind in der Schutzart IP20 erhältlich. TURCK Verbindungskabel in geeigneter Schutzart komplettieren das Identifikationssystem.

Temperaturfeste Datenträger bis 210°C stehen für den Hochtemperaturbereich zur Verfügung.

1.4.2 Lebensdauer

Die Lebensdauer ergibt sich aus den möglichen Lese-/Schreiboperationen auf den Datenträgern.

FRAM Datenträger können eine **unbegrenzte** Anzahl an Leseoperationen und 10¹⁰ Schreiboperationen gewährleisten.

EEPROM Datenträger können eine **unbegrenzte** Anzahl an Leseoperationen und 10⁴ oder 10⁵ Schreiboperationen gewährleisten.

Die Datenträger benötigen keine Batterien.

1.4.3 Übertragungsfrequenz

Das TURCK *BL ident* *-System arbeitet mit einer Übertragungsfrequenz von 13,56 MHz im HF-Band oder mit einer länderspezifischen Übertragungsfrequenz im UHF-Bereich (860-960 MHz) zwischen den Datenträgern und den Schreib-Lese-Köpfen.

HF: Systeme, die mit dieser Übertragungsfrequenz arbeiten sind weitgehend unempfindlich gegen elektromagnetische Störungen. Die 13,56 MHz-Übertragungsfrequenz hat sich daher in vielen RFID-Einsatzbereichen zum Standard entwickelt.

UHF: Systeme in diesem Frequenzband erzielen höhere Schreib-Lese-Reichweiten als bei HF, typischerweise mehrere Meter. Die Trägerfrequenzen sind länderspezifisch und liegen in Europa beispielsweise zwischen 865 und 868 MHz.

D101578 1209 - *BL ident*[®]

1.4.4 Bauformen

Datenträger

HF: Für die HF-Arbeitsfrequenz liefert TURCK runde, flache Datenträger z. B. mit den Durchmessern 16, 20, 30 und 50 mm.

Die Hochtemperaturdatenträger haben eine zylindrische Bauform (z. B. 22 x 125 mm).

Inlavs und Aufkleber haben Folienstärke (Größe z. B. 43 x 43 mm).

Spezielle Bauformen sind zum Einbau in und auf Metall geeignet. Weitere Ausführungen sind Datenträger in einem Glaszylindergehäuse oder als flaches Scheckkartenformat. Einige Datenträger haben Löcher, damit sie festgeschraubt werden können.

UHF: Datenträger für UHF haben unterschiedliche Bauformen und Befestigungsmöglichkeiten und sind entweder für geringe Gehäuseabmessungen oder große Datenübertragungsreichweiten optimiert. Datenträger in hoher Schutzart, auch für den Außeneinsatz, sind verfügbar, genauso wie Datenträger zur direkten Montage auf Metall oder bedruckbare Etiketten.

Auf Anfrage liefert TURCK kundenspezifische Datenträger-Lösungen.

Schreib-Lese-Köpfe

HF: Die Schreib-Lese-Köpfe sind in unterschiedlichen Bauformen erhältlich, von Normgewinden M18 und M30, über Quaderbauformen Q14, CK40, Q80, S32XL bis hin zu Q80L400 und Q350 für hohe Reichweiten bis zu 500 mm.

UHF: Es sind unterschiedliche Quaderbauformen erhältlich, zum Beispiel als kompakter Schreib-Lese-Kopf im Gehäuse mit ca. 110 mm oder 240 mm Kantenlänge für hohe Datenübertragungsreichweiten von bis zu mehreren Metern.

1.4.5 Speicherplatz

Die Speicherkapazität der Datenträger für den HF-Bereich beträgt 64 oder 128 Byte (48 oder 112 Byte Nutzdaten) mit einem EEPROM-Speicher und 2 oder 8 KByte (2000 oder 8000 Byte Nutzdaten) mit einem FRAM-Speicher.

Für den UHF-Bereich stehen EEPROM-Datenträger mit bis zu 110 Byte (94 Byte Nutzdaten) zur Verfügung.

FRAM: (Ferroelectric Random Access Memory), nichtflüchtig, höhere Lebensdauer durch höhere Anzahl der Lese-/Schreiboperationen und schnellere Schreiboperationen als EEPROM.

EEPROM: (Electrically eraseable programmable read only memory), nichtflüchtig.

Die Datenträger für die HF-Arbeitsfrequenz erfüllen den Kommunikationsstandard ISO 15693.

Die Datenträger im UHF-Frequenzband erfüllen den Kommunikationsstandard ISO 18000-6C und EPCglobal Class 1 Gen 2.

1.5 Nutzerdatenbereiche der Datenträgervarianten

1.5.1 Übersicht zu den HF-TURCK-Datenträgern

Die HF-Datenträger vom Typ **I-Code SL2** sind ab der Bytenummer 0 bis Bytenummer 111 beschreibbar und lesbar.

Die Tabelle "Datenaufbau der I-Code SL2-Datenträger" Seite 1-13 beschreibt den Datenaufbau der Datenträger:

- TW-I14-B128
- TW-L43-43-F-B128
- TW-L82-49-P-B128
- TW-R16-B128
- TW-R20-B128
- TW-R30-B128
- TW-R50-B128
- TW-R50-90-HT-B128
- ____

Table 6: Datenaufbau der I-Code SL2- Datenträger	Bytenummer (StartAddress)	Inhalt	Zugriff	Blocknummer (ein Block umfasst 4 Byte)
	-16 bis -9	UID	Read only	-4 bis -3
	-8 bis -5	Informationen zum Tag	Read only über spezielle Kommandos	-2
	-4 bis-1	Bedingungen für den Schreibzugriff		-1
	0 bis 111	Nutzerdatenbereich	Read / write	0 bis 27

D101578 1209 - BL ident®

Die HF-Datenträger vom Typ **I-Code SL1** sind ab der Bytenummer 18 bis Bytenummer 63 beschreibbar und lesbar.

Die Tabelle "Datenaufbau der I-Code SL1-Datenträger" Seite 1-14 beschreibt den Datenaufbau der Datenträger:

- TW-R16-B64
- TW-R22-HT-B64
- ____

18 bis 63

Table 7: Datenaufbau der I-Code SL1- Datenträger	Bytenummer (StartAddress)	Inhalt	Zugriff	Blocknummer (ein Block umfasst 4 Byte)
	0 bis 7	UID	Read only	0 bis1
	8 bis 11	Bedingungen für den Schreibzugriff	Read only über spezielles Kommando	2
	12 bis 15	Spezialfunktionen (z. B. EAS / QUIET)	Read / write über spezielle Kommandos	3/4
	16	family code		
	17	application identifier		

Nutzerdatenbereich

Read / write

4/5 bis 15

Die HF-Datenträger vom Typ **FRAM** sind ab der Bytenummer 0 bis Bytenummer 1999 beschreibbar und lesbar.

Die Tabelle "Datenaufbau der FRAM-Datenträger" Seite 1-15 beschreibt den Datenaufbau der Datenträger:

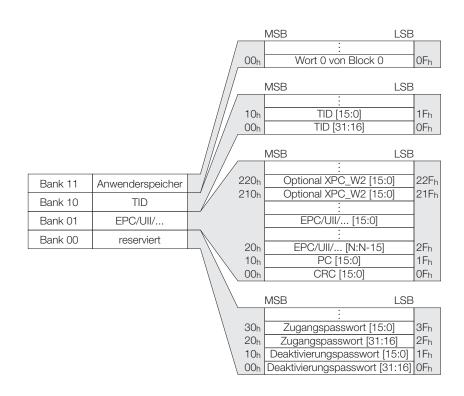
- TW-R20-K2
- TW-R30-K2
- TW-R50-K2
- TW-R50-90-HT-K2

Table 8: Datenaufbau der FRAM- Datenträger	Bytenummer (StartAddress)	Inhalt	Zugriff	Blocknummer (ein Block umfasst 8 Byte)
	0 bis 1999	Nutzerdatenbereich	Read / write	0 bis 249
	2000 bis 2007	UID	Read only über	250
	2008 bis 2015	AFI, DSFID, EAS	Read / write (mit Einschränkungen) über spezielles Kommando	251
	2016 bis 2047	Spezialfunktionen (z. B. EAS / QUIET)	Read only über spezielles Kommando	252 bis 255

Die HF-Datenträger vom Typ **FRAM** sind ab der Bytenummer 0 bis Bytenummer 7935 beschreibbar und lesbar.

■ TW-R50-K8

Der Datenträger verfügt über 248 Blöcke (00Hex bis F7Hex) mit jeweils 32 Byte


D101578 1209 - BL ident®

1.5.2 Übersicht zu den UHF-TURCK-Datenträgern

Die UHF-Datenträger-Speicher-Hierchie ist in vier logische Bänke gem. ISO 18000-6C eingeteilt und kann mehrere Blöcke aufnehmen:

- Reservierter Bereich: Diese Bank enthält die Passwörter für den Speicherzugang und zum Löschen des Speichers. Die Passwörter zum Löschen sind in den Speicheradressen 00hex bis 1Fhex abgelegt. Die Passwörter für den Zugang sind in den Speicheradressen 20hex bis 3Fhex abgelegt. Der Speicherzugriff erfolgt über gesonderte Protokollbefehle.
- EPC (Elektronischer Produktcode) oder UII (Unique Item Identifier): Diese Bank enthält die wesentlichen Identifikationsdaten des Transponders und ist byte-orientiert. Die TAG's werden anhand der ersten acht Byte des Datenbereichs, also von Adresse 0x0004 bis 0x000C unterschieden. Damit ist später im Einsatz eine eindeutige Identifikation gegeben. Im ersten Wort stehen Passwörter (Adresse 0x0000). Der CRC steht im zweiten Wort. Dieser hat die Adresse 0x0002. Der Datenbereich des EPC's beginnt bei der Adresse 0x0004. Die Umschaltung der Bereiche funktioniert bei S- und A-Modul über verschiedene Mechanismen. Beim S-Modul funktioniert das Umschalten der Adressen über die Domains. Domain UHF-Tags: 0: passwords/reserved , 1: file EPC, 2: TID, 3: user memory; bei dem A-Modul werden die verschiedenen Bereiche über den erweiterten Adressraum angesprochen
- TID (Datenträger-Identifizierung): Diese Bank enthält zu einem eine 2-Byte-Serienummer gem. ISO/IEC 15963 in den Speicheradressen 0x0000 bis 0x0007. Ein weitergehender Bereich zur vollständigen Identifizierung steht ab der Speicheradresse 0x0007 zur Verfügung. Je nach Datenträger kann diese Speicherbank bis zu 62 Byte groß sein. Sie wird bei der Herstellung des Datenträgers zunächst beschrieben und anschließend mit einem Schreibschutz versehen. Diese Bank kann durch Auslesen für eine eindeutige Identifizierung des Datenträgers verwendet werden.
- Anwenderbereich: Diese Bank ist optional und enthält einen unterschiedlich großen Speicherbereich zum freien anwenderspezifischen Einsatz..

Abbildung 2: UHF-Datenträger-Speicher-Hierchie

D101578 1209 - BL ident®

1.6 Schreib-/Lesezeit im Erfassungsbereich des HF-Schreib-Lese-Kopfes

Die Zeit, die sich der Datenträger im Erfassungsbereich des Schreib-Lese-Kopfes befinden muss, damit alle erforderlichen Daten sicher gelesen und geschrieben werden können, hängt von den folgenden Faktoren ab:

- Befehlstyp (Schreiben oder Lesen)
- Datenträger mit Speichertyp EEPROM oder FRAM
- Datenmenge
- Ausdehnung des Erfassungsbereichs (ergibt sich aus der Kombination des Schreib-Lese-Kopf-Typs und des Datenträgers).

Hinweis

Halten Sie die empfohlenen Abstände zwischen dem Datenträger und dem Schreib-Lese-Kopf ein.

Die Angaben "empfohlener" und "maximaler Abstand" finden Sie in dem Kapitel "Betriebsdaten".

Die Erfassung der Daten kann gestört werden durch folgende Einflüsse:

- elektromagnetische Störungen
- starke Reflexionen an Metallteilen in der unmittelbaren Umgebung des Erfassungsbereichs

Die folgenden Abschnitte zeigen die erforderliche Zeit für das Lesen oder Schreiben einer bestimmten Datenmenge. Die erforderliche Zeit ist abhängig vom Speichertyp des Datenträgers.

Derzeit bietet *BL ident* [®]-HF-Datenträger mit folgenden Speichertypen an:

- EEPROM-I-Code SL1
- EEPROM-I-Code SL2
- FRAM

Derzeit bietet BL ident [®]-UHF-Datenträger mit folgenden Speichertypen an:

- EEPROM-U-Code G2XM
- EEPROM-U-Code G2XL
- EEPROM-Monza
- EEPROM-Higgs

D101578 1209 - *BL ident*[®]

EEPROM-I-Code-SL2-Datenträger

Der EEPROM-Datenträger ist aufgeteilt in Datenblöcke. Jeder Datenblock umfasst:

4 Byte

Die Startadresse und Länge der zu lesenden/schreibenden Bytes kann innerhalb des Nutzerdatenbereichs beliebig gewählt werden ("Datenaufbau der I-Code SL2-Datenträger" Seite 1-13).

Für die Betrachtung der erforderlichen Schreib- und Lesezeit sollte berücksichtigt werden, dass der Zugriff auf den Nutzdatenbereich immer blockweise erfolgt. Es ergibt sich z. B. keine Zeitersparnis, wenn die Länge der zu lesenden Bytes kleiner als 4 Byte ist. Die Startadressen der Blöcke sind 0,4,8,12...

Wird als Startadresse "5" gewählt und die Länge der zu lesenden Bytes beträgt "4", werden zwei Blöcke bearbeitet.

Für zeitkritische Applikationen beachten Sie die folgenden beiden Hinweise:

Hinweis

Geben Sie als Startadresse und Länge der zu lesenden/schreibenden Bytes nur Vielfache von "4" ein!

Die Startadresse und Länge der zu lesenden/schreibenden Bytes sind Attribute der Schreib- und Lese-Befehle!

Hinweis

Bevorzugen Sie niedrige Adressen bei der Auswahl des Datenspeicherbereichs!

Achtung

Die folgenden beiden Diagramme haben Gültigkeit, wenn Sie die Hinweise für zeitkritische Applikationen befolgen!

Abbildung 3: Verweilzeiten beim Lesen von einem Datenträger des Typs "EEPROM-I-Code-SL2".

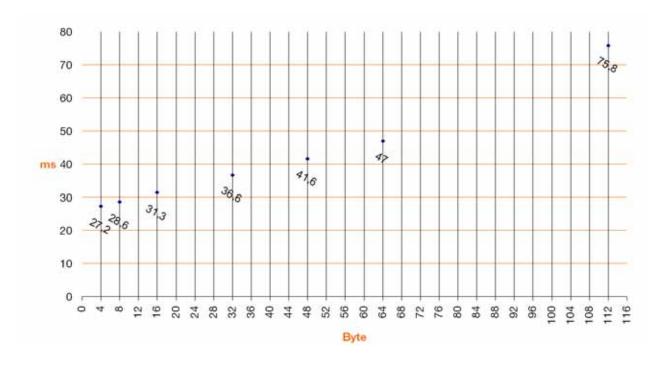
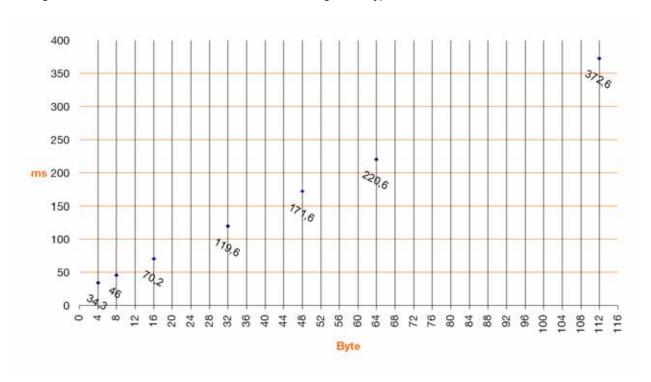



Abbildung 4: Verweilzeiten beim Schreiben auf einen Datenträger des Typs "EEPROM-I-Code-SL2".

EEPROM-I-Code-SL1-Datenträger

Der EEPROM-Datenträger ist aufgeteilt in Datenblöcke. Jeder Datenblock umfasst:

4 Byte

Die Startadresse und Länge der zu lesenden/schreibenden Bytes kann innerhalb des Nutzerdatenbereichs beliebig gewählt werden ("Datenaufbau der I-Code SL1-Datenträger" Seite 1-14)

Für die Betrachtung der erforderlichen Schreib- und Lesezeit sollte berücksichtigt werden, dass der Zugriff auf den Nutzdatenbereich immer blockweise erfolgt. Es ergibt sich z. B. keine Zeitersparnis, wenn die Länge der zu lesenden Bytes kleiner als 4 Byte ist. Die Startadressen der Blöcke sind 16, 20, 24, 28...

Wird als Startadresse "19" gewählt und die Länge der zu lesenden Bytes beträgt "4", werden zwei Blöcke bearbeitet.

Für zeitkritische Applikationen beachten Sie die folgenden beiden Hinweise:

Hinweis

Geben Sie als Startadresse und Länge der zu lesenden/schreibenden Bytes nur Vielfache von "4" ein!

Die Startadresse und Länge der zu lesenden/schreibenden Bytes sind Attribute der Schreib- und Lese-Befehle!

Hinweis

Bevorzugen Sie niedrige Adressen bei der Auswahl des Datenspeicherbereichs!

Achtung

Die folgenden beiden Diagramme haben Gültigkeit, wenn Sie die Hinweise für zeitkritische Applikationen befolgen!

Abbildung 5: Verweilzeiten beim Lesen von einem Datenträger des Typs "EEPROM-I-Code-SL1".

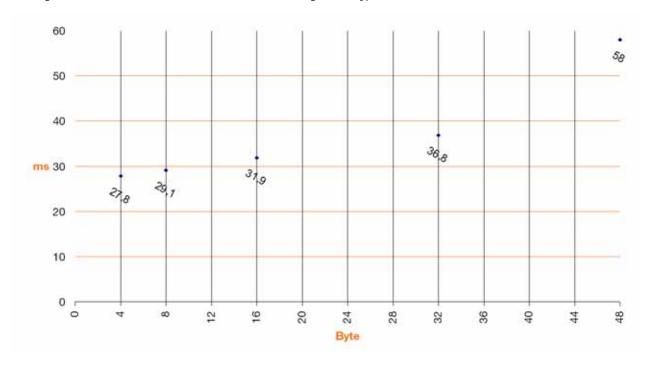
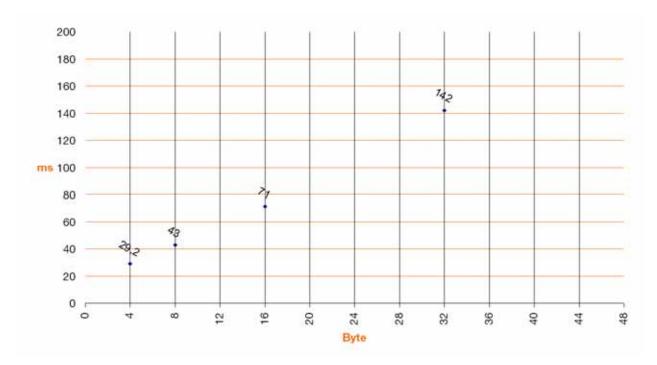



Abbildung 6: Verweilzeiten beim Schreiben auf einen Datenträger des Typs "EEPROM-I-Code-SL1".

FRAM-Datenträger

Der FRAM-Datenträger ist aufgeteilt in Datenblöcke. Jeder Datenblock umfasst:

8 Byte

Die Startadresse und Länge der zu lesenden/schreibenden Bytes kann innerhalb des Nutzerdatenbereichs beliebig gewählt werden ("Datenaufbau der FRAM-Datenträger" Seite 1-15)

Für die Betrachtung der erforderlichen Schreib- und Lesezeit sollte berücksichtigt werden, dass der Zugriff auf den Nutzdatenbereich immer blockweise erfolgt. Es ergibt sich z. B. keine Zeitersparnis, wenn die Länge der zu lesenden Bytes kleiner als 8 Byte ist. Die Startadressen der Blöcke sind 8, 16, 24, 32...

Wird als Startadresse "19" gewählt und die Länge der zu lesenden Bytes beträgt "8", werden zwei Blöcke bearbeitet.

Für zeitkritische Applikationen beachten Sie die folgenden beiden Hinweise:

Hinweis

Geben Sie als Startadresse und Länge der zu lesenden/schreibenden Bytes nur Vielfache von "8" ein!

Die Startadresse und Länge der zu lesenden/schreibenden Bytes sind Attribute der Schreib- und Lese-Befehle!

Hinweis

Bevorzugen Sie niedrige Adressen bei der Auswahl des Datenspeicherbereichs!

Achtung

Die folgenden beiden Diagramme haben Gültigkeit, wenn Sie die Hinweise für zeitkritische Applikationen befolgen!

Abbildung 7: Verweilzeiten beim Lesen von einem Datenträger des Typs "FRAM".

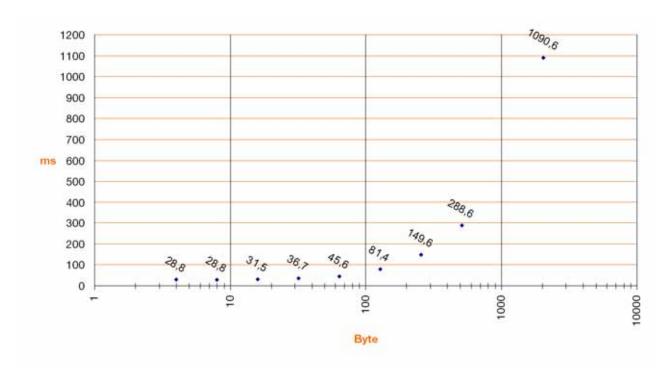
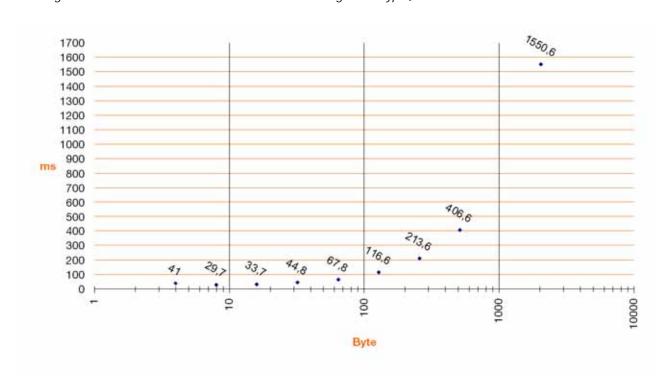



Abbildung 8: Verweilzeiten beim Schreiben auf einen Datenträger des Typs "FRAM".

1.7 Geschwindigkeit des Datenträgers zum Schreib-Lese-Kopf bei HF-RFID-Systemen

Hinweis

Die Geschwindigkeit, mit der sich der Datenträger am Schreib-Lese-Kopf vorbeibewegen kann, wird von der zu verarbeitenden Datenmenge beeinflusst und variiert je nach eingesetzter Kombination aus Schreib-Lesekopf und Datenträger. Zahlenangaben für maximale Geschwindigkeit und Datenmenge können deshalb immer nur beispielhaft sein!

Die Geschwindigkeit, mit der sich der Datenträger am Schreib-Lese-Kopf vorbeibewegen kann, lässt sich z.B. mit dem Datenträger TW-R50-K2 und dem Schreib-Lese-Kopf TN-CK40-H1147 auf bis zu 2,5 m/s für 8 Bytes bei einer Entfernung von 36 mm steigern. Mit dem "BL ident [®]-Simulator" (s. u.) können die Applikationsparameter "Geschwindigkeit", "Datenmenge" und "Reichweite" variiert werden. Die für die jeweilige Applikation optimale Kombination aus Schreib-Lese-Kopf und Datenträger ist in dem Simulator ersichtlich.

Der Simulator steht online unter http://www.turck.com... zur Verfügung. Beachten Sie bitte in jedem Fall die einschränkenden Hinweise in diesem Abschnitt.

Hinweis

Neben der Datenverarbeitungszeit im Schreib-Lese-Kopf, muss auch die Verarbeitungszeit im Gesamtaufbau des Identifikationssystems berücksichtigt werden ("Systemübersicht" Seite 1-9). Die Zeit für das Weiterreichen und Verarbeiten der Daten im Gesamtaufbau kann von Applikation zu Applikation abweichen! Sieht Ihre Applikation eine schnelle Folge von Datenträgern vor, kann es erforderlich sein die Geschwindigkeit, mit der sich die Datenträger am Schreib-Lese-Kopf vorbei bewegen, zu verringern.

Im Zweifelsfall empfehlen wir, die mögliche Geschwindigkeit empirisch zu ermitteln!

Hinweis

Die Übertragungskurven (maximaler Schreib-/Leseabstand, Länge der Übertragungszone) stellen nur typische Werte unter Laborbedingungen dar. Durch Bauteiltoleranzen, Einbausituation in der Applikation, Umgebungsbedingungen und Beeinflussung durch Materialien (insbesondere Metall) können die erreichbaren Abstände bis zu 30 % abweichen.

Darum ist ein Test der Applikation (besonders beim Lesen und Schreiben in der Bewegung) unter Realbedingungen unbedingt erforderlich!

Weiterhin sollte der empfohlene Abstand von Datenträger zu Schreib-Lese-Kopf möglichst eingehalten werden, um trotz eventueller Abweichungen in der Reichweite einwandfreie Schreib-/Lesevorgänge zu erreichen.

Abhängig von der tatsächlichen Übertragungskurve in der jeweiligen Applikation ändern sich auch die Parameter erreichbare Überfahrgeschwindigkeit (Lesen und Schreiben on the Fly) und die maximal übertragbare Datenmenge.

D101578 1209 - *BL ident*®

1.7.1 Lesereichweite / Schreibreichweite

Die erreichbaren Schreib-Lese-Abstände sind abhängig von der jeweiligen Kombination aus Datenträger und Schreib-Lese-Kopf. Beeinflusst wird der mögliche Schreib-Lese-Abstand von der zu schreibenden und zu lesenden Datenmenge und der Geschwindigkeit, mit der sich der Datenträger am Schreib-Lese-Kopf vorbeibewegt. Eine Reichweite von mehreren Metern erreichen die Schreib-Lese-Köpfe, die UHF-Arbeitsfrequenzen verwenden. Schreib-Lese-Köpfe, die mit 13,56 MHz (HF) Übertragungsfrequenz arbeiten, erzielen geringere Reichweiten. Hier wird die größte Reichweite (ca. 500 mm) mit der Bauform TNLR-Q350-H1147 erreicht, wenn z. B. ein Datenträger TW-L86-54-C-B128 eingesetzt wird.

1.7.2 BL ident®-Simulator für HF-RFID

Mit der Software "BL ident [®]-Simulator" können die Applikationsparameter "Geschwindigkeit", "Reichweite" und "Datenmenge" variiert werden. Die für die jeweilige Applikation optimale Kombination aus Schreib-Lese-Kopf und Datenträger kann somit entsprechend ausgewählt werden.

Der Simulator steht online unter http://www.turck.com... zur Verfügung.

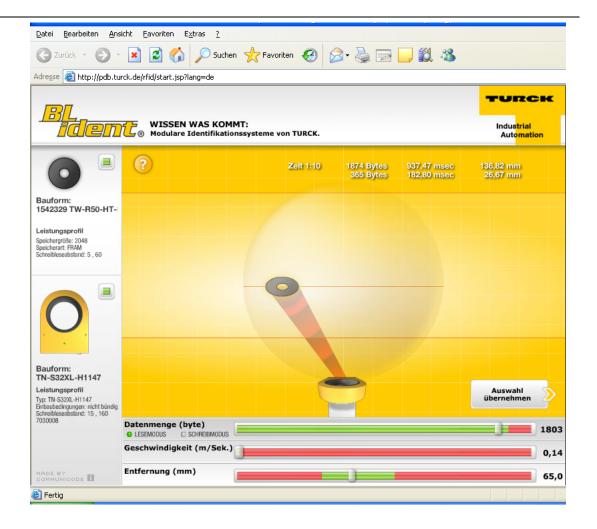
Die Anwendung von Sensoren und Aktoren und sogar von Feldbussen ist heute in vielen Bereichen der Industrie Stand der Technik. Beim Einsatz von RFID-Systemen dagegen entstehen immer wieder Fragen zum Air-Interface wie z. B. "Wie schnell kann ich an den Schreib-Lese-Köpfen vorbeifahren?" oder "In welchem Abstand kann ich an den Schreib-Lese-Köpfen vorbeifahren?", d. h. es existiert im Allgemeinen eine gewisse Unsicherheit über die Einsatzmöglichkeiten eines RFID-Systems.

Generelle Angaben wie "empfohlener Schreib-Lese-Abstand" oder "Übertragungsgeschwindigkeit = 0,5 ms/Byte" sind für die Beurteilung des Einsatzes der Geräte in einer bestimmten Applikation meist nicht ausreichend, da die Applikationsvariablen, wie Datenmenge, Geschwindigkeit und Entfernung sich aus einem komplexen Zusammenspiel zwischen den Schreib-Lese-Köpfen und Datenträgern ergeben.

Mit dem "*BL ident* [®]-Simulator" kann jetzt die jeweilige Applikation simuliert werden und die richtige Vor-Auswahl getroffen werden.

Durch das Einstellen der Applikationsparameter bzw. durch das "Spielen" mit den Werten können Möglichkeiten und Grenzen der jeweiligen Kombination einfach erfahren werden.

Die Online-Variante des Simulators (kostenlos im Internet erhältlich unter http://www.turck.com...) greift auf die Daten der Turck-Produktdatenbank zurück und liefert damit immer tagesaktuell die Daten. Neben der Simulation der Applikation erzeugt der Simulator auch die entsprechenden Datenblätter bzw. Unterlagen.

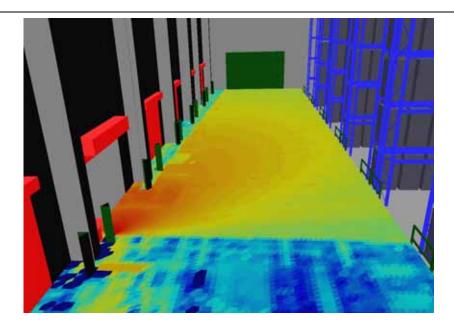


Hinweis

Der maximale Schreib-/Leseabstand, und die Länge der Übertragungszone stellen nur typische Werte unter Laborbedingungen dar. Durch Bauteiltoleranzen, Einbausituation in der Applikation, Umgebungsbedingungen und Beeinflussung durch Materialien (insbesondere Metall) können die erreichbaren Abstände bis zu 30 % abweichen. Darum ist ein Test der Applikation (besonders beim Lesen und Schreiben in der Bewegung) unter Realbedingungen unbedingt erforderlich! Weiterhin sollte der empfohlene Abstand von Datenträger zu Schreib-Lese-Kopf möglichst eingehalten werden um trotz eventueller Abweichungen in der Reichweite einwandfreie Schreib-/Lesevorgänge zu erreichen.

D101578 1209 - BL ident® 1-25

Abbildung 9: BL ident ®-Simulator



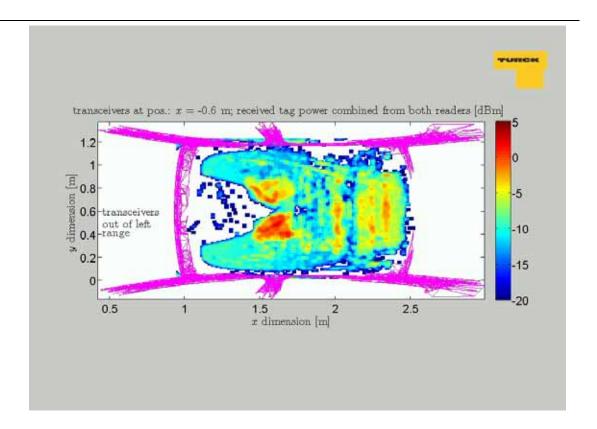
1.7.3 BL ident[®]-Simulator für UHF-RFID (Ray-Tracer)

Der Ray-Tracer ist eine Software-Simulation, mit dessen Hilfe sich verschiedenste UHF-RFID-Systemkonstellationen unter praxisnahen Randbedingungen auf Funktion erproben lassen. Durch dreidimensionale Computermodelle der RFID-Einsatzumgebung und Algorithmen zur Berechnung der Funkausbreitung im Raum wird der Betrieb von UHF-RFID-Systemen realitätsgetreu nachgestellt.

Die Durchführung verschiedener Simulationsdurchläufe erlaubt somit vor der eigentlichen UHF-RFID-Hardware-Installation eine Eingrenzung und Vorauswahl geeigneter Systemkomponenten. Ebenso analysiert der Ray-Tracer bei komplexen räumlichen Applikationsumgebungen die technische Machbarkeit von UHF-RFID-Funkanwendungen für eine jeweils vorgegebene räumliche Struktur.

Abbildung 10: Dreidimensionale, komplexe Computer-Applikations-umgebung

Alle wesentlichen physikalischen Effekte werden berücksichtigt, die zur Ausbreitung von Funkwellen gehören. Dies sind beispielsweise: Dämpfungseigenschaften in Luft und anderen Medien (Hindernisse), Reflexions- und Transmissionseigenschaften an Objekten verschiedener Materialien, Polarisationseigenschaften, Antennencharakteristiken und -gewinn von Schreib-Lese-Einheiten und Datenträgern.


Da der Umgang mit dem Ray-Tracer ein hohes Maß an Einarbeitung und Fachwissen erfordert, kann er nicht kundenseitig angewendet werden und steht daher nur TURCK-RFID-Spezialisten bzw. deren Systempartnern zur Verfügung. Sprechen Sie uns an, dann können wir für Ihre UHF-Applikationsumgebung die entsprechende Simulation durchführen.

Da jede Simulation auf konkrete räumliche Applikations-Umgebungsbedingungen basiert, ist jeder Simulationsdurchlauf stets kundenspezifisch und liefert zugeschnittene Ergebnisse für den jeweiligen Einsatzort. Die Aussagekraft dieser Simulationsergebnisse ist denjenigen aus realen, vor Ort gewonnenen Messreihen oftmals überlegen und der Zeit- und Kostenaufwand lässt sich erheblich reduzieren. Allgemeingültige bzw. übertragbare Aussagen lassen sich aufgrund von applikationsbedingt wechselnden physikalischen Einsatzsorten allerdings nicht daraus ableiten.

Ray-Tracer-Simulationen sind jedoch bestens geeignet, um Systemplanungen und Analysen von UHF-RFID-Systemen unter Berücksichtigung kundenspezifischer Anwendungsgegebenheiten erheblich zu beschleunigen.

D101578 1209 - BL ident® 1-27

Abbildung 11: Beispiel einer Ray-Tracer-Feldstärke-Simulation

1-28 D101578 1209 - *BL ident*®

1.8 Kompatibilität

Alle technischen Daten beziehen sich auf das *BL ident* *-System, d.h. auf die Kombinationen von *BL ident* *-Datenträgern, Schreib-Lese-Köpfen und Interfacemodulen. Für Datenträger anderer Hersteller können völlig andere Werte gelten.

1.9 Einsatzbereiche (Beispiele):

Die im vorausgehenden Kapitel genannten Leistungsmerkmale ermöglichen den Einsatz eines TURCK *BL ident* [®]-Systems in den folgenden Branchen:

- Automobil
- Transport und Handling
- Maschinenbau
- Lebensmittel und Getränke
- Chemie
- Pharmazie und Petrochemie.

Dabei ist der Einsatz in allen Bereichen möglich, wie:

- Montagelinien
- Fördertechnik
- Industrielle Fertigung
- Lager
- Logistik
- Distribution
- Kommissionierung
- Transportlogistik

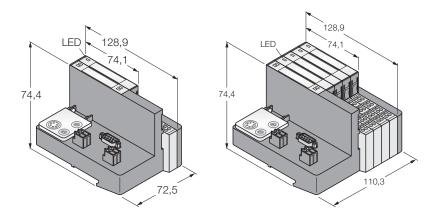
Das TURCK-BL ident®-System

2 Montage und Installation

2.1	Interraces in der Schutzart IP20	3
2.1.1	Abbildungen und Ausführungen der Interface-Module	3
	- Standard-Module	
	- ECONOMY-Module	4
2.1.2	Versorgungsspannung	5
	- Standard-Module	
	- ECONOMY-Module	
2.1.3	Feldbusanschluss	7
	- Standard-Module	7
	- ECONOMY-Module	8
2.1.4	Adressierung	10
	- Standard-Module	
	- ECONOMY-Module	11
2.1.5	Serviceschnittstelle	12
	- Verbindung mit BL20-Kabel	12
	- Die Tabelle zeigt die Pinbelegung bei Verwendung des PS/2-Kabels:	13
2.1.6	Anschlüsse der Schreib-Lese-Köpfe	
	- Vorkonfektionierte Verbindungsleitungen	14
	- Verbindungsleitungen zur Montage einer Kupplung	16
	- Anschlussklemmen bei Verwendung der Verbindungsleitungen RK4.5T und WK4.5T und	
	- Anschlussklemmen bei Verwendung der Verbindungsleitungen FB4.5T	17
2.1.7	Diagnosen über LEDs	
	- LEDs der Feldbusseite	19
	- LEDs zu den RFID-Anschlüssen	21
2.1.8	Diagnosemeldungen und Parametrierung des Gateways	22
2.1.9	Parametrierung der BL20-2RFID-A/BL20-2RFID-S-Module	22
	- BL20-2RFID-A	22
	- BL20-2RFID-S	
2.1.10	Diagnosemeldungen der <i>BL ident</i> ®-Kanäle	23
2.1.11	Technische Daten	
	- Zulassungen und Prüfungen des Interface-Moduls	
	- Standard-Gateway-Anschlussebene	
	- ECONOMY-Gateway-Anschlussebene	
	- Anschlussebene Schreib-Lese-Kopf	30
2.2	Interfaces in der Schutzart IP67	32
2.2.1	Abbildungen und Ausführungen der Interface-Module	32
	- BL67-Module	
	- BL67-Module - Prinzipschaltbild	33
	- BL compact-Module	34
2.2.2	Versorgungsspannung	35
	- BL67-Module	35
	- BL compact-Module	36
2.2.3	Feldbusansschluss	37
	- M12-Busanschluss für BL67-Module und BL compact-Module	37
	- Busabschluss für BL67-Module und BL compact-Module	38
2.2.4	Adressierung	
	- BL67-Module	38
	- BL compact-Module	39
2.2.5	Service-Schnittstelle	40
	- BL67-Module	40
	- BL compact-Module	42

Montage und Installation

2.2.6	Anschlüsse der Schreib-Lese-Köpfe für BL67-Module und BL compact-Module	43
	- Vorkonfektionierte Verbindungsleitungen mit Kupplung und Stecker	43
	- Vorkonfektionierte Verbindungsleitungen mit Kupplung	44
	- Verbindungsleitungen zur Montage eines Steckers und einer Kupplung	
	- Anschlussebene - Basismodul BL67-B-2M12	
2.2.7	Diagnosen über LEDs	48
	- BL67-Module - LEDs der Feldbusseite	
	– BL67 – LEDs zu den RFID-Anschlüssen	52
	- BL compact-Module - Stations-LEDs	53
	- BL compact-Module - LEDs zu den RFID-Anschlüssen	54
2.2.8	Diagnosemeldungen und Parametrierung des BL67-Gateways	55
2.2.9	Parametrierung der BL67-2RFID-A/BL67-2RFID-S-Module	55
	- BL67-2RFID-A	55
	- BL67-2RFID-S	55
2.2.10	Diagnosemeldungen der <i>BL ident</i> ®-Kanäle	56
	- BL67-Module - Zulassungen und Prüfungen des Interface-Modul	58
	- BL67-Module - Gateway-Anschlussebene	
	- BL67-Module - Anschlussebene Schreib-Lese-Kopf	
	- BL compact-Module	61


2.1 Interfaces in der Schutzart IP20

2.1.1 Abbildungen und Ausführungen der Interface-Module

Standard-Module

Die *BL ident* PROFIBUS-Schnittstelle ist mit 2, 4, 6, 8 Kanälen erhältlich. Interface-Module mit dem Zusatz "-S" (Simple) stehen für die Möglichkeit einer einfachen Inbetriebnahme. Mit einem Schreib- oder Lese-Befehl können 8 Byte übertragen werden. Interface-Module ohne den Zusatz "S" bieten eine größere Anzahl an möglichen Befehlen und eine große Datenübertragungsmenge pro Befehl.

Abbildung 12: BL ident®-Interface-Standard-Module in der Schutzart IP20 (2- und 8kanalig)

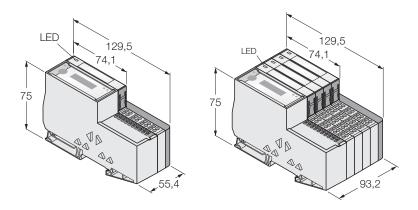


Tabelle 9: BL ident®- Standard- Interface- Module in der Schutzart IP20	Produktbezeichnung	Identnummer
	TI-BL20-DPV1-2	1545004
	TI-BL20-DPV1-4	1545005
	TI-BL20-DPV1-6	1545006
	TI-BL20-DPV1-8	1545007
	TI-BL20-DPV1-S-2	1545074
	TI-BL20-DPV1-S-4	1545075
	TI-BL20-DPV1-S-6	1545076
	TI-BL20-DPV1-S-8	1545077

ECONOMY-Module

Die *BL ident* *-PROFIBUS-Schnittstelle ist mit 2, 4, 6, 8 Kanälen erhältlich. Interface-Module mit dem Zusatz "-S" (Simple) stehen für die Möglichkeit einer einfachen Inbetriebnahme. Mit einem Schreib- oder Lese-Befehl können 8 Byte übertragen werden. Interface-Module ohne den Zusatz "S" bieten eine größere Anzahl an möglichen Befehlen und eine große Datenübertragungsmenge pro Befehl.

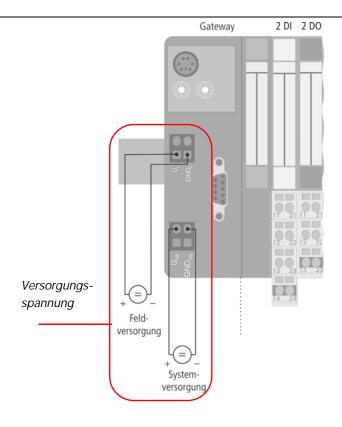
Abbildung 13: BL ident ®-ECONOMY-Interface-Module in der Schutzart IP20

Tabelle 10: BL ident®- ECONOMY- Interface- Module in der Schutzart IP20	Produktbezeichnung	Identnummer
	TI-BL20-E-DPV1-2	1545122
	TI-BL20-E-DPV1-4	1545123
	TI-BL20-E-DPV1-6	1545124
	TI-BL20-E-DPV1-8	1545125
	TI-BL20-E-DPV1-S-2	1545126
	TI-BL20-E-DPV1-S-4	1545127
	TI-BL20-E-DPV1-S-6	1545128
	TI-BL20-E-DPV1-S-8	1545129

2-4 D101578 1209 - *BL ident*®

2.1.2 Versorgungsspannung

Standard-Module


Die Versorgung des *BL ident*-Interface-Moduls wird über die beiden Anschlussklemmen U_L und U_{SYS} (Feldversorgung und Systemversorgung) durchgeführt. An den jeweils 2-poligen Schraubklemmen wird eine Spannung in dem Bereich 18 bis 30 VDC (Nennwert 24 VDC) angeschlossen.

Die **Systemversorgungsspannung** beträgt transformiert 5 VDC (aus 24 VDC) und kann maximal

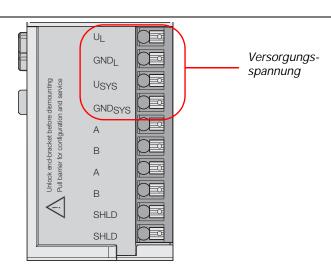
1,5 A liefern. Diese Spannung wird intern mit einem Aderpaar des 7-adrigen Modulbusses übertragen und dient zur Versorgung der modulbusseitigen Modulelektronik.

Die **Feldversorgungsspannung** beträgt 24 VDC und kann maximal 10 A liefern. Diese Spannung wird über eine Stromschiene durch das Interface-Modul geführt. Die feldbusseitige Modulbuselektronik und die angeschlossenen Schreib-Lese-Geräte werden von der Feldversorgungsspannung gespeist ("Anschlüsse der Schreib-Lese-Köpfe" Seite 2-14).

Abbildung 14: Gateway-Anschlussebene BL20-GW-DP

ECONOMY-Module

Die Versorgung des *BL ident* $^{\circ}$ -BL20-ECO-Interface-Moduls wird über die Push-In-Federzugklemmen U_L/GND_L und U_{SYS}/GND_{SYS} am Gateway (Feldversorgung und Systemversorgung) durchgeführt.


Die Versorgungsspannung muss in dem Bereich 18 bis 30 VDC (Nennwert 24 VDC) liegen.

Die **Systemversorgungsspannung** (U_{SYS}/GND_{SYS}) beträgt transformiert 5 VDC (aus 24 VDC) und

ca. 0,5 A bei vollem Stationsausbau. Diese Spannung wird intern mit einem Aderpaar des 7-adrigen Modulbusses übertragen und dient zur Versorgung der modulbusseitigen Modulelektronik.

Die **Feldversorgungsspannung** (U_L/GND_L) beträgt 24 VDC und kann maximal 10 A liefern. Diese Spannung wird über eine Stromschiene durch das Interface-Modul geführt. Die feldbusseitige Modulbuselektronik und die angeschlossenen Schreib-Lese-Geräte werden von der Feldversorgungsspannung gespeist ("Anschlüsse der Schreib-Lese-Köpfe" Seite 2-14).

Abbildung 15: Gateway-Anschlussebene BL20-E-GW-DP

2.1.3 Feldbusanschluss

Standard-Module

Zur Kommunikation der Gateways über den Feldbus PROFIBUS-DP steht ein SUB-D-Anschluss zur Verfügung.

Abbildung 16: PROFIBUS SUB-D-Anschluss

Achtung

Zur Feldbusweiterleitung ist wegen der hohen Übertragungsrate ein nach PROFIBUS-Norm zertifizierter speziell geschirmter SUB-D-Stecker notwendig!

Achtung

Wird das *BL ident* [®]-Interface-Modul als erster oder letzter Teilnehmer in der Buskommunikation eingesetzt, ist der Einsatz eines speziellen Bussteckers mit eingebautem oder zuschaltbarem Abschlusswiderstand unbedingt erforderlich!

Vorkonfektionierte PROFIBUS-Kabel von TURCK mit einem nach PROFIBUS-Norm zertifiziertem Steckertyp finden Sie im TURCK-Katalog "Feldbustechnik" D301052.

Wird das *BL ident* [®]-Interface-Modul als erster oder letzter Teilnehmer in der Buskommunikation (an einem Ende eines Bussegments) eingesetzt, ist eine Verbindung vom Typ **D9T451-xM*** einzusetzen. Die SUB-D-Stecker dieser Verbindungstypen haben einen integrierten Abschlusswiderstand und **ein** angeschlossenes PROFIBUS-Kabel.

Die SUB-D-Stecker zu den TURCK-Verbindungen des Typs **D9-451-**x**M-**x**M*** haben keinen integrierten Abschlusswiderstand und **zwei** PROFIBUS-Anschlüsse.

*x gibt die Länge des/ der angeschlossenen PROFIBUS-Kabel an

Die Pinbelegung der Buchsen ist hier exemplarisch dargestellt:

Abbildung 17: SUB-D-Buchse (Draufsicht)

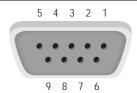
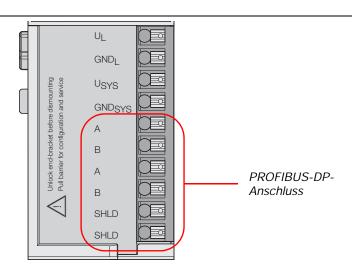


Tabelle 11: Pinbelegung SUB-D-Buchse am Gateway

Pin Nr.	Signalname	Beschreibung
1	PE	Schirmanschluss/Funktionserde
2	nicht belegt	
3	RxD/TxD-P	Empfangs-/Sende-Daten-P
4	CNTR-P/RTS	Request to Send
5	DGND	Datenbezugspotenzial
6	VP	+ 5 VDC für externen Busabschluss
7	nicht belegt	
8	RxD/TxD-N	Empfangs-/Sende-Daten-N
9	nicht belegt	


Achtung

Es dürfen keine Ausgleichsströme über den Schirm fließen. Dazu muss ein sicheres System für den Potenzialausgleich geschaffen werden!

ECONOMY-Module

Zur Kommunikation der Gateways über den Feldbus PROFIBUS-DP stehen Push-In-Federzugklemmen zur Verfügung. ("PROFIBUS-DP-Federzugklemmen-Anschluss" Seite 2-8)

Abbildung 18: PROFIBUS-DP-Federzugklemmen-Anschluss

Hinweis

Die Schirmung des Buskabels ist erforderlich und erfolgt über eine Schirmklemme SHLD-Klemme an der Tragschiene!

Hinweis

Wird das BL20-Gateway als erster oder letzter Teilnehmer in der Buskommunikation eingesetzt, ist der Abschluss der Feldbusleitung mit einem Abschlusswiderstand erforderlich!

Das BL20-E-GW-DPV1 ermöglicht die Zuschaltung eines Widerstands \mathbf{R}_{T} über den untersten DIP-Schalter ("Busabschlusswiderstand RT" Seite 2-9).

Abbildung 19: Busabschluss-widerstand R_T

Busabschlusswiderstand ausgeschaltet:

Busabschlusswiderstand eingeschaltet:

2.1.4 Adressierung

Standard-Module

Die Adressierung erfolgt über die beiden Dezimal-Drehkodierschalter auf der Feldbusseite (Gateway) der Feldbusschnittstelle.

Hinweis

Die Schalter befinden sich gemeinsam mit der Service-Schnittstelle unter einer Abdeckung ("Dezimal-Drehkodierschalter zur Adressierung am PROFIBUS-DP" Seite 2-10)

Abbildung 20: Dezimal-Drehkodierschalter zur Adressierung am PROFI-BUS-DP

Achtung

Mit dem Schalter ADDRESS können maximal 99 Adressen (01 bis 99) vergeben werden. Jede Adresse darf in der gesamten Busstruktur nur einmal vergeben werden. Die Busadresse 00 darf nicht verwendet werden.

Weitere Teilnehmer der gesamten Busstruktur dürfen auch Adressen von 100 bis 125 belegen. Die Busadressen 000, 126 und 127 dürfen nie vergeben werden!

Die Drehkodierschalter sind mit H für High (höherwertige Stelle) und L für Low (niederwertige Stelle) gekennzeichnet.

BL20-GW-DPV1:

- Mit Schalter L wird L x10⁰ (L = 0 bis 9) eingestellt.
- Mit Schalter H wird H x 10¹ (H = 0 bis 9) eingestellt.

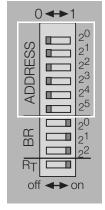
Hinweis

Nach der Adressierung muss die Schutzabdeckung über den Dezimal-Drehcodierschaltern wieder geschlossen werden.

Achtung

Wird das *BL ident* [®]-Interface-Modul als erster oder letzter Teilnehmer in der Buskommunikation eingesetzt, ist der Einsatz eines speziellen Bussteckers mit eingebautem oder zuschaltbarem Abschlusswiderstand unbedingt erforderlich!

ECONOMY-Module


Die Einstellung der Adresse des BL20-ECO-Gateways für PROFIBUS-DP wird über die DIP-Schalter am Gateway durchgeführt..

Hinweis

Ziehen Sie die Einsteckfolie nach oben aus dem Gehäuse heraus, um an die DIP-Schalter zu gelangen.

Abbildung 21: DIP-Schalteram Gateway

Achtung

Mit dem Schalter ADDRESS können maximal 99 Adressen (01 bis 99) vergeben werden. Jede Adresse darf in der gesamten Busstruktur nur einmal vergeben werden. Die Busadresse 00 darf nicht verwendet werden.

Weitere Teilnehmer der gesamten Busstruktur dürfen auch Adressen von 100 bis 125 belegen. Die Busadressen 000, 126 und 127 dürfen nie vergeben werden!

Die Feldbusadresse des Gateways ergibt sich aus der Addition der Werte (2^0 bis 2^5) der aktiv geschalteten DIP-Schalter (Schalterstellung = 1).

Beispiel:

Busadresse $38 = 0 \times 26 = 100110$

Abbildung 22: Busadresse 38

2.1.5 Serviceschnittstelle

Die Service-Schnittstelle verbindet das *BL ident* [®]-Interface-Modul mit einem PC. Mit der Software

I/O-ASSISTANT kann das Interface-Modul projektiert und Diagnosemeldungen angezeigt werden.

Hinweis

Die Service-Schnittstelle befindet sich unter dem oberen Einsteckschild am Gateway. Ziehen Sie die Folie nach oben aus dem Gehäuse heraus, um an die Serviceschnittstelle zu gelangen.

Hinweis

Nach einem Spannungsreset liest das Gateway die Parameter der Module aus. Sind die Parameter des RFID-Moduls fehlerhaft, wird das Gateway diese übernehmen. Werden die Parameter nicht verändert, d. h. die Station ist nicht am Feldbus oder es wurde keine Parameteränderung per I/O-ASSISTANT vorgenommen, dann bleiben diese fehlerhaften Parameter im Modul weiter bestehen!

Die Verbindung Service-Schnittstelle / PC muss mit einem speziell hierfür konfektionierten Kabel vorgenommen werden.

TURCK Verbindungskabel (I/O-ASSISTANT-KABEL-BL20/BL67; Ident Nr.: 6827133)

Verbindung mit BL20-Kabel

Das BL20-Kabel hat einen PS/2-Stecker (Anschluss für Buchse am Gateway) und eine SUB-D-Buchse (Anschluss für Stecker am PC)

Abbildung 23: PS/2-Stecker am Anschlusskabel zum Gateway (Draufsicht)

Abbildung 24: 9-polige SUB-D-Buchse am Anschlusskabel zum PC (Draufsicht)

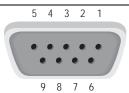
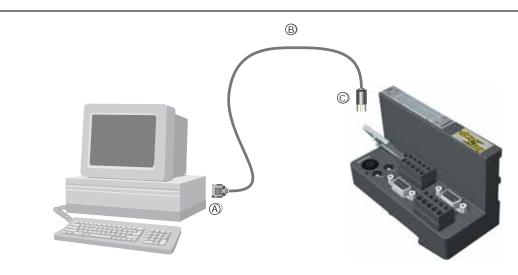



Abbildung 25: Verbindung zwischen PC und BL20-Gateway über das BL20-Verbindungskabel

- A SUB-D-Buchse
- **B** BL20-Verbindungs kabel
- C PS/2-Stecker

Pinbelegung des PS/2-Kabels

Die Tabelle zeigt die Pinbelegung bei Verwendung des PS/2-Kabels:

Taballa 10.
Tabelle 12:
Pinbelegung
PS/2- und
SUB-D-
Schnittstelle

Pin	BL20 Gateway - PS/2-Buchse	Sub-D-Schnittstelle am PC	Pin
1	CLK	DTR, DSR	4, 6
2	GND	GND	5
3	DATA	-	-
4	n.c. (DATA2)	RxD	2
5	+5 V	RTS	7
6	n.c. (CLK2)	TxD	3

2.1.6 Anschlüsse der Schreib-Lese-Köpfe

Vorkonfektionierte Verbindungsleitungen

Die folgende Tabelle stellt vorkonfektionierte Verbindungsleitungen mit einer Kupplung zum Anschluss des Schreib-Lese-Kopfes und einem offenen Ende zum Anschluss an die Federzug-Klemmen des Interface-Moduls dar. Der Anschluss an die Federzug-Klemmen des Interface-Moduls wird in den Abschnitten "Anschlussklemmen bei Verwendung der Verbindungsleitungen RK4.5T... und WK4.5T..." Seite 2-17 und "Anschlussklemmen bei Verwendung der Verbindungsleitungen FB4.5T..." Seite 2-17 erklärt.

Tabelle 13: Vorkonfektio- nierte Verbindungs- leitungen (BL20)	Typenbezeichnung (Identnummer)	Kupplung ^{A)} gerade = g abgewinkelt = a	2m	5 m	10 m	25 m	50 m
	RK4.5T-2/S2500 (8035244)	g	Х				
	RK4.5T-5/S2500 (6699206)	g		Х			
	RK4.5T-10/S2500 (6699207)	g			Х		
	RK4.5T-25/S2500 (6699421)	g				Х	
	RK4.5T-50/S2500 (6699422)	g					Х
	WK4.5T-2/S2500 (8035245)	а	Х				
	WK4.5T-5/S2500 (6699208)	а		Х			
	WK4.5T-10/S2500 (6699209)	a			Х		
	WK4.5T-25/S2500 (6699423)	а				Х	
	WK4.5T-50/S2500 (6699424)	а					Х
	Für den Lebensmittelbere	ich (FB = Food and	Beverage	e) - IP69K			
	FB-RK4.5T-5/S2500 (7030281)	g		Х			
	FB-RK4.5T-10/S2500 (7030282)	g			Х		
	FB-RK4.5T-25/S2500 (7030283)					Х	
	FB-RK4.5T-50/S2500 (7030284)	g		Х			Х

Tabelle 13: (Forts.) Vorkonfektio- nierte Verbindungs- leitungen	Typenbezeichnung (Identnummer)	Kupplung ^{A)} gerade = g abgewinkelt = a	2m	5 m	10 m	25 m	50 m
	FB-WK4.5T-5/S2500 (7030285)	а		Х			
	FB-WK4.5T-10/S2500 (7030286)	а			Х		
	FB-WK4.5T-25/S2500 (7030287)	а				Х	
	FB-WK4.5T-50/S2500 (7030288)	а					Х

A Die "Kupplung" dient zum Anschluss des Schreib-Lese-Kopfes

Eigenschaften der Verbindungsleitungen vom Typ RK... und WK...:

- Geschirmt
- PUR-Außenmantel, PVC-, silikon- und halogenfrei
- Hochflexibel
- Strahlenvernetzt, beständig gegen Schweißspritzer, Öle
- Hohe mechanische Festigkeit
- Zulassung Í

Eigenschaften der Verbindungsleitungen vom Typ FB...:

- Geschirmt
- PVC-Außenmantel.
- Zulassung Í , È

Verbindungsleitungen zur Montage einer Kupplung

Das für *BL ident* [®] geeignete Kabel "KABEL-BLIDENT-100M" können Sie selbst konfektionieren. Montieren Sie dazu die M12-Kupplung "B8151-0/9" (6904604) zum Anschluss des Schreib-Lese-Kopfes.

Hinweis

Beachten Sie beim Anschluss der Kupplung die Spalte "Farbbelegung RK4.5T… und WK4.5T…" aus "Pinbelegung für die Verbindungsleitungen" Seite 2-48!

Hinweis

Schließen Sie das offene Ende der Verbindungsleitung gemäß den folgenden beiden Abschnitten an!

D101578 1209 - BL ident®

Anschlussklemmen bei Verwendung der Verbindungsleitungen RK4.5T... und WK4.5T..

Abbildung 26: Anschluss des Schreib-Lese-Kopfes (Transceiver) für Verbindungsleitung en RK4.5T... und WK4.5T...

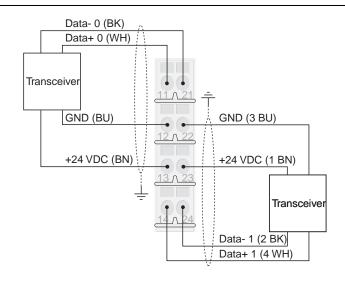
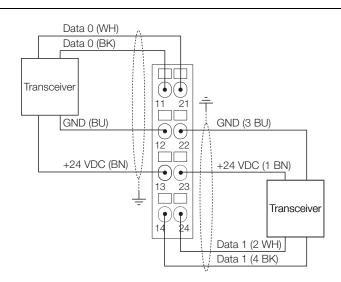



Tabelle 14: Farbbelegung der Verbindungsleitungen RK4.5T... und WK4.5T...

Signal	Farbbelegung
$V_{S/L ext{-}Kopf}$	Braun (BN)
GND	Blau (BU)
Data-	Schwarz (BK)
Data+	Weiß (WH)

Anschlussklemmen bei Verwendung der Verbindungsleitungen FB4.5T...

Abbildung 27: Anschluss des Schreib-Lese-Kopfes (Transceiver) für Verbindungsleitungen FB4.5T...

Montage und Installation

Tabelle 15: Farbbelegung der Verbindungsleitungen FB4.5T...

Signal	Farbbelegung
V _{S/L-Kopf}	Braun (BN)
GND	Blau (BU)
Data+	Weiß (WH)
Data-	Schwarz (BK)

2-18 D101578 1209 - *BL ident*®

2.1.7 Diagnosen über LEDs

LEDs der Feldbusseite

Tabelle 16: Feldbusseite	LED	Status	Bedeutung	Abhilfe
	GW	AUS	CPU wird nicht mit Spannung versorgt.	 Prüfen Sie die am Gateway anliegende Spannungsversorgung des Systems.
		grün	5 VDC Betriebsspannung vorhanden; Firmware aktiv; Gateway betriebs- und sendebereit	
		grün blinkend, 1 Hz und LED IOs: rot	Firmware nicht aktiv	 Laden Sie die Firmware erneut! Wenden Sie sich an Ihren TURCK- Ansprechpartner.
		grün blinkend, 4 Hz	Firmware aktiv, Hardware des Gateways defekt.	 Tauschen Sie das Gateway aus.
		grün blinkend, 1 Hz	U _{SYS} : Unter- oder Überspannung U _L : Unterspannung	– Prüfen Sie, ob die Spannungsversorgung im zulässigen Bereich liegt.
	IOs	AUS	CPU wird nicht mit Spannung versorgt.	 Prüfen Sie die am Gateway anliegende Spannungsversorgung des Systems.
		grün	Konfigurierte Konstellation der Modulbus-Teilnehmer entspricht der realen; Kommunikation läuft.	
		grün blinkend, 1 Hz	Station befindet sich im Force Mode des I/O-ASSISTANT.	 Deaktivieren sie den Force Mode des I/O-ASSISTANT
		rot und LED "GW" AUS	Controller nicht betriebsbereit oder Vcc-Pegel nicht im erforderlichen Bereich	 Prüfen Sie das Bus Refreshing-Modul rechts neben dem Gateway und seine Verdrahtung. Bei korrekt angelegter Netzspannung wenden Sie sich an Ihren TURCK-Ansprechpartner.
		rot	Modulbus nicht betriebsbereit	 Prüfen Sie die korrekte Montage der einzelnen BL20- Module.

Tabelle 16: (Forts.) Feldbusseite	LED	Status	Bedeutung	Abhilfe
, 0.20200010		rot blinkend, 1 Hz	Nicht adaptierbare Veränderung der realen Konstellation der Modulbusteilnehmer	 Vergleichen Sie die Projektierung Ihrer BL20- Station mit der realen Konstellation. Prüfen Sie den Aufbau Ihrer BL20-Station auf defekte oder falsch gesteckte Elektronikmodule.
		rot/grün blinkend, 1 Hz	Adaptierbare Veränderung der realen Konstellation der Modulbusteilnehmer	 Prüfen Sie Ihre BL20-Station auf gezogene oder neue, nicht projektierte Module.
		rot blinkend, 4 Hz	Keine Kommunikation über den Modulbus	 Prüfen Sie, ob die Richtlinien zum Einsatz von Versorgungsmodulen eingehalten wurden.
	DIA	AUS	Gateway sendet keine Diagnose.	
		rot blinkend, 1 Hz	Gateway sendet erweiterte Diagnose.	 Prüfen Sie die einzelnen Elektronikmodule Ihrer BL20- Station auf Diagnosemeldungen. Prüfen Sie die Diagnosemeldungen mit Ihrer SPS-Software.
		rot	Gateway generiert statische Diagnose.	 Prüfen Sie die einzelnen Elektronikmodule Ihrer BL20- Station auf Diagnosemeldungen. Prüfen Sie die Diagnosemeldungen mit Ihrer SPS-Software
	Bus	AUS	Feldbus nicht in Betrieb.	 Warten Sie auf Beendigung des Firmware-Downloads. Nach Beendigung des Downloads: Hardware-Fehler; Tauschen Sie das Gateway aus.
		grün	Kommunikation zwischen Gateway und PROFIBUS-DP- Master fehlerfrei.	

2-20 D101578 1209 - *BL ident*®

Tabelle 16:	LED	Status	Bedeutung	Abhilfe
(Forts.) Feldbusseite	LED	Status	bedeutung	Abilille
		rot	Busfehler am Gateway.	 Prüfen Sie, ob der PROFIBUS-DP mit einem aktiven Abschlusswiderstand beendet wird, wenn das BL20- Gateway der letzte Teilnehmer in der Bus-Topologie ist. Überprüfen Sie den Sitz des PROFIBUS-DP- Steckers bzw. den Anschluss bei Direktverdrahtung. Alle Verbindungen müssen korrekt sein und fest sitzen. Prüfen Sie das Kabel zum PROFIBUS-DP-Master auf Beschädigung und korrekten Anschluss. Prüfen Sie, ob die korrekte Bitübertragungsrate im SPS- Master eingestellt ist. Vergleichen Sie die Projektierung der Station mit der vorhandenen Modulliste.
		rot blinkend, 1 Hz	Ungültige Stationsadresse eingestellt.	 Stellen Sie die korrekte Stationsadresse über die Hex- Drehkodierschalter/Dezimal- Drehcodierschalter ein.

LEDs zu den RFID-Anschlüssen

-				
Tabelle 17: RFID-An- schlüsse	LED	Status	Bedeutung	Abhilfe
	DIA	AUS	Normaler Datenaustausch	
		rot	Modulbuskommunikation ist ausgefallen	Prüfen Sie, ob mehr als 2 benachbarte Elektronikmodule gezogen wurden. Relevant sind Module, die sich zwischen Gateway und diesem Modul befinden.
		rot blinkend 0,5 Hz	Diagnose liegt vor	
	RW 0 RW 1	AUS	Kein Tag im Empfangsbereich	
		grün	Tag im Empfangsbereich	
		grün blinkend 2 Hz	Datenübertragung von / zum Tag	

Montage und Installation

Tabelle 17: RFID-An- schlüsse	LED	Status	Bedeutung	Abhilfe
		rot	Kanalfehler, Details in der Diagnosemeldung	
		rot blinkend 2 Hz	Kurzschluss Schreib-Lese- Kopf-Versorgung	

2-22 D101578 1209 - *BL ident*®

2.1.8 Diagnosemeldungen und Parametrierung des Gateways

Eine vollständige Beschreibung zu den Gateway-Diagnosemeldungen und Parametriermöglichkeiten finden Sie in den Handbüchern:

"BL20-PROFIBUS-DP" D300822

"BL67/BL20 - DPV1-Gateway" D300955 Ergänzungshandbuch für DPV1

2.1.9 Parametrierung der BL20-2RFID-A/BL20-2RFID-S-Module BL20-2RFID-A

Zur Zeit werden bei BL20-2RFID-A folgende Parameter übertragen:

- "Überbrückungszeit Kx[n*4ms]" mit dem 1 Byte Parameter-Datenabbild
- "Betriebsart" mit den Modi "Standardzugriff", "Schnellzugriff" und "Antikollision ein"
- "Datenträgertyp"
- "Sendepegel" (für die UHF-Schreib-Lese-Köpfe)
- "Sendefrequenz" (für die UHF-Schreib-Lese-Köpfe)

Hinweis

Die Parameter für die UHF-Schreib-Lese-Köpfe "Sendepegel" und "Sendefrequenz" werden zwar angezeigt aber z. Zt. noch nicht unterstützt.

Der Parameter "Ueberbrueckungszeit Kx[n*4ms]" muss nur dann verändert/angepasst werden, wenn bei der Inbetriebnahme eine bestimmte Fehlermeldung erscheint ("Parameter" Seite 3-73):

BL20-2RFID-S

Zur Zeit werden bei BL20-2RFID- folgende Parameter übertragen:

- "Überbrückungszeit Kx[n*4ms]" mit dem 1 Byte Parameter-Datenabbild
- "Betriebsart" mit den Modi "Standardzugriff" und "Schnellzugriff"
- "Datenträgertyp"
- "Sendepegel" (für die UHF-Schreib-Lese-Köpfe)
- "Sendefrequenz" (für die UHF-Schreib-Lese-Köpfe)

Hinweis

Die Parameter für die UHF-Schreib-Lese-Köpfe "Sendepegel" und "Sendefrequenz" werden zwar angezeigt aber z. Zt. noch nicht unterstützt.

Der Parameter "Ueberbrueckungszeit Kx[n*4ms]" muss nur dann verändert/angepasst werden, wenn bei der Inbetriebnahme eine bestimmte Fehlermeldung erscheint ("Parameter" Seite 3-73):

D101578 1209 - *BL ident*[®] 2-23

2.1.10 Diagnosemeldungen der *BL ident* [®]-Kanäle

Mögliche Software-Diagnosemeldungen (I/O-ASSISTANT):

Tabelle 18: Diagnosen der Ident-Mo- dule	Diagno und Bi	sebyte t	Bezeichnung I/O-ASSISTANT	DPV1-Error- Code
	Diagnosen Kanal 1			
	0 0 1		reserviert	
			reserviert	
		2	"Ident Überstrom" (Die Versorgung des Schreib-Lese- Kopfes (Transceivers) wird abgeschaltet.)	4
		5	Software-Update für Schreib-Lese-Kopf erforderlich	22
		6	Ungültiger Parameter	16
1 0		0	"Transceiver Hardwarefehler"	21
		1 bis 2	reserviert	
		3	"Transceiver Spannungsversorgungsfehler"	2
		4 bis 7	reserviert	

2-24 D101578 1209 - *BL ident*®

Tabelle 18: (Forts.) Diagnosen der Ident-Module

Diagnosebyte und Bit		Bezeichnung I/O-ASSISTANT	DPV1-Error- Code
Diagnos	sen Kanal 2		
2	0	reserviert	
	1	reserviert	
	2	"Ident Überstrom" (Die Versorgung des Schreib-Lese- Kopfes (Transceivers) wird abgeschaltet.)	4
	5	Software-Update für Schreib-Lese-Kopf erforderlich	22
	6	Ungültiger Parameter	16
3	0	"Transceiver Hardwarefehler"	21
	1 bis 2	reserviert	
	3	"Transceiver Spannungsversorgungsfehler"	2
	4 bis 7	reserviert	

2.1.11 Technische Daten

Gefahr

Dieses Gerät kann im Wohnbereich und in der Kleinindustrie (Wohn-, Geschäfts- und Gewerbebereich, Kleinbetrieb) Funkstörungen verursachen. In diesem Fall kann vom Betreiber verlangt werden, angemessene Maßnahmen auf seine Kosten durchzuführen.

Achtung

Die Hilfsenergie muss den Bedingungen der Sicherheitskleinspannung (SELV = Safety extra low voltage) gemäß IEC 364-4-41 entsprechen.

Zulassungen und Prüfungen des Interface-Moduls

Tabelle 19: Zulassungen und Prüfungen nach EN 61131-2

Zulassungen	
Ó	
È	
ſ	
Umgebungstemperatur	
Betriebstemperatur	0 bis +55 °C /32 bis 131 °F
Lagertemperatur	-25 bis +85 °C / -13 bis 185 °F
relative Feuchte	5 bis 95 % (innen), Level RH-2, keine Kondensation (bei 45 °C Lagerung)
Schwingungsprüfung	gemäß EN 61131
Schockprüfung	gemäß IEC 68-2-27
Kippfallen und Umstürzen	gemäß IEC 68-2-31 und freier Fall nach IEC 68-2-32
Elektromagnetische Verträglichkeit	gemäß EN 61131-2
Schutzart	IP 20
Zuverlässigkeit	
Lebensdauer MTBF	120000 h
Zieh-/Steckzyklen der Elektronikmodule	20

Hinweis

Weitere technische Angaben zu den Prüfungen für TURCK-Produkte der BL20-Reihe finden Sie in dem Katalog "BL20 - modulares I/O-Busklemmensystem" (D300417) und dem Handbuch "BL20 – PROFIBUS-DP Hardware und Projektierung" (D300822).

Standard-Gateway-Anschlussebene

Tabelle 20: Technische Daten der Feldbusseite	Bezeichnung	Wert	
	Feldversorgung U _L)	("Versorgungsspannung" Seite 2-5)	
	U _L Nennwert (Bereich)	24 VDC (gemäß 61131-2)	
	I _L Max. Feldversorgungsstrom	10 A	
	Strom aus Feldversorgung pro 2- kanaligem RFID-Modul (ohne Aktor/ Sensorversorgung) ⁾	100 mA	
	Strom aus Feldversorgung zur Versorgung der Schreib-Lese-Köpfe (genaue Angabe siehe technische Daten der Schreib-Lese-Köpfe)	< 250 mA	
	Isolationsspannung – U _L gegen U _{SYS} – U _L gegen Feldbus – U _L gegen FE	500 V _{eff}	
	Anschlusstechnik	2-polige Schraubklemme	
	Systemversorgung U _{SYS})	("Versorgungsspannung" Seite 2-5)	
	U _{SYS} Nennwert (Bereich)	24 VDC (18 bis 30 VDC)	
	I _{SYS} (bei I _{MB} = 1,2 A / U _{SYS} = 18 VDC)	max. 900 mA	
	Nennstrom aus U _{SYS} zur Versorgung des Gateways	430 mA	
	Nennstrom aus U _{SYS} zur Versorgung eines 2-kanaligem RFID-Moduls ⁾	30 mA	
	Isolationsspannung (U _{SYS} gegen U _L / U _{SYS} gegen Feldbus / U _{SYS} gegen FE)	500 V _{eff}	
	Physikalische Schnittstellen		
	Übertragungsrate Feldbus	9,6 kbit/s bis 12 Mbit/s	
	Anschlusstechnik Feldbus	1 x SUB-D-Buchse	
	Feldbusabschluss	extern	
	Adressbereich Feldbus	199	
	Adressierung Feldbus	2 Drehschalter	
	Serviceschnittstelle	PS/2-Buchse für I/O-ASSISTANT	
	Anschlusstechnik Energieversorgung	Schraubanschluss	
	Anschließbar sind passive LWL Adapter	Stromaufnahme max. 100 mA	

Tabelle 20: (Forts.) Technische Daten der	Bezeichnung	Wert
	Isolationsspannung – Feldbus gegen U _{SYS} – Feldbus gegen U _L – Feldbus gegen FE	500 V _{eff}
	Feldbusschirmanschluss	Über SUB-D-Stecker

- $\textbf{A} \ \textit{Die Stromaufnahme aus der Feldversorgung U}_{\text{L}} \ \textit{ergibt sich aus:} \\ \textit{Stromaufnahme Schreib-Lese-Kopf} \times \textit{Anzahl der Schreib-Lese-Köpfe}$
 - Stromaufnahme pro 2-kanaligem RFID-Modul × Anzahl der Module
- **B** Die Stromaufnahme aus der Systemversorgung $U_{\rm SYS}$ ergibt sich aus: Stromaufnahme des Gateways
- Stromaufnahme pro 2-kanaligen RFID-Modul × Anzahl der Module
- ${f C}$ Zur Versorgung der RFID-Modulelektronik wird sowohl aus der Feldversorgung U_L als auch aus der Systemversorgung U_{SYS} Strom entnommen.

2-28 D101578 1209 - *BL ident*®

ECONOMY-Gateway-Anschlussebene

Tabelle 21: Technische Daten der Feldbusseite	Bezeichnung	Wert
	Feldversorgung U _L)	("Versorgungsspannung" Seite 2-5)
	U _L Nennwert (Bereich)	24 VDC (gemäß 61131-2)
	I _L Max. Feldversorgungsstrom	10 A
	Strom aus Feldversorgung pro 2- kanaligem RFID-Modul (ohne Aktor/ Sensorversorgung) ⁾	100 mA
	Strom aus Feldversorgung zur Versorgung der Schreib-Lese-Köpfe (genaue Angabe siehe technische Daten der Schreib-Lese-Köpfe)	< 250 mA
	Isolationsspannung – U _L gegen U _{SYS} – U _L gegen Feldbus – U _L gegen FE	500 V _{eff}
	Anschlusstechnik	Push-In-Federzugklemmen LSF der Fa. Weidmueller
	Systemversorgung U _{SYS})	("Versorgungsspannung" Seite 2-5)
	U _{SYS} Nennwert (Bereich)	24 VDC (18 bis 30 VDC)
	I _{SYS} (bei I _{MB} = 1,2 A / U _{SYS} = 18 VDC)	max. 900 mA
	Nennstrom aus U _{SYS} zur Versorgung des Gateways	430 mA
	Nennstrom aus U _{SYS} zur Versorgung eines 2-kanaligem RFID-Moduls ⁾	30 mA
	Isolationsspannung (U _{SYS} gegen U _L / U _{SYS} gegen Feldbus / U _{SYS} gegen FE)	500 V _{eff}
	Physikalische Schnittstellen	
	Übertragungsrate Feldbus	9,6 kbit/s bis 12 Mbit/s
	Anschlusstechnik Feldbus	1 x SUB-D-Buchse
	Feldbusabschluss	extern
	Adressbereich Feldbus	199
	Adressierung Feldbus	2 Drehschalter
	Serviceschnittstelle	PS/2-Buchse für I/O-ASSISTANT
	Anschlusstechnik Energieversorgung	Push-In-Federzugklemmen LSF der Fa. Weidmueller

Tabelle 21: (Forts.) Technische Daten der	Bezeichnung	Wert
	Anschließbar sind passive LWL Adapter	Stromaufnahme max. 100 mA
	Isolationsspannung – Feldbus gegen U _{SYS} – Feldbus gegen U _L – Feldbus gegen FE	500 V _{eff}
	Feldbusschirmanschluss	Push-In-Federzugklemmen LSF der Fa. Weidmueller

- **A** Die Stromaufnahme aus der Feldversorgung U_L ergibt sich aus: Stromaufnahme Schreib-Lese-Kopf \times Anzahl der Schreib-Lese-Köpfe
 - Stromaufnahme pro 2-kanaligem RFID-Modul × Anzahl der Module
- **B** Die Stromaufnahme aus der Systemversorgung $U_{\rm SYS}$ ergibt sich aus: Stromaufnahme des Gateways
 - Stromaufnahme pro 2-kanaligen RFID-Modul × Anzahl der Module
- ${f C}$ Zur Versorgung der RFID-Modulelektronik wird sowohl aus der Feldversorgung U_L als auch aus der Systemversorgung U_{SYS} Strom entnommen.

2-30 D101578 1209 - *BL ident*®

Anschlussebene Schreib-Lese-Kopf

Tabelle 22: Technische Daten	Bezeichnung	Wert
	Anzahl der Kanäle	2
	Nennspannung aus Versorgungsklemme	24 VDC
	Nennstrom aus Feldversorgung	≤100 mA
	Nennstrom aus Modulbus	≤30 mA
	Verlustleistung, typisch	≤1 W
	Ein-/Ausgänge	
	Übertragungsrate	115,2 kbit/s
	Leitungslänge	50 m
	Leitungsimpedanz	120 Ω
	Potenzialtrennung	Trennung von Elektronik und Feldebene via Optokoppler
	Gleichzeitigkeitsfaktor	1
	Sensorversorgung	250 mA pro Kanal, kurzschlussfest
	Summenstrom (über beide Kanäle)	500 mA
	Anzahl Diagnosebytes	4 (BL67-2RFID-A, BL67-2RFID-S)
	Anzahl Parameterbytes	8 (BL67-2RFID-A, BL67-2RFID-S)
	Anzahl Eingangsbytes	4 (BL67-2RFID-A) 24 (BL67-2RFID-S)
	Anzahl Ausgangsbytes	4 (BL67-2RFID-A) 24 (BL67-2RFID-S)
	Übertragungsart	serielle differentielle Übertragung zum Schreib-Lese-Kopf
	Datenpuffer empfangen/senden	8/8 kByte
	Anschlusstechnik Schreib-Lese-Köpfe	Push-In-Federzugklemmen LSF der Fa. Weidmueller
	Schutzart	IP 20
	Abisolierlänge	8 mm
	max. Klemmbereich	0,5 bis 2,5 mm ²
	klemmbare Leiter	
	"e" eindrähtig H 07V-U	0,5 bis 2,5 mm ²
	"f" feindrähtig H 07V-K	0,5 bis 1,5 mm ²

Montage und Installation

Tabelle 22: (Forts.) Technische Daten	Bezeichnung	Wert		
	"f" mit Aderendhülsen nach DIN 46228/1 (Aderendhülsen gasdicht aufgecrimpt)	0,5 bis 1,5 mm ²		
	Lehrdorn nach IEC 947-1/1988 A1			
	Bemessungsdaten nach VDE 0611 Teil 1/8.92/IEC 947-7-1/1989			
	Bemessungsspannung	250 V		
	Bemessungsstrom	17,5 A		
	Bemessungsquerschnitt	1,5 mm ²		
	Bemessungsstoßspannung	4 kV		
	Verschmutzungsgrad	2		

2-32 D101578 1209 - *BL ident*®

2.2 Interfaces in der Schutzart IP67

2.2.1 Abbildungen und Ausführungen der Interface-Module

BL67-Module

Die BL ident ®-PROFIBUS-DP-Schnittstelle ist mit 2, 4, 6, 8 Kanälen erhältlich.

Interface-Module mit dem Zusatz "-S" (Simple) stehen für die Möglichkeit einer einfachen Inbetriebnahme. Mit einem Schreib- oder Lese-Befehl können 8 Byte übertragen werden. Interface-Module ohne den Zusatz "S" bieten eine größere Anzahl an möglichen Befehlen und eine große Datenübertragungsmenge pro Befehl.

Abbildung 28: BL ident ®-Interface-Module in der Schutzart IP67, 2- und 8kanalig

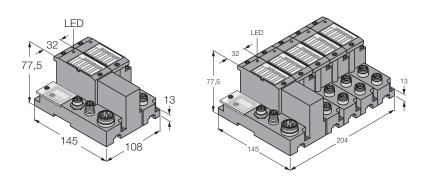
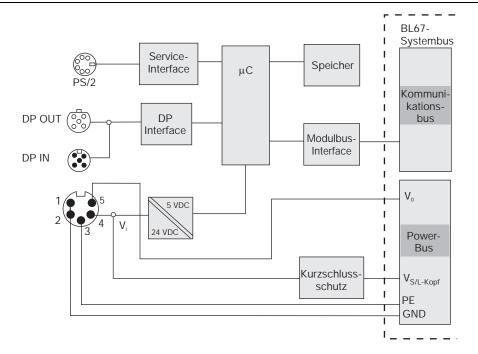


Tabelle 23: Ausführungen der BL ident®-Interface-Module in der Schutzart IP67


Produktbezeichnung	Identnummer
TI-BL67-DPV1-2	1545028
TI-BL67-DPV1-4	1545029
TI-BL67-DPV1-6	1545030
TI-BL67-DPV1-8	1545031
TI-BL67-DPV1-S-2	1545106
TI-BL67-DPV1-S-4	1545107
TI-BL67-DPV1-S-6	1545108
TI-BL67-DPV1-S-8	1545109

BL67-Module - Prinzipschaltbild

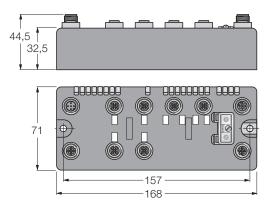
Die folgende Abbildung zeigt unter anderem, wie die Spannungen V_I (Pin 4) und V_O (Pin 5) von den programmierbaren Ethernet-Gateways verwendet und weitergeleitet werden:

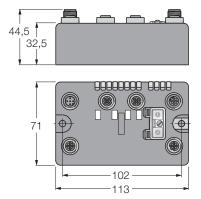
Abbildung 29: Prinzip-Schaltbild des Interface-Moduls

2-34

D101578 1209 - *BL ident*®

BL compact-Module


Die BL compact-PROFIBUS-DP-Schnittstelle ist mit 2 Kanälen erhältlich.


Module mit dem Zusatz "-S" (Simple) stehen für die Möglichkeit einer einfachen Inbetriebnahme. Mit einem Schreib- oder Lese-Befehl können 8 Byte übertragen werden. Module mit dem Zusatz "-A" bieten eine größere Anzahl an möglichen Befehlen, eine große Datenübertragungsmenge pro Befehl und einen azyklischen Datenautausch.

Das *BL compact*-Modul BLCDP-6M12LT-2RFID-S-8XSG-PD verfügt zusätzlich über 8 digitale Eingänge/Ausgänge, konfigurierbar, PNP mit Diagnosefunktion.

Weitere Informationen zu BL compact finden Sie online unter http://www.turck.com...

Abbildung 30: BL compact-Module in der Schutzart IP67

Tabelle 24:
Ausführun-
gen der BL
compact-
Module in der
Schutzart
ID67

Produktbezeichnung	Identnummer
BLCDP-2M12MT-2RFID-A	6811166
BLCDP-2M12MT-2RFID-S	6811177
BLCDP-6M12LT-2RFID-S-8XSG-PD	6811179

2.2.2 Versorgungsspannung

BL67-Module

Die Versorgung des *BL ident* [®]-BL67-Interface-Moduls wird über einen 7/8"-Steckverbinder U_I/GND_I und U_{MB}/GND_{MB} am Gateway (Feldversorgung und Systemversorgung) durchgeführt.

Die Versorgungsspannung muss in dem Bereich 18 bis 30 VDC (Nennwert 24 VDC) liegen.

Die **Systemversorgungsspannung** (U_{MB}/GND_{MB}) beträgt transformiert 5 VDC (aus 24 VDC) und ca. 1,5 A bei vollem Stationsausbau. Diese Spannung wird intern mit einem Aderpaar des 7-adrigen Modulbusses übertragen und dient zur Versorgung der modulbusseitigen Modulelektronik.

Die **Feldversorgungsspannung** (U_L/GND_L) beträgt 24 VDC und kann maximal 10 A liefern. Diese Spannung wird über eine Stromschiene durch das Interface-Modul geführt. Die feldbusseitige Modulbuselektronik und die angeschlossenen Schreib-Lese-Geräte werden von der Feldversorgungsspannung gespeist ("Anschlüsse der Schreib-Lese-Köpfe für BL67-Module und BL compact-Module" Seite 2-45)

Abbildung 31: 7/8"-Stecker

Tabelle 25:
Pinbelegung
des 7/8"-
Steckers

Pin- Nr.	Farbe	7/8"	Bezeichnung
1	schwarz	GND	
2	blau	GND	
3	grün/gelb	PE	Schutzerde
4	braun	V _I (U _{MB})	Einspeisung der Nennspannung für Eingänge (Sensorversorgung V _{S/L-Kopf}); hieraus wird auch die Systemversorgung gewonnen.
5	weiß	V _O (U _L)	Einspeisung der Nennspannung für Ausgänge (versorgt beim BL67-2RFID-Modul den feldbusseitigen Microcontroller).

Die "Prinzip-Schaltbild des Interface-Moduls" Seite 2-34 zeigt, wie die Spannungen V_l (4) und V_0 (5) vom Interface-Modul verwendet und weitergeleitet werden.

Die Schreib-Lese-Köpfe werden über die Spannung $V_{S/L-Kopf}$ (V_I) versorgt. Dieser Anschluss ist überlast- und kurzschlussfest.

Die LED "VI" Seite 2-52 zeigt an, wenn diese Spannung fehlerhaft ist.

In dem TURCK-Katalog "Feldbustechnik" D301052 finden Sie im Anhang vorkonfektionierte Kabel für PROFIBUS-DP.

BL compact-Module

Die Versorgung wird bei den Modulen über M12 x 1-Steckverbinder, 5-polig mit der Beschriftung "AUX" durchgeführt.

■ M12 x 1-Stecker zum Anschluss der ankommenden Versorgung:

Abbildung 32: Stecker -"AUX IN"

■ M12 x 1-Buchse für den Anschluss der abgehenden Versorgung:

Abbildung 33: Buchse -"AUX OUT"

Tabelle 26: Pinbelegung der M12 x 1--Steckverbind

Pin- Nr.	Farbe	M12 x 1	Bezeichnung
1	braun	V _I (U _B)	Einspeisung der Nennspannung für Eingänge (Sensorversorgung $V_{\text{S/L-Kopf}}$); hieraus wird auch die Systemversorgung gewonnen.
2	weiß	V _O (U _L)	Einspeisung der Nennspannung für Ausgänge (versorgt beim BL67-2RFID-Modul den feldbusseitigen Microcontroller).
3	schwarz	GND	
4	blau	GND	
5	grün/gelb	PE	Schutzerde

In dem TURCK-Katalog "Feldbustechnik" D301052 finden Sie im Anhang vorkonfektionierte Kabel für PROFIBUS-DP.

2.2.3 Feldbusansschluss

M12-Busanschluss für BL67-Module und BL compact-Module

Die Verbindung zum PROFIBUS-DP wird bei den Modulen über M12 x 1 Steckverbinder, 5-polig, invers kodiert durchgeführt.

■ M12 x 1-Stecker zum Anschluss der ankommenden Buslinie:

Abbildung 34: PBDP-Stecker -"DP IN"

■ M12 x 1-Buchse für den Anschluss des abgehenden Buskabels:

Abbildung 35: PBDP-Buchse -"DP OUT"

Tabelle 27: Pinbelegung des M12 x 1-Steckverbind ers

Pin-Nr.	M12 x 1	Bezeichnung
1	5 V	Versorgung externer Geräte
2	А	(+)-Datenleitung; Empfangs-/Sende-Daten-P; grün
3	GND	Datenbezugspotenzial
4	В	(-)-Datenleitung; Empfangs-/Sende-Daten-N; rot
5	n.c.	nicht belegt
Flansch		Schirmanschluss/Funktionserde

Achtung

Es dürfen keine Ausgleichsströme über den Schirm fließen. Dazu muss ein sicheres System für den Potenzialausgleich geschaffen werden!

Busabschluss für BL67-Module und BL compact-Module

Wird das Modul als erster oder letzter Teilnehmer in der Buskommunikation (an einem Ende eines Bussegments) eingesetzt ist, muss der Feldbus terminiert werden. Das BL67-Gateway selbst bietet keine Möglichkeit zur Terminierung des Feldbusses. Die Buchse für den Anschluss des abgehenden Buskabels (DP-OUT) muss mit einem Stecker mit integriertem Abschlusswiderstand (zum Beispiel RSS4.5-PDP-TR, Ident-Nr.: 6601590 als passiver Abschlusswiderstand oder PDP-TRA, Ident-Nr.: 6825346 als aktiver Abschlusswiderstand) geschlossen werden.

Hinweis

Der Busabschluss muss extern über einen Stecker mit integriertem Abschlusswiderstand durchgeführt werden.

2.2.4 Adressierung

BL67-Module

Die Adressierung des *BL ident* [®]-Interface-Moduls am PROFIBUS-DP wird über drei dezimale Drehkodierschalter neben der Service-Schnittstelle durchgeführt.

Hinweis

Entfernen Sie die Schutzabdeckung, um an den Drehkodierschalter zu gelangen

Abbildung 36: Dezimale Drehkodierschalter für die Einstellung der PROFI-BUS-DP-Adresse

Х

Achtung

Es können maximal 125 Adressen (001 bis 125) vergeben werden. Jede Adresse darf in der gesamten Busstruktur nur einmal vergeben werden.

Die Busadressen 000, 126 und 127 dürfen nicht verwendet werden.

Achtung

Nach der Adressierung muss die Schutzabdeckung über den Schaltern wieder fest verschraubt werden. Achten Sie darauf, dass die Dichtung der Schutzabdeckung nicht beschädigt oder verrutscht ist. Die Schutzart IP67 kann nur bei korrekt geschlossener Abdeckung gewährleistet werden.

2-40 D101578 1209 - *BL ident*®

BL compact-Module

Die Adressierung des *BL compact*-Moduls am PROFIBUS-DP wird über zwei dezimale Drehkodierschalter über der Service-Schnittstelle durchgeführt.

Hinweis

Entfernen Sie die Schutzabdeckung, um an den Drehkodierschalter zu gelangen

Abbildung 37: Dezimale Drehkodierschalter für die Einstellung der PROFI-BUS-DP-Adresse

Achtung

Es können maximal 99 Adressen (01 bis 99) vergeben werden. Jede Adresse darf in der gesamten Busstruktur nur einmal vergeben werden.

Die Busadresse 00 darf nicht verwendet werden.

Achtung

Nach der Adressierung muss die Schutzabdeckung über den Schaltern wieder fest verschraubt werden.

Achten Sie darauf, dass die Dichtung der Schutzabdeckung nicht beschädigt oder verrutscht ist.

Die Schutzart IP67 kann nur bei korrekt geschlossener Abdeckung gewährleistet werden.

D101578 1209 - BL ident®

2.2.5 Service-Schnittstelle

BL67-Module

Die Service-Schnittstelle verbindet das *BL ident* [®]-Interface-Modul mit einem PC. Mit der Software I/O-ASSISTANT kann das Interface-Modul projektiert und Diagnosemeldungen angezeigt werden.

Hinweis

Entfernen Sie die Schutzabdeckung, um an die Service-Schnittstelle zu gelangen

Hinweis

Nach einem Spannungsreset liest das Gateway die Parameter der Module aus. Sind die Parameter des RFID-Moduls fehlerhaft, wird das Gateway diese übernehmen. Werden die Parameter nicht verändert, d. h. die Station ist nicht am Feldbus oder es wurde keine Parameteränderung per I/O-ASSISTANT vorgenommen, dann bleiben diese fehlerhaften Parameter im Modul weiter bestehen!

Die Verbindung Service-Schnittstelle / PC muss mit einem speziell hierfür konfektioniertem Kabel vorgenommen werden.

■ TURCK Verbindungskabel (I/O-ASSISTANT-KABEL-BL20/BL67; Ident Nr.: 6827133)

Das Kabel hat einen PS/2-Stecker (Anschluss für Buchse am Gateway) und eine SUB-D-Buchse (Anschluss für Stecker am PC).

Abbildung 38: PS/2-Stecker am Anschlusskabel zum Gateway (Draufsicht)

Abbildung 39: 9-polige SUB-D-Buchse am Anschlusskabel zum PC (Draufsicht)

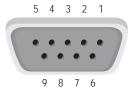
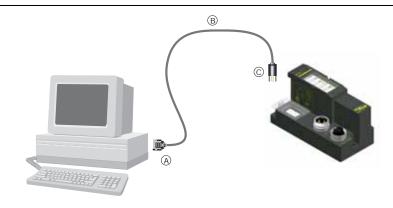



Abbildung 40: Verbindung zwischen PC und BL67-Interface-Modul über das TURCK Verbindungskabel

Pinbelegung des PS/2-Kabels

Die Tabelle zeigt die Pinbelegung bei Verwendung des PS/2-Kabels:

Tabelle 28:
Pinbelegung
mit PS/2-
Kabel

PS/2		9-polige serielle Schnittstelle am PC		
Pin- Nr.	Standard PS/2-Stecker	BL67 Gateway: PS/2-Buchse	Pin- Nr.	Stecker
1	CLK	+5 V (vom Gateway)	4, 6	DTR, DSR
2	GND	GND	5	GND
3	DATA	nicht genutzt	-	-
4	n.c. (DATA2)	TxD	2	RxD
5	+5 V	/CtrlMode	7	RTS
6	n.c. (CLK2)	RxD	3	TxD

BL compact-Module

Die Service-Schnittstelle verbindet das *BL compact*-Modul mit einem PC. Mit der Software I/O-ASSISTANT kann das Interface-Modul projektiert und Diagnosemeldungen angezeigt werden.

Hinweis

Die Service-Schnittstelle befindet sich unter dem oberen Schutzabdeckung am Modul.

Die Verbindung Service-Schnittstelle / PC muss mit einem speziell hierfür konfektioniertem Kabel vorgenommen werden.

TURCK-Verbindungskabel (I/O-ASSISTANT-KABEL-PICONET; Ident Nr.: 6824399)

Abbildung 41: Service-Schnittstelle BL compact

D101578 1209 - BL ident®

2.2.6 Anschlüsse der Schreib-Lese-Köpfe für BL67-Module und BL compact-Module Vorkonfektionierte Verbindungsleitungen mit Kupplung und Stecker

Tabelle 29: Vorkonfektio- nierte Verbindungs- leitungen (BL67)	Typenbezeichnung (Identnummer)	Kupplung ^{A)} / Stecker ^{B)} gerade = g abgewinkelt = a	0,3 m	2 m	5 m	10 m	25 m	50 m
	RK4.5T-0,3-RS4.5T/S2500 (6699210)	g/g	Х					
	RK4.5T-2-RS4.5T/S2500 (6699200)	g/g		Х				
	RK4.5T-5-RS4.5T/S2500 (6699201)	g/g			Х	Х		
	RK4.5T-10-RS4.5T/S2500 (6699202)	g/g				Х	Х	
	RK4.5T-25-RS4.5T/S2500 (6699211)	g/g					Х	
	RK4.5T-50-RS4.5T/S2500 (8035246)	g/g						Х
	WK4.5T-2-RS4.5T/S2500 (6699203)	a/g		Х				
	WK4.5T-5-RS4.5T/S2500 (6699204)	a/g			Х			
	WK4.5T-10-RS4.5T/S2500 (6699205)	a/g				Х		
	WK4.5T-25-RS4.5T/S2500 (6638425)	a/g					х	
	WK4.5T-50-RS4.5T/S2500 (6638426)	a/g						Х

A Die "Kupplung" dient zum Anschluss des Schreib-Lese-Kopfes

B Der "Stecker" wird am Interface-Modul angeschlossen

Vorkonfektionierte Verbindungsleitungen mit Kupplung

Die "Kupplung" dient zum Anschluss an den Schreib-Lese-Kopfes. Zum Anschluss an das Interface-Modul stehen die M12-Stecker BS8151-0/9 (6904613) zur Verfügung.

Hinweis

Beachten Sie bei der Montage des Steckers die "Pinbelegung für die Verbindungsleitungen" Seite 2-48!

Tabelle 30: Vorkonfektionierte Verbindungsleitungen (BL67)

2-46

Typenbezeichnung (Identnummer)	Kupplung ^{A)} gerade = g abgewinkelt = a	2m	5 m	10 m	25 m	50 m	
RK4.5T-2/S2500 (8035244)	g	Х					
RK4.5T-5/S2500 (6699206)	g		Х				
RK4.5T-10/S2500 (6699207)	g			Х			
RK4.5T-25/S2500 (6638421)	g				х		
RK4.5T-50/S2500 (6638422)	g					Х	
WK4.5T-2/S2500 (8035245)	a	Х					
WK4.5T-5/S2500 (6699208)	a		х				
WK4.5T-10/S2500 (6699209)	a			Х			
WK4.5T-25/S2500 (6699423)	a				х		
WK4.5T-50/S2500 (6638424)	a					Х	
Für den Lebensmittelbereich (FB = Food and Beverage) - IP69K							
FB-RK4.5T-5/S2500 (7030281)	g		х				
FB-RK4.5T-10/S2500 (7030282)	g			Х			
FB-RK4.5T-25/S2500 (7030283)	g				X		

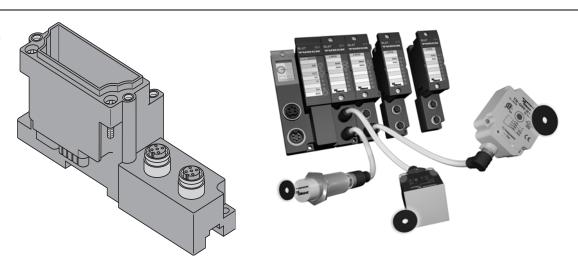
D101578 1209 - *BL ident*®

Tabelle 30: Vorkonfektio- nierte Verbindungs- leitungen (BL67)	Typenbezeichnung (Identnummer)	Kupplung ^{A)} gerade = g abgewinkelt = a	2m	5 m	10 m	25 m	50 m
	FB-RK4.5T-50/S2500 (7030284)	g					X
	FB-WK4.5T-5/S2500 (7030285)	а		х			
	FB-WK4.5T-10/ S2500 (7030286)	a			Х		
	FB-WK4.5T-25/ S2500 (7030287)	a				Х	
	FB-WK4.5T-50/ S2500 (7030288)	a					Х

A Die "Kupplung" dient zum Anschluss des Schreib-Lese-Kopfes

Verbindungsleitungen zur Montage eines Steckers und einer Kupplung

Das für *BL ident* [®] und *BL compact* geeignete Kabel "KABEL-BLIDENT-100M" können Sie selbst konfektionieren. Montieren Sie dazu den M12-Stecker "BS8151-0/9" (6904613) zum Anschluss an das Interface-Modul und die M12-Kupplung "B8151-0/9" (6904604) zum Anschluss des Schreib-Lese-Kopfes.



Hinweis

Beachten Sie bei der Montage des Steckers und der Kupplung die "Pinbelegung für die Verbindungsleitungen" Seite 2-48.


Anschlussebene - Basismodul BL67-B-2M12

Abbildung 42: Anschlussebene

Pinbelegung für die Verbindungsleitungen

Abbildung 43: Pinbelegung Stecker (links) und Kupplung (rechts)

Tabelle 31: Pinbelegung zu BL67- PRFID	Kanal	Pinbelegung des BL67-B- 2M12	Pinbeleg ung des Steckers	Signal	Farbbelegung ^{A)} RK4.5T und WK4.5T	Farbbelegung ^{A)} FB4.5T
	1	0.1	1	V _{S/L-Kopf}	Braun (BN)	Braun (BN)
		0.3	3	GND	Blau (BU)	Blau (BU)
		0.2	2	Data-	Schwarz (BK)	Weiß (WH)
		0.4	4	Data+	Weiß (WH)	Schwarz (BK)
	2	1.1	1	V _{S/L-Kopf}	Braun (BN)	Braun (BN)
		1.3	3	GND	Blau (BU)	Blau (BU)
		1.2	2	Data-	Schwarz (BK)	Weiß (WH)
		1.4	4	Data+	Weiß (WH)	Schwarz (BK)

A Diese Angaben beziehen sich auf die für BL ident [®]vorkonfektionierten TURCK-Steckverbinder

2.2.7 Diagnosen über LEDs

BL67-Module – LEDs der Feldbusseite

Tabelle 32: LED-Anzeigen	LED	Status	Bedeutung	Abhilfe
	GW	AUS	CPU wird nicht mit Spannung versorgt.	Prüfen Sie die am Gateway anliegende Spannungsversorgung des Systems.
		grün	Firmware aktiv; Gateway betriebs- und sendebereit.	-
		grün blinkend, 1 Hz	Firmware nicht aktiv.	Wenn LED " IOs " rot, Firmware-download notwendig.
		grün blinkend, 4 Hz	Firmware aktiv, Hardware des Gateways defekt.	Tauschen Sie das Gateway aus.
		rot und LED "IOs" AUS	Controller nicht betriebsbereit oder V _{CC} -Pegel nicht im erforderlichen Bereich → mögliche Ursachen: – zu viele Module am Gateway – Kurzschluss in angeschlossenem Modul – Gateway defekt.	Prüfen Sie die am Gateway anliegende Spannungsversorgung des Systems und die Verdrahtung. Demontieren Sie überschüssige Module. Tauschen Sie ggf. das Gateway aus.
	IOs	AUS	CPU wird nicht mit Spannung versorgt.	 Prüfen Sie die am Gateway anliegende Spannungsversorgung des Systems.
		grün	Konfigurierte Konstellation der Modulbus-Teilnehmer entspricht der realen; Kommunikation läuft.	-
		grün blinkend, 1 Hz	Station befindet sich im Force- Mode des I/O-ASSISTANT.	Deaktivieren Sie den Force Mode des I/O-ASSISTANT.
		grün blinkend, 4 Hz	Die maximal zulässige Anzahl der am Gateway angeschlossenen Module wurde überschritten.	Prüfen Sie die Anzahl der am Gateway angeschlossenen Module und demontieren Sie ggf. überschüssige Module.

2-50 D101578 1209 - *BL ident*®

Tabelle 32: (Forts.) LED-Anzeigen	LED	Status	Bedeutung	Abhilfe
		rot und LED "GW" AUS	Controller nicht betriebsbereit oder V _{cc} -Pegel nicht im erforderlichen Bereich → mögliche Ursachen: – zu viele Module am Gateway – Kurzschluss in angeschlossenem Modul – Gateway defekt.	 Prüfen Sie die am Gateway anliegende Spannungsversorgung des Systems und die Verdrahtung. Demontieren Sie überschüssige Module. Tauschen Sie ggf. das Gateway aus.
		rot blinkend, 1 Hz	Nicht adaptierbare Veränderung der realen Konstellation der Modulbusteilnehmer.	 Vergleichen Sie die Projektierung Ihrer BL67- Station mit der realen Konstellation. Prüfen Sie den Aufbau Ihrer BL67-Station auf defekte oder falsch gesteckte Elektronikmodule.
		rot blinkend, 4 Hz	Keine Kommunikation über den Modulbus.	 Mindestens 1 Elektronikmodul muss gesteckt sein und mit dem Gateway kommunizieren können.
		rot/grün blinkend, 1 Hz	Adaptierbare Veränderung der realen Konstellation der Modulbusteilnehmer.	 Prüfen Sie Ihre BL67-Station auf gezogene oder neue, nicht projektierte Module.
	V _{cc}	AUS	CPU wird nicht versorgt.	 Prüfen Sie die Systemversorgung am Gateway.
		grün	Modulbus und CPU o.k.	-
	Vo	grün	Versorgung der Ausgänge o.k.	-
		grün blinkend, 1 Hz	Unterspannung V _O ; System läuft.	Prüfen Sie die am Gateway anliegende Spanningsversorgung des
			grün blinkend, 4 Hz	Überspannung V _O ; System läuft
		AUS	Spannungsversorgung fehlt	

Tabelle 32: (Forts.) LED-Anzeigen	LED	Status	Bedeutung	Abhilfe
	V _I	grün	V _I o.k.	-
		grün blinkend, 1 Hz	Unterspannung V _I ; System läuft	Prüfen Sie die am Gateway anliegende
		grün blinkend, 4 Hz	Überspannung V _I ; System läuft	Spannungsversorgung des Systems.
		rot	Kurzschluss oder Überlast an Sensorversorgung $V_{\text{S/L-Kopf}} \rightarrow$ Abschalten der Sensorversorgung	 Es erfolgt ein automatischer Wiederanlauf sobald der Fehler nicht mehr vorliegt.
		AUS	Spannungsversorgung fehlt	 Prüfen Sie die am Gateway anliegende Spannungsversorgung des Systems.
	DIA	AUS	Gateway sendet keine Diagnose	-
		rot	Gateway sendet statische Diagnose	 Tauschen Sie das Gateway aus (Hardware-Fehler).
		rot blinkend, 1 Hz	Gateway sendet erweiterte Diagnose	 Prüfen Sie die einzelnen Elektronikmodule Ihrer BL67- Station auf Diagnosemeldungen. Prüfen Sie die Diagnosemeldungen mit Ihrer SPS-Software.
	Bus	AUS	Feldbus nicht in Betrieb	 Warten Sie auf Beendigung des Firmware-Downloads. Nach Beendigung des Downloads: Hardware- Fehler; Tauschen Sie das Gateway aus.
		grün	Kommunikation zwischen Gateway und PROFIBUS-DP- Master fehlerfrei	-

2-52 D101578 1209 - BL ident®

Tabelle 32: (Forts.) LED-Anzeigen	LED	Status	Bedeutung	Abhilfe
	Bus	rot	Busfehler am Gateway; es findet kein Datenaustausch statt.	 Prüfen Sie, ob die für die Station im Projekt der Steuerungssoftware vergebene Adresse mit der am Modul eingestellten Adresse übereinstimmt. Prüfen Sie, ob der PROFIBUS-DP mit einem aktiven Abschlusswiderstand beendet wird, wenn das BL67-Gateway der letzte Teilnehmer in der Bus-Topologie ist. Überprüfen Sie den Sitz des PROFIBUS-DP-Steckers. Prüfen Sie das Kabel zum PROFIBUS-DP-Master auf Beschädigung und korrekten Anschluss. Prüfen Sie, ob die korrekte Baudrate im SPS-Master eingestellt ist. Vergleichen Sie die Projektierung der Station mit der vorhandenen Modulliste.
	Bus	rot blinkend, 1 Hz	Am Gateway ist eine nicht erlaubte PROFIBUS-DP Adresse eingestellt.	 Prüfen Sie die am Gateway eingestellt PROFIBUS-DP- Adresse. Nicht erlaubt sind: 000 und Adressen > 125. Siehe dazu auch Abschnitt "Adressierung" Seite 2-39.

BL67 - LEDs zu den RFID-Anschlüssen

rot blinkend

2 Hz

Die LEDs befinden sich auf den Modulen oberhalb der Anschlussebene

Tabelle 33: RFID-An- schlüsse	LED	Status	Bedeutung	Abhilfe
	D	AUS	Normaler Datenaustausch	
		rot	Modulbuskommunikation ist ausgefallen	Prüfen Sie, ob mehr als 2 benachbarte Elektronikmodule gezogen wurden. Relevant sind Module, die sich zwischen Gateway und diesem Modul befinden.
		rot blinkend 0,5 Hz	Diagnose liegt vor	
	RW 0 RW 1	AUS	Kein Tag im Empfangsbereich	
		grün	Tag im Empfangsbereich	
		grün blinkend 2 Hz	Datenübertragung von / zum Tag	
		rot	Kanalfehler, Details in der Diagnosemeldung	

Kurzschluss

Versorgung Schreib-Lese-Kopf

2-54 D101578 1209 - *BL ident*®

BL compact-Module - Stations-LEDs

Tabelle 34:
BL compact-
LED-Stations-
anzeigen

LED	Status	Bedeutung
IOs	AUS	Keine Spannungsversorgung
	rot	Spannungsversorgung unzureichend
	rot blinkend 1 Hz	Abweichende Stationskonfiguration
	rot blinkend 4 Hz	Keine Modubus-Kommunikation
	grün	Station o.k.
	grün blinkend	Force-Modus aktiv
DIA	AUS	Station sendet keine Diagnose
	rot	Station sendet statische Diagnose
	rot blinkend	Station sendet erweiterte Diagnose
BUS	AUS	Keine Feldbuskommunikation
	grün	Feldbuskommunikation aktiv
	grün blinkend 1 Hz	Keine Feldbuskommunikation aktiv, Gerätestatus o.k.
	rot	Busfehler am Gateway, kein Datenaustausch
	rot blinkend	Fehlerhafte PROFIBUS-DP-Adresse

BL compact-Module – LEDs zu den RFID-Anschlüssen

Tabelle 35:	LED
BL compact-	
LED-I/O-An-	
zeigen	
	_
	D

LED	Status	Bedeutung	
D	AUS	Keine Diagnose aktiv	
	rot	Stations-/Modulbus-Kommunikationsfehler	
	rot blinkend 0,5 Hz	Sammeldiagnose	
RW0/ RW1	AUS	Kein Tag vorhanden, keine Diagnose aktiv	
	grün	Tag vorhanden	
	grün blinkend 2 Hz	Datenaustausch mit dem Tag aktiv	
	rot	Kanalfehler, Details in der Diagnosemeldung	
	rot blinkend 2 Hz	Kurzschluss Versorgung Schreib-Lese-Kopf	

2-56 D101578 1209 - *BL ident*®

2.2.8 Diagnosemeldungen und Parametrierung des BL67-Gateways

Eine vollständige Beschreibung zu den Gateway-Diagnosemeldungen und Parametriermöglichkeiten finden Sie in den Handbüchern:

"BL67 Anwenderhandbuch für PROFIBUS-DP" D300570 für DPV0

"BL67/BL20 - DPV1-Gateway" D300955 Ergänzungshandbuch für DPV1

2.2.9 Parametrierung der BL67-2RFID-A/BL67-2RFID-S-Module BL67-2RFID-A

Zur Zeit werden bei BL20-2RFID-A folgende Parameter übertragen:

- "Überbrückungszeit Kx[n*4ms]" mit dem 1 Byte Parameter-Datenabbild
- "Betriebsart" mit den Modi "Standardzugriff", "Schnellzugriff" und "Antikollision ein"
- "Datenträgertyp"
- "Sendepegel" (für die UHF-Schreib-Lese-Köpfe)
- "Sendefrequenz" (für die UHF-Schreib-Lese-Köpfe)

Hinweis

Die Parameter für die UHF-Schreib-Lese-Köpfe "Sendepegel" und "Sendefrequenz" werden zwar angezeigt aber z. Zt. noch nicht unterstützt.

Der Parameter "Ueberbrueckungszeit Kx[n*4ms]" muss nur dann verändert/angepasst werden, wenn bei der Inbetriebnahme eine bestimmte Fehlermeldung erscheint ("Parameter" Seite 3-73):

BL67-2RFID-S

Zur Zeit werden bei BL20-2RFID- folgende Parameter übertragen:

- "Überbrückungszeit Kx[n*4ms]" mit dem 1 Byte Parameter-Datenabbild
- "Betriebsart" mit den Modi "Standardzugriff" und "Schnellzugriff"
- "Datenträgertyp"
- "Sendepegel" (für die UHF-Schreib-Lese-Köpfe)
- "Sendefrequenz" (für die UHF-Schreib-Lese-Köpfe)

Hinweis

Die Parameter für die UHF-Schreib-Lese-Köpfe "Sendepegel" und "Sendefrequenz" werden zwar angezeigt aber z. Zt. noch nicht unterstützt.

Der Parameter "Ueberbrueckungszeit Kx[n*4ms]" muss nur dann verändert/angepasst werden, wenn bei der Inbetriebnahme eine bestimmte Fehlermeldung erscheint ("Parameter" Seite 3-73):

D101578 1209 - *BL ident*[®] 2-57

2.2.10 Diagnosemeldungen der *BL ident* [®]-Kanäle

bis 2

4

bis

reserviert

Mögliche Software-Diagnosemeldungen (I/O-ASSISTANT):

Tabelle 36: Diagnosen der Ident-Mo- dule	-	gnose e und	Bezeichnung I/O-ASSISTANT	DPV1-Error- Code
	Diag	nosen k	Kanal 1	
	0	0	reserviert	
		1	reserviert	
		2	"Ident Überstrom" (Die Versorgung des Schreib-Lese- Kopfes (Transceivers) wird abgeschaltet.)	4
		5	Software-Update für den Schreib-Lese-Kopf notwendig	22
		6	Ungültiger Parameter	16
	1	0	"Transceiver Hardwarefehler"	21
		1	reserviert	

"Transceiver Spannungsversorgungsfehler"

2

2-58 D101578 1209 - *BL ident*®

Tabelle 36: (Forts.) Diagnosen der Ident-Mo-

Diagnose byte und -bit		Bezeichnung I/O-ASSISTANT	DPV1-Error- Code
Diag	nosen K	Canal 2	
2	0	reserviert	
	1	reserviert	
	2	"Ident Überstrom" (Die Versorgung des Schreib-Lese- Kopfes (Transceivers) wird abgeschaltet.)	4
	5	Software-Update für den Schreib-Lese-Kopf notwendig	22
	6	Ungültiger Parameter	16
3	0	"Transceiver Hardwarefehler"	21
	1 bis 2	reserviert	
	3	"Transceiver Spannungsversorgungsfehler"	2
	4 bis 7	reserviert	

2.2.11 Technische Daten

Gefahr

Dieses Gerät kann im Wohnbereich und in der Kleinindustrie (Wohn-, Geschäfts- und Gewerbebereich, Kleinbetrieb) Funkstörungen verursachen. In diesem Fall kann vom Betreiber verlangt werden, angemessene Maßnahmen auf seine Kosten durchzuführen.

Achtung

Die Hilfsenergie muss den Bedingungen der Sicherheitskleinspannung (SELV = Safety extra low voltage) gemäß IEC 364-4-41 entsprechen.

D101578 1209 - BL ident® 2-59

Tabelle 37: Zulassungen und Prüfungen nach EN 61131-2

BL67-Module - Zulassungen und Prüfungen des Interface-Modul

Bezeichnung	Wert
Zulassungen	
Ó	
È	
Í	
Umgebungstemperatur	
Betriebstemperatur	0 bis +55 °C /32 bis 131 °F
Lagertemperatur	-25 bis +85 °C / -13 bis 185 °F
Relative Feuchte	5 bis 95 % (innen), Level RH-2, keine Kondensation (bei 45 °C Lagerung)
Schwingungsprüfung	gemäß IEC 61131-2
Schockprüfung	gemäß IEC 68-2-27
Kippfallen und Umstürzen	gemäß IEC 68-2-31 und freier Fall nach IEC 68-2-32
Elektromagnetische Verträglichkeit	gemäß IEC 61131-2
Schutzart	IP67
Zuverlässigkeit	
Lebensdauer MTBF	min. 120000 h
Zieh-/Steckzyklen der Elektro- nikmodule	20

Hinweis

Weitere technische Angaben zu den Prüfungen für TURCK Produkte der BL67-Reihe finden Sie in dem Katalog "BL67- modulares I/O-Busklemmensystem in IP67" (BL67_D_d300574) und dem Handbuch "BL67-Anwenderhandbuch für PROFIBUS-DP" (D300570).

2-60 D101578 1209 - *BL ident*®

BL67-Module - Gateway-Anschlussebene

Tabelle 38: Technische Daten der Feldbusseite	Bezeichnung	Wert
	Versorgung für Ausgänge	("Versorgungsspannung" Seite 2-36)
	V _O (U _L) Nennwert (Bereich)	24 VDC (18 bis 30 VDC)
	Max. Feldversorgungsstrom	10 A
	Versorgung für Eingänge (auch Schreib- Lese-Köpfe) und Systemversorgung (transformiert zu 5 VDC)	
	V _I (U _B) Nennwert (Bereich)	24 VDC (18 bis 30 VDC)
	I _{VI} (Absicherung Versorgung für Eingänge gegen Überlast und Kurzschluss)	4 A
	Strom aus V _I zur Versorgung des Gateways	650 mA
	Strom aus V _I zur Versorgung einer 2- kanalige RFID-Anschaltung	130 mA
	Strom aus V _I zur Versorgung der Schreib- Lese-Köpfe (genaue Angabe siehe technische Daten der Schreib-Lese- Köpfe)	< 250 mA
	Systemversorgung (5 VDC aus V _I)	
	I _{MB} (Max. Ausgangsstrom der Modulbusversorgung)	1,5 A
	Physikalische Schnittstellen	
	Übertragungsrate Feldbus	9,6 kbit/s bis 12 Mbit/s
	Anschlusstechnik Feldbus	2 × M12, 5-polig, invers codiert
	Feldbusabschluss	extern
	Adressbereich Feldbus	1125
	Adressierung Feldbus	3 dezimale Drehschalter
	Serviceschnittstelle	PS/2-Buchse für I/O-ASSISTANT
	Anschlusstechnik Energieversorgung	5-poliger 7/8"-Stecker

BL67-Module - Anschlussebene Schreib-Lese-Kopf

Tabelle 39: Technische Daten der Anschlussebene zu den Schreib-Lese-Köpfen

Ein-/Ausgänge	
Anzahl der Kanäle	2
Übertragungsart	serielle differentielle Übertragung zum Schreib-Lese-Kopf
Datenpuffer empfangen/senden	8/8 kByte
Übertragungsrate	115,2 kbit/s
Leitungslänge	50 m
Leitungsimpedanz	120 Ω
Potenzialtrennung	via Optokoppler
Anschlusstechnik Schreib-Lese-Köpfe	M12-Kupplung
Versorgung der Schreib-Lese-Köpfe aus V _I	500 mA/Kanal, kurzschlussfest
Summenstrom (über beide Kanäle)	500 mA
Nennspannung V _I	24 VDC
Isolationsspannungen	
Modulbus gegen Feldseite	1000 VDC
Versorgung der Schreib-Lese-Köpfe gegen Datenleitungen	0 VDC
Feldversorgung gegen Versorgung der Schreib-Lese-Köpfe	0 VDC

2-62 D101578 1209 - *BL ident*®

BL compact-Module

Tabelle 40: Technische Daten BL compact	Bezeichnung	Wert
	Betriebsspannung	24 VDC
	Zulässiger Bereich	1830 VDC
	Stromaufnahme	750 mA
	Adressbereich PROFIBUS-DP	199 über zwei dezimal kodierte Drehschalter
	Serviceschnittstelle	RS232
	Verbindungstechnik Feldbus	2 invers kodierte Steckverbinder M12 x 1, 5-polig
	Verbindungstechnik Stromversorgung	2 Steckverbinder M12 x 1
	Anschlussebene Schreib-Lese-Kop	
	Anzahl der Kanäle	2
	Übertragungsart	serielle differentielle Übertragung zum Schreib-Lese-Kopf
	Datenpuffer empfangen/senden	8/8 kByte
	Übertragungsrate	115,2 kbit/s
	Leitungslänge	50 m
	Leitungsimpedanz	120 Ω
	Potenzialtrennung	via Optokoppler
	Anschlusstechnik Schreib-Lese-Köpfe	M12-Kupplung

500 mA/Kanal, kurzschlussfest

-40 bis +70 °C /-40 bis 158 °F

-40 bis +85 °C / -40 bis 185 °F

500 mA

24 VDC

1000 VDC

0 VDC

0 VDC

Versorgung der Schreib-Lese-Köpfe aus V_I

Versorgung der Schreib-Lese-Köpfe gegen

Feldversorgung gegen Versorgung der

Summenstrom (über beide Kanäle)

Nennspannung V_I

Datenleitungen

Schreib-Lese-Köpfe

Umgebungstemperatur

Betriebstemperatur

Lagertemperatur

Isolationsspannungen

Modulbus gegen Feldseite

Montage und Installation

Tabelle 40: (Forts.) Technische Daten BL	Bezeichnung	Wert
	Relative Feuchte	5 bis 95 % (innen), Level RH-2, keine Kondensation (bei 45 °C Lagerung)
	Schwingungsprüfung	gemäß IEC 61131-2
	Schockprüfung	gemäß IEC 68-2-27
	Kippfallen und Umstürzen	gemäß IEC 68-2-31 und freier Fall nach IEC 68-2-32
	Elektromagnetische Verträglichkeit	gemäß IEC 61131-2
	Schutzart	IP67

2-64 D101578 1209 - *BL ident*®

3 Inbetriebnahme eines TURCK *BL ident®*-Systems

3.1	DPV1-Beispielinbetriebnahme für <i>BL ident</i> ® A-Module mit STEP7 und PIB	3
3.1.1	Hardwarebeschreibung des Beispielprojektes	3
3.1.2	Speicherbedarf für eine BL ident [®] -Inbetriebnahme	
	- Grundspeicherbedarf	3
	- Speicherbedarf pro PIB-Instanz (Kanal)	3
	- Speicherbedarf für die Lese- und Schreibdaten	3
3.1.3	Speicherbedarf für das Hardware-Beispiel	4
3.1.4	Laden des Beispielprojektes und Download der aktuellen GSD-Datei	5
3.1.5	Starten der S7-Software und Laden des Beispielprojektes	6
3.1.6	Hardware-Konfiguration und E/A-Adressen	7
3.1.7	Einrichten des Funktionsbausteins PIB	8
	- PIB Variablentabelle mit dem FB10	
	- Beobachten und Steuern mit der Variablentabelle vartable_pibX	
	- Aktivieren und Deaktivieren des Schreib-Lese-Kopfes über Konfigurationsdaten	12
	- Initialisierung des 1. Kanals	
3.1.8	Lesen des UID vom Datenträger / Kanal 1	15
3.1.9	Schreiben auf den Datenträger / Kanal 1	16
3.1.10	Lesen vom Datenträger / Kanal 1	19
3.1.11	Parameter	
	– Überbrückungszeit Kx[n*4ms]	
	Ermittlung des Parameterwertes "Ueberbrueckungszeit Kx[n*4ms]"	
	- Parameter "Betriebsart", "Datenträgertyp" und "Antikollision ein"	24
3.2	DPV0-Beispielinbetriebnahme für <i>BL ident</i> [®] C-Module mit STEP7 und PIB	
3.2.1	Hardwarebeschreibung des Beispielprojektes	26
3.2.2	Speicherbedarf für eine <i>BL ident</i> [®] -Inbetriebnahme	26
	- Grundspeicherbedarf	
	- Speicherbedarf pro PIB-Instanz (Kanal)	
	- Speicherbedarf für die Lese- und Schreibdaten	
3.2.3	Speicherbedarf für das Hardware-Beispiel	
3.2.4	Laden des Beispielprojektes und Download der aktuellen GSD-Datei	
3.2.5	Starten der S7-Software und Laden des Beispielprojektes	
3.2.6	Hardware-Konfiguration und E/A-Adressen	
3.2.7	Einrichten des Funktionsbausteins PIB	
	- PIB Variablentabelle mit dem FB10	
	- Beobachten und Steuern mit der Variablentabelle vartable_pibX	
	- Aktivieren und Deaktivieren des Schreib-Lese-Kopfes über Konfigurationsdaten	
	- Initialisierung des 1. Kanals	
3.2.8	Lesen des UID vom Datenträger / Kanal 1	
3.2.9	Schreiben auf den Datenträger / Kanal 1	
3.2.10	Lesen vom Datenträger / Kanal 1	41
3.3	Ablaufdiagramm zur Funktionsweise des PIB	44
3.4	Definitionen in der Befehls- und Diagnoseebene	45
3.4.1	Write-Config	
_	- Beispiel für Konfigurationsdaten	
3.4.2	Read-Config	
3.4.3	Inventory	
3.4.4	Physical_Read	
3.4.5	Physical_Write	
3.4.6	Mem-Status	47

Inbetriebnahme eines TURCK BL ident®-Systems

3.4.7	Dev-Status	
	- Beispiel:	
3.4.8	Next	
3.4.9	Get	
3.4.10	Weitere Befehle	49
3.5	Beispielinbetriebnahme für BL ident® S-Module mit STEP7	50
3.5.1	Hardwarebeschreibung des Beispielprojektes	50
3.5.2	Download der aktuellen GSD-Datei	
3.5.3	Starten der STEP7-Software und Anlegen eines neuen Projektes	
3.5.4	Konfigurieren der Hardware	
3.5.5	Erstellen der Variablentabellen für die Prozessdaten	
3.5.6	Aktivieren des Schreib-Lese-Kopfes	
3.5.7	Initialisierung/RESET Kanal 1	
3.5.8	Lesen des UIDs vom Datenträger / Kanal 1	
3.5.9	Schreiben auf den Datenträger / Kanal 1	
3.5.10		
	3 3	
	DPV1-Diagnose-Meldungen	
3.5.13	Parametrierung	64
3.6	Ablaufdiagramme zur Ausführung der Befehle - BL67-2RFID-S/BL20-2RFID-S-Module	65
3.7	Prozessabbild der BL67-2RFID-S/BL20-2RFID-S-Module	66
3.7.1	Prozess-Eingangsdaten	66
5.7.1	Bedeutung der Status-Bits	
3.7.2	Prozess-Ausgangsdaten	
0.7.2	- Bedeutung der Befehls-Bits/Steuer-Bits	
3.7.3	Parameter	
0.7.0	– Überbrückungszeit Kx[n*4ms]	
	- Ermittlung des Parameterwertes "Ueberbrueckungszeit Kx[n*4ms]"	
	- Parameter "Betriebsart" und "Datenträgertyp"	
3.7.4	Diagnosen	
	Diagnoseit	75
2 0		75 77
3.8	Warnungen und Fehlermeldungen	75 77 7 8
3.8 3.8.1		75 77 7 8
	Warnungen und Fehlermeldungen	75 77 78 81
3.8.1 3.9	Warnungen und Fehlermeldungen IEC-konforme Fehlermeldungen	75 77 78 81
3.8.1	Warnungen und Fehlermeldungen IEC-konforme Fehlermeldungen Nutzerdatenbereiche der Datenträgervarianten.	75 77 81 85
3.8.1 3.9 3.9.1 3.9.2	Warnungen und Fehlermeldungen IEC-konforme Fehlermeldungen Nutzerdatenbereiche der Datenträgervarianten. Zugriff auf die Datenbereiche der Datenträger Übersicht zu den Turck Datenträgern	75 77 81 85 85
3.8.1 3.9 3.9.1 3.9.2 3.10	Warnungen und Fehlermeldungen IEC-konforme Fehlermeldungen Nutzerdatenbereiche der Datenträgervarianten Zugriff auf die Datenbereiche der Datenträger Übersicht zu den Turck Datenträgern Schreib-/Lesezeit im Erfassungsbereich des Schreib-Lese-Kopfes	75 77 81 85 85
3.8.1 3.9 3.9.1 3.9.2 3.10	Warnungen und Fehlermeldungen IEC-konforme Fehlermeldungen Nutzerdatenbereiche der Datenträgervarianten Zugriff auf die Datenbereiche der Datenträger Übersicht zu den Turck Datenträgern Schreib-/Lesezeit im Erfassungsbereich des Schreib-Lese-Kopfes EEPROM-I-Code-SL2-Datenträger	75 78 81 85 85 88
3.8.1 3.9 3.9.1 3.9.2 3.10 3.10.1 3.10.2	Warnungen und Fehlermeldungen IEC-konforme Fehlermeldungen Nutzerdatenbereiche der Datenträgervarianten Zugriff auf die Datenbereiche der Datenträger Übersicht zu den Turck Datenträgern Schreib-/Lesezeit im Erfassungsbereich des Schreib-Lese-Kopfes	75 77 81 85 85 88 89

3.1 DPV1-Beispielinbetriebnahme für BL ident® A-Module mit STEP7 und PIB

Im Folgenden wird die Inbetriebnahme eines *BL ident* [®]-Systems unter Einsatz der SIMATIC Basissoftware Step 7 und des Standardsoftwarebausteins "Proxy Ident Function Block" (PIB) für Interface-Module mit "A"-Scheiben (z. B. TI-BL20-DPV1-2) beschrieben.

Eine erste Inbetriebnahme soll einfach und ohne Programmierkenntnisse möglich sein. TURCK stellt zu diesem Zweck ein Beispielprojekt zur Verfügung. Sie können die CD "BL IDENT-CD" mit dem Beispielprojekt direkt bei TURCK bestellen: Ident-Nr. 1545052

3.1.1 Hardwarebeschreibung des Beispielprojektes

Für das folgende Inbetriebnahmebeispiel wurden folgende Hardwarekomponenten verwendet:

- S7-Steuerung "CPU 315-2DP" (DPV1-fähige CPU)
- BL ident [®]-Interface-Modul "TI-BL67-DP1-2"
- BL ident ®-Schreib-Lese-Kopf "TN-CK40-H1147"
- Datenträger "TW-R50-B128" (Nutzdaten = 112 Byte)

Bei Fragen oder Unklarheiten zu den Schreib-Lese-Köpfen und den Datenträgern steht Ihnen das D101582 im Download-Bereich der TURCK-Internetseite zur Verfügung.

3.1.2 Speicherbedarf für eine BL ident [®]-Inbetriebnahme

Grundspeicherbedarf

Der Grundspeicherbedarf für die Inbetriebnahme des *BL ident* [®]-Systems mit dem Proxy Ident Function Block beträgt:

14 Kilobyte

Speicherbedarf pro PIB-Instanz (Kanal)

Für jeden Kanal wird eine Instanz des Proxy Ident Function Blocks gebildet.

Jeder Kanal benötigt zusätzlich zum Grundspeicherbedarf 0,6 Kilobyte.

Speicherbedarf für die Lese- und Schreibdaten

Der Proxy Ident Function Block (PIB) belegt einen Speicherbereich als Sende- und Empfangsbuffer. Die Größe dieses Speicherbereichs muss entsprechend der Datenmengen beim Lesen und Schreiben ausgelegt sein.

Mit dem *BL ident* [®]-System liefert TURCK PIB-Varianten, um den unterschiedlichen Datenmengen beim Lesen und Schreiben gerecht zu werden:

- PIB_1KB
- PIB_16K
- PIB_32K

Die folgende Rechenvorschrift zeigt, wie Sie den Speicherbedarf zum Lesen und Schreiben ausrechnen können. Es wird vorausgesetzt, dass der Buffer von mehreren Kanälen/ Instanzen genutzt wird. Wird jeder Instanz ein eigener Buffer zugeordnet, wird der Speicherbedarf wesentlich größer. Haben Sie die Berechnung durchgeführt, können Sie den für Ihre Applikation geeigneten Funktionsbaustein auswählen.

Die Gesamtdatenmenge ergibt sich aus der folgenden Summe:

Datenmenge, die über alle aktiven Kanäle gelesen und in einem "Nur-Lesespeicherbereich" gespeichert wird.

D101578 1209 - *BL ident*® 3-3

Ist sichergestellt, dass das Lesen auf den einzelnen Kanälen immer mit einem ausreichend großem zeitlichen Versatz erfolgt, können sich die Kanäle den Speicherbereich teilen.

- Datenmenge, die über alle aktiven Kanäle geschrieben und in einem "Nur-Schreibspeicherbereich" gespeichert wird. Ist sichergestellt, dass das Schreiben auf den einzelnen Kanälen immer mit einem ausreichend großem zeitlichen Versatz erfolgt, können sich die Kanäle den Speicherbereich teilen.
- Datenmenge, die sowohl Lese- als auch Schreibdaten wiedergeben kann. Der Speicherbereich wird abwechselnd als Schreibspeicherbereich und Lesespeicherbereich genutzt. Der notwendige Speicherbereich kann sich auf die Hälfte reduzieren.

Hinweis

Stellen Sie sicher, dass die Zeit zum Weiterreichen der Daten in jedem Fall ausreicht, wenn Sie den Lese- oder Schreibspeicher für mehrere Kanäle und/oder abwechselnd zum Lesen und Schreiben nutzen!

3.1.3 Speicherbedarf für das Hardware-Beispiel

Die "Hardwarebeschreibung des Beispielprojektes" Seite 3-3 bietet zwei Kanäle zum Anschluss von jeweils eines Schreib-Lese-Kopfes. Der Lesespeicherbereich und der Schreibspeicherbereich sollen getrennt ausgeführt sein.

Der verwendete Datenträger kann maximal 128 Byte (112 Byte Nutzdaten) speichern. Für die Rechnung werden maximal 200 Byte Lesespeicher und 200 Byte Schreibspeicher berücksichtigt. Jeder Kanal belegt dann 400 Byte. Beide Kanäle **800 Byte**.

Für den **Gesamtspeicherbedarf** wird der "Grundspeicherbedarf" Seite 3-3 und zweimal der "Speicherbedarf pro PIB-Instanz (Kanal)" Seite 3-3 zu den 800 Byte addiert:

Gesamtspeicherbedarf

= 14 Kilobyte + (2 x 0,6 Kilobyte) + 800 Byte = 16 Kilobyte

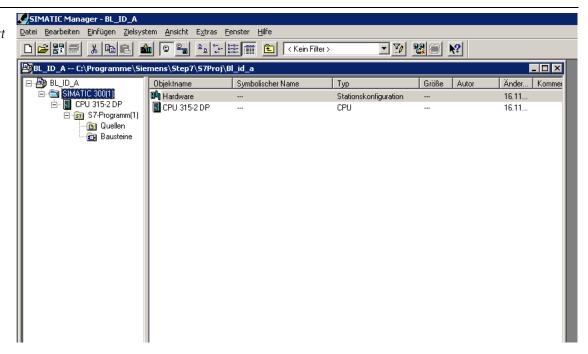
3.1.4 Laden des Beispielprojektes und Download der aktuellen GSD-Datei

Mit dem von TURCK zur Verfügung gestellten Beispielprojekt können Sie eine erste Inbetriebnahme besonders leicht nachvollziehen. Das Beispielprojekt liefert TURCK auf der CD "BL IDENT-CD" mit der Ident-Nr.1545052

Das Beispielprojekt steht als ZIP-Datei zur Verfügung. Behalten Sie die gezippte Form bei und merken Sie sich den Ablageort.

Die aktuelle GSD-Datei benötigen Sie, um die Konfiguration des *BL ident*-Interface-Moduls zu ermöglichen. Die aktuelle GSD-Datei finden Sie über:

http://www.turck.com....


(Download > Konfiguration > GSD PROFIBUS)

Mit der in diesem Dokument gelieferten Anleitung zur Vorgehensweise, sind Sie in der Lage auch abweichende Applikationen in Betrieb zu nehmen.

3.1.5 Starten der S7-Software und Laden des Beispielprojektes

Aktualisieren Sie gegebenenfalls die GSD-Datei (vor oder nach dem Start). Starten Sie die "SIMATIC Basissoftware Step 7". Nach dem Start wird das Fenster des "SIMATIC Managers" aktiv.

Abbildung 44: Nach dem Start des SIMATIC Mangers

Das Beispielprojekt öffnen Sie mit:

Datei > Dearchivieren

Wählen Sie aus Ihrem Verzeichnis die TURCK-Beispieldatei:

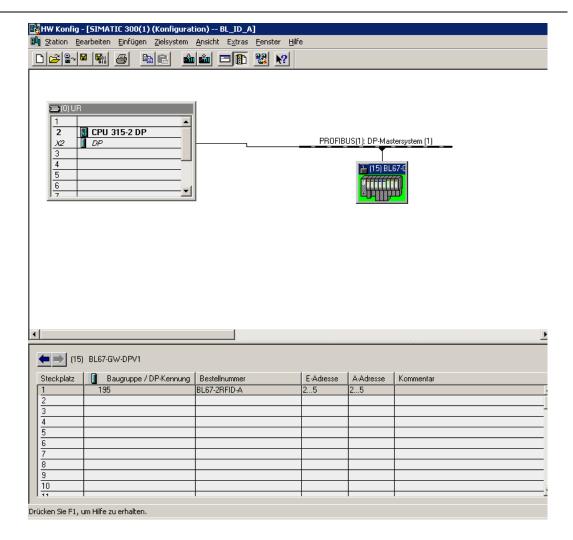
"BL_ID_A.zip"

Der SIMATIC Manager schlägt einen Ablageort (Zielverzeichnis) für ihr *BL ident* [®]-Testprojekt vor. Diesen können Sie bestätigen oder ändern. Stimmen Sie dem "Öffnen der Datei" zu.

3.1.6 Hardware-Konfiguration und E/A-Adressen

Mit einem Doppelklick auf "SIMATIC" im Verzeichnisbaum des linken Fensterbereichs erscheint im rechten Fenster unter anderem "Hardware". Hier können Sie bei Abweichungen Ihres Hardwareaufbaus zum Beispielprojekt die Konfiguration anpassen. Mit einem Doppelklick auf die PROFIBUS-DP-Station (hier BL67) können Sie die Hardware-Konfiguration betrachten.

Die vom SIMATIC Manager vorgeschlagenen E/A-Adressen können Sie ändern. Für das Beispiel ist es vorteilhaft, wenn Sie die E- bzw. A-Adressen "2..5", wie vorgeschlagen, beibehalten.



Hinweis

Mit der Verwendung des Funktionsbausteins "PIB" ist es erforderlich, die A-Adresse und die E-Adresse gleich zu wählen.

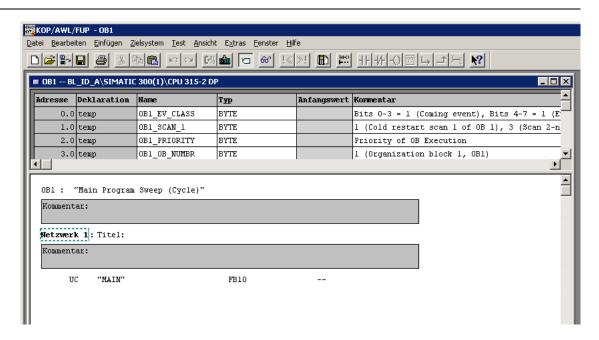
Übertragen Sie die Konfigurationsdaten in das Automatisierungssystem (Zielsystem > Laden.) Stimmen Sie der Frage, ob die Baugruppe jetzt neu gestartet werden soll, zu.

Abbildung 45: Hardware-Konfigurator

D101578 1209 - BL ident®

3.1.7 Einrichten des Funktionsbausteins PIB

Die wesentlichen Einstellungen sind im Beispielprojekt bereits vorgenommen worden.


Die folgenden Erläuterungen dienen dem Gesamtverständnis, so dass Sie auch Applikationen mit Abweichungen auf Basis dieses Beispielprojektes in Betrieb nehmen können.

Schließen Sie den Hardware-Konfigurator, falls dieser noch offen ist.

Im Projektbaum im linken Fenster öffnen Sie den Ordner "Bausteine" (unterster Punkt im Projektbaum). Der Baustein OB1 repräsentiert die oberste Programmebene, welche zyklisch von der CPU abgearbeitet wird.

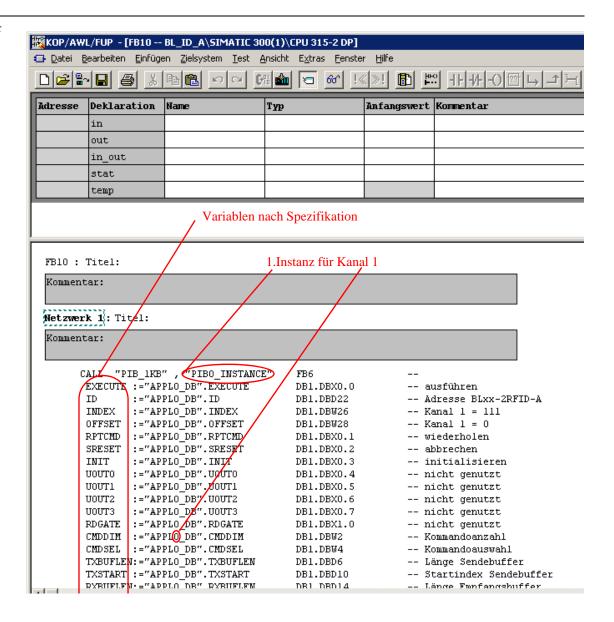
Mit einem Doppelklick auf OB1 können Sie die Programmstruktur betrachten.

Abbildung 46: Oberste Programmebene

Das Hauptprogramm OB1 ruft im Wesentlichen den FB10 auf. Schließen Sie den OB1 und doppelklicken Sie im Ordner Bausteine auf den FB10.

PIB Variablentabelle mit dem FB10

Der FB 10 ordnet den Variablen nach Spezifikation (Formalparameter) die Variablen für die PIB-Instanz eines Kanals (Aktualparameter) zu.


Die Erläuterungen zu allen in diesem Baustein aufgeführten Variablen finden Sie in "Definition des Proxy-Ident-Blocks (PIB)" Seite 4-6.

Da in dem TURCK Beispielprojekt 2 Kanäle für eine *BL ident* [®]-Kommunikation zur Verfügung stehen, werden zwei "Instanzen" des Proxy Ident Function Blocks gebildet.

Die PIB-Instanz zum 1. Kanal wird mit "0" gekennzeichnet. Auch alle Variablennamen zur 1. Instanz beinhalten eine "0".

Den 2. Kanal kennzeichnet entsprechend die "1" etc.

Abbildung 47: Variablen zur 1.Instanz

Beobachten und Steuern mit der Variablentabelle vartable_pibX

Schließen Sie den FB10 und öffnen Sie über den Ordner Bausteine die Variablentabelle vartable_pib0. Diese Tabelle gehört zur 1.Instanz des PIBs und damit zu Kanal 1.

Zum Lesen der Statuswerte und Laden der Steuerwerte aktivieren Sie die Online-Verbindung zu Ihrer Steuerung (Zielsystem > Verbindung herstellen zu direkt angeschlossener CPU). Der Modus "RUN" wird grün markiert rechts unten im Fenster angezeigt.

Passen Sie die Werte, die in der Legende durch die Punkte A bis D beschrieben werden in der Spalte Steuerwerte an, wenn Ihre Applikation vom Beispielprojekt abweicht.

Hinweis

Laden Sie die Werte in Ihre Steuerung (Variable steuern) und vergewissern Sie sich über die Spalte Statuswerte (Variable beobachten) die , dass die Steuerung die Werte übernommen hat!

Abbildung 48: Einträge in der vartable_pib0

- A Dies ist die Anfangsadresse zu den BL ident *-Prozessdaten des ersten Moduls. Die "ID" (Anfangsadresse) für ein zweites Modul muss "6" sein, für ein drittes "10" und ein viertes "14". Der Adressbereich für jeden einzelnen Kanal wird erst mit dem Offset (Legendenpunkt C) festgelegt.
- **B** Der Index "111" gibt an, dass die nächste Ausführung einen Datentransfer (auch Parameterdaten) zu Kanal 1 bewirkt. Der Index "112" bezieht sich auf Kanal 2. Das gilt für **jedes** BL ident [®]-Modul der Station. Abweichende Indices (z. B. "113") erzeugen die Fehlermeldung "DW#16#E7FE06xx" Seite

- 3-81. Diese Indices werden universell (auch Parameterdatentransfer) eingesetzt. Die Indices 101 und 102, welche laut Spezifikation speziell für Parameterdatentranfer auszuwählen sind, werden nicht mehr eingesetzt.
- C Dieser Offset wird zur Anfangsadresse (A) addiert. Die berechnete Adresse bezieht sich auf die Prozessdaten eines Kanals. Hier ist der Offset "0", weil vartable_pib0 zum 1. Kanal gehört. Die Prozessdaten für einen BL ident ®-Kanal betragen 2 Byte. Der entsprechende Offset in der vartable_pib1, welche zum 2. Kanal gehört ist "2".
- D Hier ist der Buffer-Bereich für die Lese- und Schreibdaten für die 1. Instanz (1. Kanal) angegeben. Der "Speicherbedarf für die Lese- und Schreibdaten" Seite 3-3 ist mit der Wahl eines PIB-1KB auf insgesamt 1 Kilobyte begrenzt. Hier ist angegeben, dass der Sendebuffer für den 1. Kanal den Bereich 1 bis 200 belegt. Der Empfangsbuffer belegt den Bereich 201 bis 400. Für den 2. Kanal werden entsprechend die Bereiche 401 bis 600 und 601 bis 800 belegt (vergl. vartable_pib1). Von der Möglichkeit bei ausreichend großem zeitlichen Versatz den Speicherbereich von mehreren Kanälen oder abwechselnd zum Lesen und Schreiben zu nutzen, wurde hier nicht Gebrauch gemacht.
- E Hier kann 1, 2 oder 3 eingetragen werden, wenn nur eines von 3 möglichen Kommandos (siehe vartable_pibX: Kommando 1, WriteConfig (INIT), Kommando 2, z. B. Inventory...) ausgeführt werden soll. Da zunächst nur der Write-Config-Befehl ("Write-Config" Seite 4-28) ausgeführt werden soll, ist hier bereits "1" eingetragen.
- F Die hexadezimale Codierung für den Befehl "Write-Config" ist 0×78.
- **G** Die Änderung der Konfigurationsdaten kann laut Spezifikation ("Config" Seite 4-28) durch einen Reset (0×01) (wie im Beispiel), oder
 - mit einer Kombination aus Reset und neuen Konfigurationsdaten (0×03), ausgeführt werden.
- H Die Anzahl der Konfigurationsdaten, die geschrieben werden sollen. (Hier sind es 3 Konfigurationsdaten zum Datenträger, welche im nächsten Abschnitt näher beschrieben werden.)

D101578 1209 - BL ident®

Aktivieren und Deaktivieren des Schreib-Lese-Kopfes über Konfigurationsdaten

Mit dem Eintrag der Werte in E bis H (Seite 3-10) können Sie die Vorbereitung für das Senden von Konfigurationswerten treffen.

Die Konfigurationswerte befinden sich im TURCK Beispielprojekt bereits im "Sendedatenfeld" der vartable_pib0. Das Sendedatenfeld ist unterhalb des Kommandobereichs der vartable_pibX (hier X=0).

Wesentliche Bedeutung hat lediglich der Wert des dritten Konfigurations-Bytes. Ein Aktivieren / Deaktivieren des Schreib-Lese-Kopfes wird über diesen Wert angefordert und mit der nächsten Initialisierung vorgenommen. Ein aktiver Schreib-Lese-Kopf erzeugt ein elektro-magnetisches Feld (die Signalübertragung erfolgt z.B. mit 13,56 MHz). Bei der Initialisierung wird der Befehl "Write-Config" Seite 3-46 durchgeführt.

Nach bereits erfolgter Initialisierung wird das Ein- und Ausschalten des Schreib-Lese-Kopfes mit dem Befehl "Write-Config" Seite 3-46 (0×78) und einer "positiven Flanke" der Steuervariablen "APPL0_DB".EXECUTE vorgenommen. Gehen Sie zur Ausführung des Befehl wie beim Lesen und Schreiben vor (z. B. "Schreiben auf den Datenträger / Kanal 1" Seite 3-16).

Hinweis

Laden Sie die Werte in Ihre Steuerung (Variable steuern) und vergewissern Sie sich über die Spalte Statuswerte (Variable beobachten) dass die Steuerung die Werte übernommen hat!

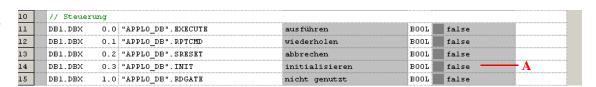
Abbildung 49: Sendedatenfeld der vartable_pib0

54	11	Sendeda	enf	eld				
55	DB2	2.DBB	0	"BUFFER". BUFFER[1]	geneinsames Datenfeld	HEX	B#16#00	B#16#00 A
56	DB2	2.DBB	1	"BUFFER".BUFFER[2]	geneinsames Datenfeld	HEX	B#16#00	B#16#00 B
57	DB2	2.DBB	2	"BUFFER", BUFFER[3]	geneinsames Datenfeld	HEX	B#16#01	B#16#01 C
50	DBS	and.s	3	"DUFFER". DUFFER[4]	geneinsames Datenfeld	HIIX	D#16#00	
59	DB2	2.DEB	4	"BUFFER".BUFFER(S)	geneinsames Datenfeld	HEX	B#16#00	

- **A** und
- **B** Diese Datenfelder brauchen nicht angepasst zu werden. Ursprünglich standen die Felder für Einträge zur Anzahl der Blöcke und Anzahl der Byte pro Block des Datenträgers zur Verfügung. Behalten Sie den Wert 0×00 bei. Die Werte des aktuell eingesetzten Datenträgers werden intern eingelesen und verarbeitet.
- **C** Mit dem Wert 0×01 ist der Transmitter (Antenne) des Schreib-Lese-Kopfes aktiviert. Mit dem Wert 0×00 können Sie den Transmitter deaktivieren.

Initialisierung des 1. Kanals

In dem Abschnitt "Einrichten des Funktionsbausteins PIB" Seite 3-8 haben Sie die für eine Initialisierung relevanten Einstellungen (Steuerwerte) kennengelernt. Falls Ihr *BL ident* [®]-Projekt vom Beispielprojekt abweicht, haben Sie die Steuerwerte angepasst.


Hinweis

Laden Sie alle Werte, die in den vorausgehenden Abschnitten beschrieben wurden, in Ihre Steuerung (Variable steuern) ! Vergewissern Sie sich über die Spalte Statuswerte (Variable beobachten) , dass die Steuerung die Werte übernommen hat!

Nehmen Sie nun die Initialisierung vor. Achten Sie darauf, dass die Online-Verbindung zu Ihrer Steuerung aktiv ist. Der Modus "RUN" wird grün markiert rechts unten im Fenster angezeigt.

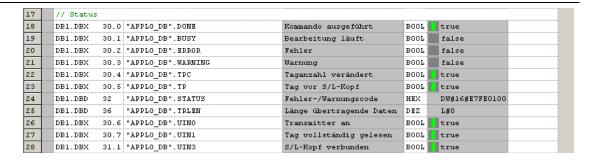
Mit einer "positiven Flanke" der Steuervariablen "APPL0_DB".INIT wird der Befehl "Initialisierung" umgesetzt. Sie erzeugen die positive Flanke, indem Sie die Variable von "false" auf "true" setzen. Tragen Sie als Steuerwert eine "1" oder "true" ein.

Abbildung 50: Steuerfeld der vartable_pib0

A Die Initialisierung erfolgt mit der positiven Flanke (Wechsel von false-> true oder 0->1)

Mit:

Variable > Steuern oder



wird der Befehl "Initialisierung" ausgeführt.

D101578 1209 - BL ident®

Sie können die Ausführung des Befehls im Statusfeld der vartable_pib0 verfolgen.

Abbildung 51: Statusfeld der vartable_pib0

Die Statusvariable "APPL0_DB".DONE wechselt kurzzeitig in den Zustand "Busy" und zeigt dann wieder "Kommando ausgeführt" = "true" an. Die fehlerfreie Ausführung wird mit "APPL0_DB".ERROR = false bestätigt.

Beschreibungen zu einigen Fehlercodes der Statusvariablen "APPL0_DB".STATUS, insbesondere zu den *BL ident* [®] spezifischen Fehlern finden Sie in "Warnungen und Fehlermeldungen" Seite 3-78.

Eine vollständige Beschreibung der Statusdaten finden Sie in "Warnungen und Fehlermeldungen" Seite 3-78 und "Fehler und Warnungen" Seite 4-14.

Setzen Sie die Variable "APPL0_DB".INIT zurück auf "false", wenn die Initialisierung erfolgreich war.

Mit:

Variable > Steuern oder

wird "false" wieder Statuswert.

3.1.8 Lesen des UID vom Datenträger / Kanal 1

Jeder RFID-Datenträger erhält werkseitig einen "UID" Seite 5-4 (unique identifier). Der UID gibt eine weltweit einmalige TAG-Identifikationsnummer wieder und umfasst 8 Byte. Der Abschnitt "Zugriff auf die Datenbereiche der Datenträger" Seite 3-86 zeigt die Speicherorganisation der verschiedenen Datenträger.

Das Lesen des UID wird mit dem Befehl "inventory" (dt.: Bestandsaufnahme) durchgeführt. Der Befehlscode 0×69 zu inventory ist in dem TURCK Beispielprojekt schon im Feld "Kommando 2" der vartable_pib0 eingetragen. Eine ausführliche Beschreibung dieses Befehlscodes finden Sie in "Inventory" Seite 4-33.

Abbildung 52: Kommando 2 der vartable_pib0

Achten Sie darauf, dass die Online-Verbindung zu Ihrer Steuerung aktiv ist. Der Modus "RUN" wird grün markiert rechts unten im Fenster angezeigt.

Der Steuerwert "APPL0_DP".CMDSEL der vartable_pib0 hat höchstwahrscheinlich noch den Wert "1", weil Sie zuletzt die "Initialisierung" mit Kommando 1 durchgeführt haben.

Geben Sie für diesen Steuerwert jetzt "2" ein, um das Kommando 2 auszuwählen.

Abbildung 53: Steuerungsfeld der vartable_pib0

Hinweis

Laden Sie **alle** Werte in Ihre Steuerung (Variable steuern) und vergewissern Sie sich über die Spalte Statuswerte (Variable beobachten) dass die Steuerung die Werte übernommen hat!

Mit einer "positiven Flanke" der Steuervariablen "APPLO_DB".EXECUTE wird der Befehl "Inventory" dargestellt. Sie erzeugen die positive Flanke, indem Sie die Variable von "false" auf "true" setzen. Tragen Sie als Steuerwert eine "1" oder "true" ein.

Abbildung 54: Steuerfeld der vartable_pib0

A "Inventory" erfolgt mit der positiven Flanke (Wechsel von false-> true oder 0->1)

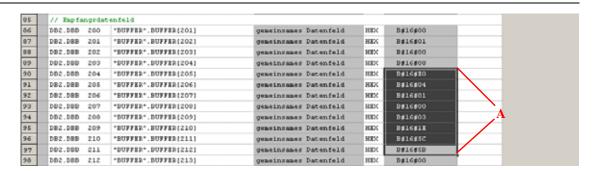
Mit

Variable > Steuern oder

wird der Befehl "Inventory" ausgeführt.

D101578 1209 - BL ident®

Sie können die Ausführung des Befehls im Statusfeld der vartable_pib0 verfolgen.


Die Statusvariable "APPL0_DB".DONE wechselt kurzzeitig in den Zustand "Busy" und zeigt dann wieder "Kommando ausgeführt" = "true" an. Die fehlerfreie Ausführung wird mit "APPL0_DB".ERROR = false bestätigt.

Beim "Inventory" werden 8 UID Datenbyte empfangen. Die Länge der übertragenen Daten ist hier "APPLO_DB".TRLEN = "12".

Eine vollständige Beschreibung der Statusdaten finden Sie in "Warnungen und Fehlermeldungen" Seite 3-78 und "Fehler und Warnungen" Seite 4-14.

Sie können den "Unique Identifier / UID" nun im Empfangsdatenfeld der vartable_pib0 lesen.

Abbildung 55: Der UID im Empfandsdatenfeld

A Der 8 Byte umfassende UID befindet sich ab Byte 5 im Empfangsdatenbuffer. Byte 5 gibt das MSB und Byte 12 das LSB des UID wieder. Im Modus "Antikollision ein" werden ab Byte 5 die UIDs aller erkannten Datenträger hintereinander aufgeführt. Die Object Number (Byte 1 und 2) ist die Anzahl der erkannten Datenträger.

Setzen Sie die Variable "APPL0_DB". EXECUTE zurück auf "false", wenn der UID erfolgreich gelesen wurde.

Mit:

Variable > Steuern oder

wird "false" wieder Statuswert.

3.1.9 Schreiben auf den Datenträger / Kanal 1

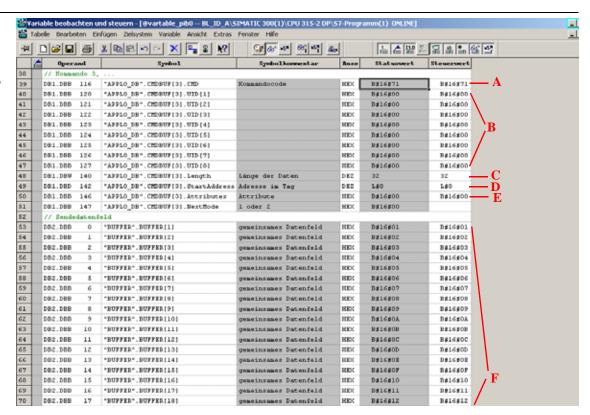
In diesem Abschnitt wird das Schreiben von 32 Byte Daten beliebigen Inhalts auf ihren RFID-Datenträger erläutert.

Das Schreiben auf den Datenträger des 1. Kanals ist möglich, wenn Sie die "Initialisierung des 1. Kanals" Seite 3-13 durchgeführt haben.

Wir haben in diesem Beispiel Daten gewählt, die beim anschließenden "Lesen vom Datenträger / Kanal 1" Seite 3-19 leicht wiederzuerkennen sind.

Das Schreiben der Daten wird mit dem Befehl "Physical_Write" (dt.: physikalisches Schreiben) durchgeführt. Tragen Sie den Kommandocode 0×71 zu Physical_Write in das Feld "Kommando 3" der vartable_pib0 ein. Eine ausführliche Beschreibung dieses Befehlscodes finden Sie in "Physical_Write" Seite 4-26.

Achten Sie darauf, dass die Online-Verbindung zu Ihrer Steuerung aktiv ist. Der Modus "RUN" wird grün markiert rechts unten im Fenster angezeigt.


Geben Sie für den Steuerwert "APPL0_DP".CMDSEL der vartable_pib0 jetzt "3" ein, um das Kommando 3 auszuwählen.

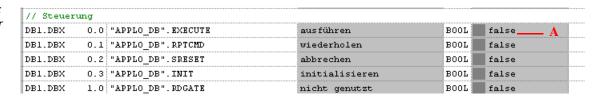
In das Sendedatenfeld tragen Sie die 32 Byte als Hexadezimale Zahlen ein. Im Anschluss an das Schreiben, werden wir das Lesen erläutern. Wir tragen die Zahlenfolge: 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B... 20, die wir leicht wiedererkennen können, ein.

Sie können die hexadezimalen Ziffern einstellig oder zweistellig und ohne weitere Formatangaben (B#16#..) eintragen. Der SIMATIC Manager formt in das passende Format um.

Abbildung 56: Vorbereitung der vartable_pib0 zum Schreiben

- A Hier wird der Code zu dem Kommando, welches als nächstes mit Kommando 3 ausgeführt werden soll, eingetragen. Eine Übersicht zu allen möglichen Kommandos finden Sie in "Befehle" Seite 4-23. Der Kommandocode 0×71 steht für den Befehl zum Schreiben auf ein physikalisch vorhandenes TAG "Physical_Write".
- **B** Dieses 8 Byte umfassende Datenfeld kann einen UID enthalten. Dieser UID wird immer dann mit dem UID des TAGs verglichen, wenn hier Werte ≠ 00 eingetragen wurden. Stellen Sie sicher, dass hier alle 8 Byte den Wert "00" haben, wenn Sie die UID-Vergleichsfunktion nicht ausführen möchten.
- C Hier tragen Sie die Anzahl der Byte ein, die aus dem Sendedatenfeld übertragen werden sollen. Die Anzahl der möglichen Byte hängt von der Größe des Sendedatenfeld (Seite 3-11) und der Speicherkapazität des verwendeten TAGs ab. In diesem TURCK-Beispiel werden 32 Byte auf das TAG (112 Byte) geschrieben. Die Größe des Sendedatenfelds beträgt hier 200 Byte.
- **D** Über diese Adresse kann jedes Byte auf dem TAG als Anfangsadresse explizit angesprochen werden. In dem Beispiel ist die Anfangsadresse L#0 ausgewählt. Verwenden Sie einen anderen Datenträger als in diesem Beispielprojekt beachten Sie den Abschnitt "Nutzerdatenbereiche der Datenträgervarianten" Seite 3-86.
- E Mit diesen "Attributen" können einige Befehle näher spezifiziert werden. Mit dem Schreib- und Lesebefehl wird dieser Wert nicht berücksichtigt.

 In "Befehle" Seite 4-23 finden Sie eine Übersicht zu allen möglichen Befehlen und die Möglichkeiten diese über "Attribute" näher zu spezifizieren. Beachten Sie dabei auf jeden Fall auch die "Definitionen in der Befehls- und Diagnoseebene" Seite 3-45.
- F In diesem Sendedatenfeld, tragen Sie die Daten ein, mit denen Sie Ihr TAG beschreiben wollen.


Hinweis

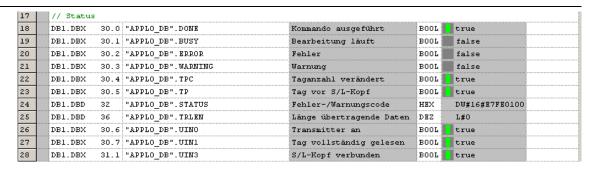
Laden Sie alle Werte im Feld "Steuerung", "Kommando 3" und "Sendedatenfeld" in Ihre Steuerung (Variable steuern) und vergewissern Sie sich über die Spalte Statuswerte (Variable beobachten) dass die Steuerung die Werte übernommen hat!

Mit einer "positiven Flanke" der Steuervariablen "APPL0_DB".EXECUTE wird der Befehl "Physical_Write" umgesetzt. Sie erzeugen die positive Flanke, indem Sie die Variable von "false" auf "true" setzen. Tragen Sie als Steuerwert eine "1" oder "true" ein.

A Physical_Write* erfolgt mit der positiven Flanke (Wechsel von false-> true oder 0->1)

Abbildung 57: Steuerfeld der vartable_pib0

Mit:


Variable > Steuern oder

wird der Befehl "Physical_Write" ausgeführt.

Sie können die Ausführung des Befehls im Statusfeld der vartable_pib0 verfolgen.

Abbildung 58: Statusfeld der vartable_pib0

Die Statusvariable "APPL0_DB".DONE wechselt kurzzeitig in den Zustand "Busy" und zeigt dann wieder "Kommando ausgeführt" = "true" an. Die fehlerfreie Ausführung wird mit "APPL0_DB".ERROR = false bestätigt.

Eine vollständige Beschreibung der Statusdaten finden Sie in "Warnungen und Fehlermeldungen" Seite 3-78 und "Fehler und Warnungen" Seite 4-14.

Setzen Sie die Variable "APPL0_DB". EXECUTE zurück auf "false", wenn das Schreiben erfolgreich war.

Mit:

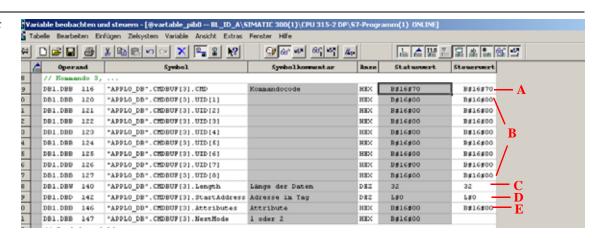
Variable > Steuern oder

wird "false" wieder Statuswert.

3.1.10 Lesen vom Datenträger / Kanal 1

In diesem Abschnitt wird das Lesen von 32 Byte Daten beliebigen Inhalts von ihrem RFID-Datenträger erläutert.

Das Lesen vom Datenträger des 1. Kanals ist möglich, wenn Sie die "Initialisierung des 1. Kanals" Seite 3-13 durchgeführt haben.


Im vorausgehenden Abschnitt haben Sie Daten (beliebig) mit dem "Physical_Write"-Befehl auf den Datenträger geschrieben. Dieselben Daten werden Sie in diesem Abschnitt mit dem "Physical_Read"-Befehl (dt.: physikalisches Lesen) vom Datenträger lesen.

Tragen Sie den Kommandocode 0×70 zu Physical_Read in das Feld "Kommando 3" der vartable_pib0 ein. Eine ausführliche Beschreibung dieses Befehlscodes finden Sie in "Physical_Read" Seite 4-24.

Achten Sie darauf, dass die Online-Verbindung zu Ihrer Steuerung aktiv ist. Der Modus "RUN" wird grün markiert rechts unten im Fenster angezeigt.

Geben Sie für den Steuerwert "APPL0_DP".CMDSEL der vartable_pib0 jetzt "3" ein, um das Kommando 3 auszuwählen.

Abbildung 59: Vorbereitung der vartable_pib0 zum Lesen

- A Hier wird der Code zu dem Kommando eingetragen, das als nächstes mit Kommando 3 ausgeführt werden soll. Eine Übersicht zu allen möglichen Kommandos finden Sie in "Befehle" Seite 4-23. Der Kommandocode 0×70 steht für den Befehl zum Lesen von einem physikalisch vorhandenen TAG "Physical_Read".
- **B** Dieses 8 Byte umfassende Datenfeld kann einen UID enthalten. Dieser UID wird immer dann mit dem UID des TAGs verglichen, wenn hier Werte ≠ 00 eingetragen wurden. Stellen Sie sicher, dass hier alle 8 Byte den Wert "00" haben, wenn Sie die UID-Vergleichsfunktion nicht ausführen möchten.
- C Hier tragen Sie die Anzahl der Byte ein, die in das Empfangsdatenfeld übertragen werden sollen. Die Anzahl der möglichen Byte hängt von der Größe des Empfangsdatenfelds (Seite 3-11) und der Speicherkapazität des verwendeten TAGs ab. In diesem TURCK-Beispiel werden 32 Byte von dem TAG (112 Byte) gelesen. Die Größe des Empfangsdatenfelds beträgt hier 200 Byte.
- **D** Über diese Adresse kann jedes Byte auf dem TAG als Anfangsadresse explizit angesprochen werden. In dem Beispiel ist die Anfangsadresse L#0 ausgewählt. Verwenden Sie einen anderen Datenträger als in diesem Beispielprojekt beachten Sie den Abschnitt "Nutzerdatenbereiche der Datenträgervarianten" Seite 3-86.
- E Mit diesen "Attributen" können einige Befehle näher spezifiziert werden. Mit dem Schreib- und Lesebefehl wird dieser Wert nicht berücksichtigt. In "Befehle" Seite 4-23 finden Sie eine Übersicht zu allen möglichen Befehlen und die Möglichkeiten diese über "Attribute" näher zu spezifizieren. Beachten Sie dabei auf jeden Fall auch die "Definitionen in der Befehls- und Diagnoseebene" Seite 3-45.

Hinweis

Laden Sie alle Werte im Feld "Steuerung" und "Kommando 3" in Ihre Steuerung (Variable steuern) und vergewissern Sie sich über die Spalte Statuswerte (Variable beobachten) of , dass die Steuerung die Werte übernommen hat!

Mit einer "positiven Flanke" der Steuervariablen "APPLO_DB".EXECUTE wird der Befehl "Physical_Read" umgesetzt. Sie erzeugen die positive Flanke, indem Sie die Variable von "false" auf "true" setzen. Tragen Sie als Steuerwert eine "1" oder "true" ein.

Abbildung 60: Steuerfeld der vartable_pib0

A "Physical_Read" erfolgt mit der positiven Flanke (Wechsel von false-> true oder 0->1)

Mit:

Variable > Steuern oder

wird der Befehl "Physical_Read" ausgeführt.

Sie können die Ausführung des Befehls im Statusfeld der vartable_pib0 verfolgen.

Abbildung 61: Statusfeld der vartable_pib0

17	// Statu	s				
18	DB1.DBX	30.0	"APPLO_DB".DONE	Kommando ausgeführt	BOOL	true
19	DB1.DBX	30.1	"APPLO_DB".BUSY	Bearbeitung läuft	BOOL	false
20	DB1.DBX	30.2	"APPLO_DB". KRROR	Fehler	BOOL	false
21	DB1.DBX	30.3	"APPLO_DB".WARNING	Warnung	BOOL	false
22	DB1.DBX	30.4	"APPLO_DB".TPC	Taganzahl verändert	BOOL	false
23	DB1.DBX	30.5	"APPLO_DB".TP	Tag vor S/L-Kopf	BOOL	true
24	DB1.DBD	32	"APPLO_DB".STATUS	Fehler-/Warnungscode	HEX	DW#16#E7FE0100
25	DB1.DBD	36	"APPLO_DB".TRLEN	Länge übertragende Daten	DEZ	L#32
26	DB1.DBX	30.6	"APPLO_DB".UINO	Transmitter an	BOOL	true
27	DB1.DBX	30.7	"APPLO_DB".UIN1	Tag vollständig gelesen	BOOL	true
28	DB1.DBX	31.1	"APPLO_DB".UIN3	S/L-Kopf verbunden	BOOL	true

Die Statusvariable "APPL0_DB".DONE wechselt kurzzeitig in den Zustand "Busy" und zeigt dann wieder "Kommando ausgeführt" = "true" an. Die fehlerfreie Ausführung wird mit "APPL0_DB".ERROR = false bestätigt.

Die Länge der empfangenen Daten ist hier "APPLO_DB".TRLEN = "32".

Eine vollständige Beschreibung der Statusdaten finden Sie in "Warnungen und Fehlermeldungen" Seite 3-78 und "Fehler und Warnungen" Seite 4-14.

Im Empfangdatenfeld der vartable_pib0 finden Sie die vom TAG gelesenen Daten:

Abbildung 62: Empfangdatenfeld der vartable_pib0 nach erfolgreichem Lesen

85	// Empfangsdat	enfeld			
86	DB2.DBB 200	"BUFFER".BUFFER[201]	gemeinsames Datenfeld	HEX	B#16#01
87	DB2.DBB 201	"BUFFER".BUFFER[202]	gemeinsames Datenfeld	HEX	B#16#02
88	DB2.DBB 202	"BUFFER".BUFFER[203]	gemeinsames Datenfeld	HEX	B#16#03
89	DB2.DBB 203	"BUFFER".BUFFER[204]	gemeinsames Datenfeld	HEX	B#16#04
90	DB2.DBB 204	"BUFFER".BUFFER[205]	gemeinsames Datenfeld	HEX	B#16#05
91	DB2.DBB 205	"BUFFER".BUFFER[206]	gemeinsames Datenfeld	HEX	B#16#06
92	DB2.DBB 206	"BUFFER".BUFFER[207]	gemeinsames Datenfeld	HEX	B#16#07
93	DB2.DBB 207	"BUFFER".BUFFER[208]	gemeinsames Datenfeld	HEX	B#16#08
94	DB2.DBB 208	"BUFFER".BUFFER[209]	gemeinsames Datenfeld	HEX	B#16#09
95	DB2.DBB 209	"BUFFER".BUFFER[210]	gemeinsames Datenfeld	HEX	B#16#0A
96	DB2.DBB 210	"BUFFER".BUFFER[211]	gemeinsames Datenfeld	HEX	B#16#0B
97	DB2.DBB 211	"BUFFER".BUFFER[212]	gemeinsames Datenfeld	HEX	B#16#0C
98	DB2.DBB 212	"BUFFER".BUFFER[213]	gemeinsames Datenfeld	HEX	B#16#0D
99	DB2.DBB 213	"BUFFER".BUFFER[214]	gemeinsames Datenfeld	HEX	B#16#0E
100	DB2.DBB 214	"BUFFER".BUFFER[215]	gemeinsames Datenfeld	HEX	B#16#0F
101	DB2.DBB 215	"BUFFER".BUFFER[216]	gemeinsames Datenfeld	HEX	B#16#10
102	DB2.DBB 216	"BUFFER".BUFFER[217]	gemeinsames Datenfeld	HEX	B#16#11
103	DB2.DBB 217	"BUFFER".BUFFER[218]	gemeinsames Datenfeld	HEX	B#16#12
104	DB2.DBB 218	"BUFFER".BUFFER[219]	gemeinsames Datenfeld	HEX	B#16#13
105	DB2.DBB 219	"BUFFER".BUFFER[220]	gemeinsames Datenfeld	HEX	B#16#14
106	DB2.DBB 220	"BUFFER".BUFFER[221]	gemeinsames Datenfeld	HEX	B#16#15
107	DB2.DBB 221	"BUFFER".BUFFER[222]	gemeinsames Datenfeld	HEX	B#16#16
108	DB2.DBB 222	"BUFFER".BUFFER[223]	gemeinsames Datenfeld	HEX	B#16#17
109	DB2.DBB 223	"BUFFER".BUFFER[224]	gemeinsames Datenfeld	HEX	B#16#18
110	DB2.DBB 224	"BUFFER".BUFFER[225]	gemeinsames Datenfeld	HEX	B#16#19
111	DB2.DBB 225	"BUFFER".BUFFER[226]	gemeinsames Datenfeld	HEX	B#16#1A
112	DB2.DBB 226	"BUFFER".BUFFER[227]	gemeinsames Datenfeld	HEX	B#16#1B
113	DB2.DBB 227	"BUFFER".BUFFER[228]	gemeinsames Datenfeld	HEX	B#16#1C
114	DB2.DBB 228	"BUFFER".BUFFER[229]	gemeinsames Datenfeld	HEX	B#16#1D

Setzen Sie die Variable "APPL0_DB". EXECUTE zurück auf "false", wenn das Lesen erfolgreich war.

Mit:

Variable > Steuern oder

47

wird "false" wieder Statuswert.

3.1.11 Parameter

Hinweis

Nach einem Spannungsreset liest das Gateway die Parameter der Module aus. Sind die Parameter des RFID-Moduls fehlerhaft wird das Gateway diese übernehmen. Werden die Parameter nicht verändert, sprich die Station ist nicht am Feldbus oder es wurde keine Parameteränderung per I/O-Assistant vorgenommen, dann bleiben diese fehlerhaften Parameter im Modul weiter bestehen!

Zur Zeit werden bei BLxx-2RFID-A folgende Parameter übertragen:

- "Überbrückungszeit [n*4ms]" mit dem 1 Byte Parameter-Datenabbild
- "Betriebsart" mit den Modi "Standardzugriff", "Schnellzugriff" und "Antikollision ein"
- "Datenträgertyp" mit den Wahlmöglichkeiten:
- Automatische Datenträgererkennung
- Philips -ICODE SLI SL2
- Fujitsu M89R118
- TI Tag-it HF-I Plus
- Infineon SRF55V02P
- Philips I-CODE SLI S
- Fujitsu M89R119
- TI Tag-it HF-I
- Infineon SRF55V10P
- TURCK TW-R50-K8
- Melexis MLX90129
- NXP I-CODE SLI L
- "Sendepegel" (für die UHF-Schreib-Lese-Köpfe)
- "Sendefrequenz" (für die UHF-Schreib-Lese-Köpfe)

Hinweis

Die Parameter für die UHF-Schreib-Lese-Köpfe "Sendepegel" und "Sendefrequenz" werden zwar angezeigt aber z. Zt. noch nicht unterstützt.

Tabelle 41:
Parameterda-
ten-Bytes

		Bit									
	7	6	5	4	3	2	1	0			
O ^{A)}	reservie	ert ^{B)}			Sendepegel K1						
1	reservie	ert ^{B)}		Sendepegel K2							
2	Betriebs K1	sart	Sendefrequ	uenz K1							
3	Betrieb: K2	sart	Sendefrequ	uenz K2							

Tabelle 41:						Bit			
Parameterda- ten-Bytes		7	6	5	4	3	2	1	0
	4	Fehle rcod e ^{C)} Datenträgertyp K1							
	5 "Ueberbrueckungszeit K1[n*4ms]"								
	6	Fehle rcod e ^{C)}	Datentra	ägertyp K2					
	7	"Ueberl							

A Byte-Nummer

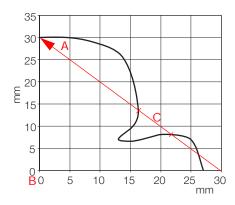
B Byte 0: Bit 7 = 1, sonst 0; Byte 1: Bit 7 = 1, sonst 0

C nur für BLxx-2RFID-S gültig

Überbrückungszeit Kx[n*4ms]

Behalten Sie die Default-Einstellung "=0" dieses Parameters bei, wenn eine Inbetriebnahme ohne die Fehlermeldung "Verweilzeit des Tags im Erfassungsbereich war nicht ausreichend für die erfolgreiche Befehlsverarbeitung." Seite 3-78 erfolgt ist.

Erscheint die Fehlermeldung "Verweilzeit des Tags im Erfassungsbereich war nicht ausreichend für die erfolgreiche Befehlsverarbeitung." Seite 3-78, prüfen Sie, ob Ihre Applikation die "Einhaltung der empfohlenen Abstände" (Mindestabstände), eine Verringerung der Geschwindigkeit oder der Datenmenge ermöglicht. Die Angaben "empfohlener" und "maximaler Abstand" finden Sie in dem Handbuch D101582 in dem Kapitel "Betriebsdaten".


Falls Sie die empfohlenen Abstände nicht einhalten können oder falls durch äußere Einflüsse der Fehler mit den empfohlenen Abständen weiterhin gemeldet wird, muss der Parameter "Ueberbrueckungszeit Kx[n*4ms]" auf einen passenden Wert gesetzt werden.

Ermittlung des Parameterwertes "Ueberbrueckungszeit Kx[n*4ms]"

Der Parameter "Ueberbrueckungszeit Kx[n*4ms]" ergibt sich aus den eingesetzten Komponenten, den Abständen, der Geschwindigkeit des Datenträgers zum Schreib-Lese-Kopf und weiteren äußeren Einflüssen.

Messen Sie deshalb die erforderliche Überbrückungszeit direkt vor Ort. Die folgende Abbildung zeigt den typischen Verlauf des Erfassungsbereichs:

Abbildung 63: Erfassungsberei ch eines Schreib-Lese-Kopfes

- A Wegstrecke, die der Datenträger am Schreib-Lese-Kopf vorbei zurücklegt.
- **B** Zentrum des Schreib-Lese-Kopfes.
- C Abschnitt der Wegstrecke, die überbrückt werden muss.

Der Datenträger darf für den Abschnitt "C" der obigen Abbildung höchstens die "Ueberbrueckungszeit K1[n*4ms]" benötigen. Der Datenträger muss sich vor Ablauf der Überbrückungszeit wieder im Erfassungsbereich des Schreib-Lese-Kopfes befinden, damit die Übertragung fortgesetzt werden kann.

Die LEDs des Schreib-Lese-Kopfes, bzw. das Statusbit "TP" der Prozesseingangsdaten zeigen an, ob sich der Datenträger im Erfassungsbereich befindet oder nicht.

Parameter "Betriebsart", "Datenträgertyp" und "Antikollision ein"

Diese Parameter müssen kombiniert werden:

- Modus "Standardzugriff" und "Automatische Datenträgererkennung" In diesem Modus können 5 bestimmte TURCK-Datenträgertypen automatisch vom Schreib/ Lese-Kopf erkannt werden. Die UID des Datenträgers wird vor dem Zugriff gelesen.
- Modus "Standardzugriff" und "Datenträgertyp" (dabei muss unter "Datenträgertyp" aus den Wahlmöglichkeiten der entsprechende Datenträger ausgewählt werden)
 Dieser Modus unterstützt das Erkennen von Datenträgern, die der Schreib-Lese-Kopf im "Automatikmodus" nicht kennt, anderer seits soll dieser Modus aber äquivalent zum Automatikmodus sein, d. h. auch das Kommmando "NEXT" mit nextMode = 1 soll möglich sein ("Bedeutung der Befehls-Bits/Steuer-Bits" Seite 3-70).
- Modus "Schnellzugriff" und "Datenträgertyp" (dabei muss unter "Datenträgertyp" aus den Wahlmöglichkeiten der entsprechende Datenträger ausgewählt werden) In diesem Modus wird der Zugriff 'schnell' erreicht, da der Typ und die UID des Datenträgers vorher nicht ausgelesen werden müssen. Die spezifischen Eigenschaften des verwendeten Datenträgers sind vorher bekannt, die gewünschte UID wird beim Schreiben/Lesen mitgesendet

Hinweis

Die Modus "Schnellzugriff" und "Datenträgertyp" unterstützt nicht die Datenträger Philips SL1 und TURCK TW-R50-K8.

Modus "Antikollision ein" und "Datenträgertyp" (dabei muss unter "Datenträgertyp" aus den Wahlmöglichkeiten der entsprechende Datenträger ausgewählt werden). In diesem Modus können bis zu 16 Datenträger eines Typs erfasst werden. Dazu schickt der Anwender ein inventory-Kommando und erhält als Antwort die UID's sämtlicher Datenträger im Erfassungsbereich ("Lesen des UID vom Datenträger / Kanal 1" Seite 3-15). Nun kann er gezielt Datenträger mit ihrer UID ansprechen und Schreiben oder Lesen. In den Befehlen Physical_Read und Physical_Write muss zwingend die UID des Datenträgers enthalten sein.

Hinweis

Die Betriebsart "Antikollision ein" ist nur in Verbindung mit einem fest eingestellten Datenträgertyp erlaubt, d. h. "Automatische Datenträgererkennung" ist nicht möglich. Der Modus "Antikollision ein" und "Datenträgertyp" unterstützt nicht den Datenträger TURCK TW-R50-K8.

3.2 DPV0-Beispielinbetriebnahme für BL ident®C-Module mit STEP7 und PIB

Im Folgenden wird die Inbetriebnahme eines *BL ident* [®]-Systems unter Einsatz der SIMATIC Basissoftware Step 7 und des Standardsoftwarebausteins "Proxy Ident Function Block" (PIB) für Interface-Module mit "C"-Scheiben (z. B. TI-BL20-DPV0-2) beschrieben.

Eine erste Inbetriebnahme soll einfach und ohne Programmierkenntnisse möglich sein. TURCK stellt zu diesem Zweck ein Beispielprojekt zur Verfügung. Sie können die CD "BL IDENT-CD" mit dem Beispielprojekt direkt bei TURCK bestellen: Ident-Nr. 1545052

3.2.1 Hardwarebeschreibung des Beispielprojektes

Für das folgende Inbetriebnahmebeispiel wurden folgende Hardwarekomponenten verwendet:

- S7-Steuerung "CPU 315-2DP"
- BL ident ®-Interface-Modul "TI-BL67-DP0-2"
- BL ident ®-Schreib-Lese-Kopf "TN-CK40-H1147"
- Datenträger "TW-R50-B128"

Bei Fragen oder Unklarheiten zu den Schreib-Lese-Köpfen und den Datenträgern steht Ihnen das D101582 im Download-Bereich der TURCK-Internetseite zur Verfügung.

3.2.2 Speicherbedarf für eine BL ident [®]-Inbetriebnahme

Grundspeicherbedarf

Der Grundspeicherbedarf für die Inbetriebnahme des *BL ident* [®]-Systems mit dem Proxy Ident Function Block beträgt:

22 Kilobyte

Speicherbedarf pro PIB-Instanz (Kanal)

Für jeden Kanal wird eine Instanz des Proxy Ident Function Blocks gebildet.

Jeder Kanal benötigt zusätzlich zum Grundspeicherbedarf

1,8 Kilobyte.

Speicherbedarf für die Lese- und Schreibdaten

Der Proxy Ident Function Block (PIB) belegt einen Speicherbereich als Sende- und Empfangsbuffer. Die Größe dieses Speicherbereichs, muss entsprechend der Datenmengen beim Lesen und Schreiben ausgelegt sein.

Mit dem *BL ident* [®]-System liefert TURCK PIB-Varianten, um den unterschiedlichen Datenmengen beim Lesen und Schreiben gerecht zu werden:

- PIB_001KB_CYC
- PIB_016KB_CYC
- PIB_032KB_CYC

Die folgende Rechenvorschrift zeigt, wie Sie den Speicherbedarf zum Lesen und Schreiben ausrechnen können. Es wird vorausgesetzt, dass der Buffer von mehreren Kanälen/ Instanzen genutzt wird. Wird jeder Instanz ein eigener Buffer zugeordnet, wird der Speicherbedarf wesentlich größer. Haben Sie die Berechnung durchgeführt, können Sie den für Ihre Applikation geeigneten Funktionsbaustein auswählen. Die Gesamtdatenmenge ergibt sich aus der folgenden Summe:

Datenmenge, die über alle aktiven Kanäle gelesen und in einem "Nur-Lesespeicherbereich" gespeichert wird.

- Datenmenge, die über alle aktiven Kanäle geschrieben und in einem "Nur-Schreibspeicherbereich" gespeichert wird.
- Datenmenge, die sowohl Lese- als auch Schreibdaten wiedergeben kann. Der Speicherbereich wird abwechselnd als Schreibspeicherbereich und Lesespeicherbereich genutzt. Der notwendige Speicherbereich kann sich auf die Hälfte reduzieren.

3.2.3 Speicherbedarf für das Hardware-Beispiel

Die "Hardwarebeschreibung des Beispielprojektes" Seite 3-26 bietet zwei Kanäle zum Anschluss von jeweils einem Schreib-Lese-Kopf. Der Lesespeicherbereich und der Schreibspeicherbereich sollen getrennt ausgeführt sein.

Der verwendete Datenträger kann maximal 128 Byte speichern. Für die Rechnung werden maximal 200 Byte Lesespeicher und 200 Byte Schreibspeicher berücksichtigt. Jeder Kanal belegt dann 400 Byte. Beide Kanäle **800 Byte**.

Für den **Gesamtspeicherbedarf** wird der "Grundspeicherbedarf" Seite 3-26 und zweimal der "Speicherbedarf pro PIB-Instanz (Kanal)" Seite 3-26 zu den 800 Byte addiert:

Gesamtspeicherbedarf

= 22 Kilobyte + (2 x 1,8 Kilobyte) + 800 Byte = 26,4 Kilobyte

3.2.4 Laden des Beispielprojektes und Download der aktuellen GSD-Datei

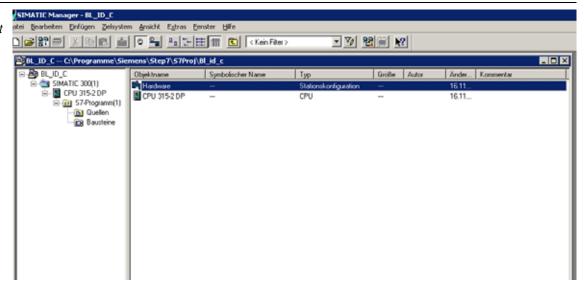
Mit dem von TURCK zur Verfügung gestellten Beispielprojekt können Sie eine erste Inbetriebnahme besonders leicht nachvollziehen. Das Beispielprojekt liefert TURCK auf der CD "BL IDENT-CD" mit der Ident-Nr.1545052

Das Beispielprojekt steht als ZIP-Datei zur Verfügung. Behalten Sie die gezippte Form bei und merken Sie sich den Ablageort.

Die aktuelle GSD-Datei benötigen Sie, um die Konfiguration des *BL ident*-Interface-Moduls zu ermöglichen. Die aktuelle GSD-Datei finden Sie über:

http://www.turck.com....

(Download > Konfiguration > GSD PROFIBUS)


Mit der in diesem Dokument gelieferten Anleitung zur Vorgehensweise, sind Sie in der Lage auch abweichende Applikationen in Betrieb zu nehmen.

D101578 1209 - BL ident®

3.2.5 Starten der S7-Software und Laden des Beispielprojektes

Aktualisieren Sie gegebenenfalls die GSD-Datei (vor oder nach dem Start). Starten Sie die "SIMATIC Basissoftware Step 7". Nach dem Start wird das Fenster des "SIMATIC Managers" aktiv.

Abbildung 64: Nach dem Start des SIMATIC Managers

Das Beispielprojekt öffnen Sie mit:

Datei > Dearchivieren

Wählen Sie aus Ihrem Verzeichnis die TURCK-Beispieldatei:

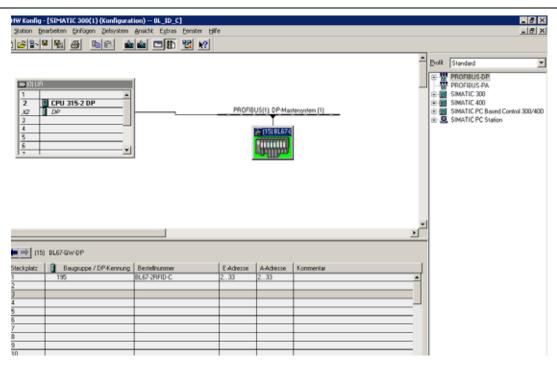
"BL_ID_C.zip"

Der SIMATIC Manager schlägt einen Ablageort (Zielverzeichnis) für ihr *BL ident* [®]-Testprojekt vor. Diesen können Sie bestätigen oder ändern. Stimmen Sie dem "Öffnen der Datei" zu.

3.2.6 Hardware-Konfiguration und E/A-Adressen

Mit einem Doppelklick auf "SIMATIC" im Verzeichnisbaum des linken Fensterbereichs erscheint im rechten Fenster unter anderem "Hardware". Hier können Sie bei Abweichungen Ihres Hardwareaufbaus zum Beispielprojekt die Konfiguration anpassen. Mit einem Doppelklick auf die PROFIBUS-DP-Station (hier BL67) können Sie die Hardware-Konfiguration betrachten.

Die vom SIMATIC Manager vorgeschlagenen E/A-Adressen können Sie ändern. Für das Beispiel ist es vorteilhaft, wenn Sie die E- bzw. A-Adressen "2..33", wie vorgeschlagen, beibehalten.



Hinweis

Mit der Verwendung des Funktionsbausteins "PIB" ist es erforderlich, die A-Adresse und die E-Adresse gleich zu wählen.

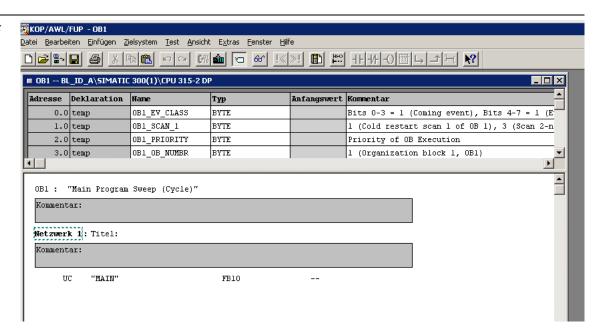
Übertragen Sie die Konfigurationsdaten in das Automatisierungssystem (Zielsystem > Laden.) Stimmen Sie der Frage, ob die Baugruppe jetzt neu gestartet werden soll, zu.

Abbildung 65: Hardware-Konfigurator

D101578 1209 - BL ident® 3-29

3.2.7 Einrichten des Funktionsbausteins PIB

Die wesentlichen Einstellungen sind im Beispielprojekt bereits vorgenommen worden.


Die folgenden Erläuterungen dienen dem Gesamtverständnis, so dass Sie auch Applikationen mit Abweichungen auf Basis dieses Beispielprojektes in Betrieb nehmen können.

Schließen Sie den Hardware-Konfigurator, falls dieser noch offen ist.

Im Projektbaum im linken Fenster öffnen Sie den Ordner "Bausteine" (unterster Punkt im Projektbaum). Der Baustein OB1 repräsentiert die oberste Programmebene, welche zyklisch von der CPU abgearbeitet wird.

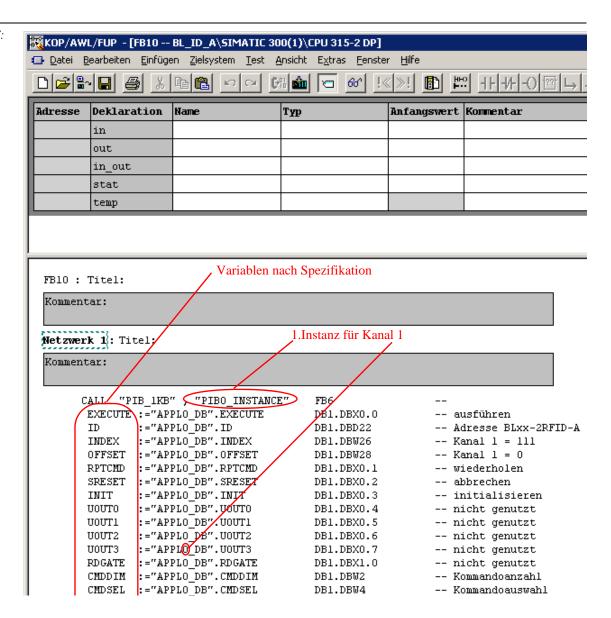
Mit einem Doppelklick auf OB1 können Sie die Programmstruktur betrachten.

Abbildung 66: Oberste Programmebene

Das Hauptprogramm OB1 ruft im Wesentlichen den FB10 auf. Schließen Sie den OB1 und doppelklicken Sie im Ordner Bausteine auf den FB10.

PIB Variablentabelle mit dem FB10

Der FB 10 ordnet den Variablen nach Spezifikation (Formalparameter) die Variablen für die PIB-Instanz eines Kanals (Aktualparameter) zu.


Die Erläuterungen zu allen in diesem Baustein aufgeführten Variablen finden Sie in "Definition des Proxy-Ident-Blocks (PIB)" Seite 4-6.

Da in dem TURCK Beispielprojekt 2 Kanäle für eine *BL ident* [®]-Kommunikation zur Verfügung stehen, werden zwei "Instanzen" des Proxy Ident Function Blocks gebildet.

Die PIB-Instanz zum 1. Kanal wird mit "0" gekennzeichnet. Auch alle Variablennamen zur 1. Instanz beinhalten eine "0".

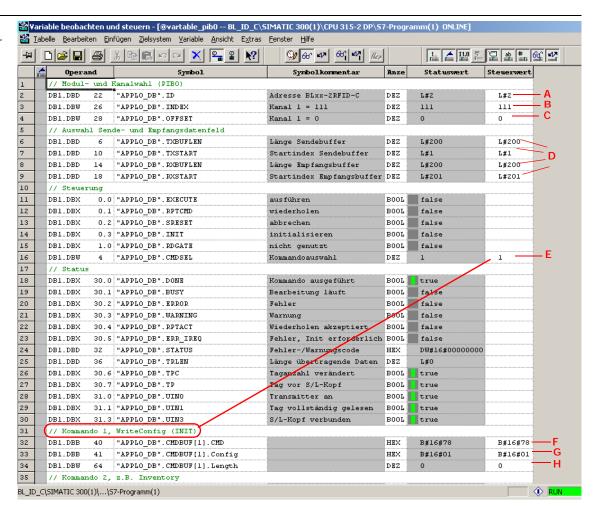
Den 2. Kanal kennzeichnet entsprechend die "1" etc.

Abbildung 67: Variablen zur 1.Instanz

Beobachten und Steuern mit der Variablentabelle vartable_pibX

Schließen Sie den FB10 und öffnen Sie über den Ordner Bausteine die Variablentabelle vartable_pib0. Diese Tabelle gehört zur 1. Instanz des PIBs und damit zu Kanal 1.

Zum Lesen der Statuswerte und Laden der Steuerwerte aktivieren Sie die Online-Verbindung zu Ihrer Steuerung (Zielsystem > Verbindung herstellen zu direkt angeschlossener CPU). Der Modus "RUN" wird grün markiert rechts unten im Fenster angezeigt.


Passen Sie die Werte, die in der Legende durch die Punkte A bis D beschrieben werden in der Spalte Steuerwerte an, wenn Ihre Applikation vom Beispielprojekt abweicht.

Hinweis

Laden Sie die Werte in Ihre Steuerung (Variable steuern) und vergewissern Sie sich über die Spalte Statuswerte (Variable beobachten) die Steuerung die Werte übernommen hat!

Abbildung 68: Einträge in der vartable_pib0

A Dies ist die Anfangsadresse zu den BL ident ®-Prozessdaten des ersten Moduls. Die Prozessdaten für ein

BL ident *-Modul im zyklischen Datenverkehr umfassen insgesamt 32 Byte. Die "ID" (Anfangsadresse) für ein zweites Modul muss folglich hier "34" sein, für ein drittes "66" und ein viertes "98". Der Adressbereich für die kanalbezogenen 2 Byte Prozessdaten des jeweiligen Kanals, wird erst mit dem Offset (Legendenpunkt C) festgelegt.

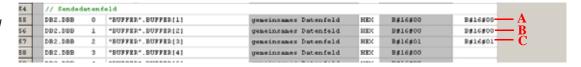
- **B** Der Index "111" gibt an, dass die nächste Ausführung einen Datentransfer (auch Parameterdaten) zu Kanal 1 bewirkt. Der Index "112" bezieht sich auf Kanal 2. Das gilt für jedes BL ident *-Modul der Station. Abweichende Indices (z. B. "113") erzeugen die Fehlermeldung "DW#16#E7FE06xx" Seite 3-81. Diese Indices werden universell (auch Parameterdatentransfer) eingesetzt. Die Indices 101 und 102, welche laut Spezifikation speziell für Parameterdatentranfer auszuwählen sind, werden nicht mehr eingesetzt.
- **C** Dieser Offset wird zur Anfangsadresse (**A**) addiert. Die berechnete Adresse bezieht sich auf die zu einem Kanal gehörenden Prozessdaten. Hier ist der Offset "0", weil vartable_pib0 zum 1. Kanal gehört. Der entsprechende Offset in der vartable_pib1, welche zum 2. Kanal gehört ist immer "2".
- D Hier ist der Buffer-Bereich für die Lese- und Schreibdaten für die 1. Instanz (1. Kanal) angegeben. Der "Speicherbedarf für die Lese- und Schreibdaten" Seite 3-3 ist mit der Wahl eines PIB_001KB_CYC auf insgesamt 1 Kilobyte begrenzt. Hier ist angegeben, dass der Sendebuffer für den 1. Kanal den Bereich 1 bis 200 belegt. Der Empfangsbuffer belegt den Bereich 201 bis 400. Für den 2. Kanal werden entsprechend die Bereiche 401 bis 600 und 601 bis 800 belegt (vergl. vartable_pib1).
- E Hier kann 1, 2 oder 3 eingetragen werden, wenn nur eines von 3 möglichen Kommandos (siehe vartable_pibX: Kommando 1, WriteConfig (INIT), Kommando 2, z. B. Inventory...) ausgeführt werden soll. Da zunächst nur der Write-Config-Befehl ("Write-Config" Seite 4-28) ausgeführt werden soll, ist hier bereits "1" eingetragen.
- F Die hexadezimale Codierung für den Befehl "Write-Config" ist 0×78.
- **G** Die Änderung der Konfigurationsdaten kann laut Spezifikation ("Config" Seite 4-28) durch einen Reset (0×01), durch das Schreiben der neuen Daten (0×02) mit einer Kombination aus Reset und neuen Konfigurationsdaten (0×03) (wie im Beispiel), ausgeführt werden.
- H Die Anzahl der Konfigurationsdaten, die geschrieben werden sollen. (Hier sind es 3 Konfigurationsdaten zum Datenträger, welche im nächsten Abschnitt näher beschrieben werden.)

Aktivieren und Deaktivieren des Schreib-Lese-Kopfes über Konfigurationsdaten

Mit dem Eintrag der Werte in E bis H (Abbildung 68:, Seite 3-32) haben Sie die Vorbereitung für das Senden von Konfigurationswerten getroffen.

Die Konfigurationswerte befinden sich im TURCK Beispielprojekt bereits im "Sendedatenfeld" der vartable_pib0. Das Sendedatenfeld ist unterhalb des Kommandobereichs der vartable_pibX (hier X=0).

Wesentliche Bedeutung hat lediglich der Wert des dritten Konfigurations-Bytes. Ein Aktivieren / Deaktivieren des Schreib-Lese-Kopfes wird über diesen Wert angefordert und mit der nächsten Initialisierung vorgenommen. Ein aktiver Schreib-Lese-Kopf erzeugt ein elektro-magnetisches Feld (die Signalübertragung erfolgt z.B. mit 13,56 MHz). Bei der Initialisierung wird der Befehl "Write-Config" Seite 3-46 durchgeführt.


Nach bereits erfolgter Initialisierung wird das Ein- und Ausschalten des Schreib-Lese-Kopfes mit dem Befehl "Write-Config" Seite 3-46 (0×78) und einer "positiven Flanke" der Steuervariablen "APPL0_DB".EXECUTE vorgenommen. Gehen Sie zur Ausführung des Befehl wie beim Lesen und Schreiben vor (z. B. "Schreiben auf den Datenträger / Kanal 1" Seite 3-38).

Hinweis

Laden Sie alle Werte in Ihre Steuerung (Variable steuern) und vergewissern Sie sich über die Spalte Statuswerte (Variable beobachten) dass die Steuerung die Werte übernommen hat!

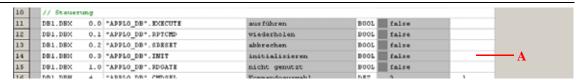
Abbildung 69: Sendedatenfeld der vartable_pib0

A und

- **B** Diese Datenfelder brauchen nicht angepasst zu werden. Ursprünglich standen die Felder für Einträge zur Anzahl der Blöcke und Anzahl der Byte pro Block des Datenträgers zur Verfügung. Behalten Sie den Wert 0×00 bei. Die Werte des aktuell eingesetzten Datenträgers werden intern eingelesen und verarbeitet.
- C Mit dem Wert 0×01 ist der Transmitter (Antenne) des Schreib-Lese-Kopfes aktiviert. Mit dem Wert 0×00 können Sie den Transmitter deaktivieren.

Initialisierung des 1. Kanals

In dem Abschnitt "Einrichten des Funktionsbausteins PIB" Seite 3-8 haben Sie die für eine Initialisierung relevanten Einstellungen (Steuerwerte) kennengelernt. Falls Ihr *BL ident* [®]-Projekt vom Beispielprojekt abweicht, haben Sie die Steuerwerte angepasst.


Hinweis

Laden Sie alle Werte, die in den vorausgehenden Abschnitten beschrieben wurden, in Ihre Steuerung (Variable steuern) ! Vergewissern Sie sich über die Spalte Statuswerte (Variable beobachten) dass die Steuerung die Werte übernommen hat!

Nehmen Sie nun die Initialisierung vor. Achten Sie darauf, dass die Online-Verbindung zu Ihrer Steuerung aktiv ist. Der Modus "RUN" wird grün markiert rechts unten im Fenster angezeigt.

Mit einer "positiven Flanke" der Steuervariablen "APPL0_DB".INIT wird der Befehl "Initialisierung" umgesetzt. Sie erzeugen die positive Flanke, indem Sie die Variable von "false" auf "true" setzen. Tragen Sie als Steuerwert eine "1" oder "true" ein.

Abbildung 70: Steuerfeld der vartable_pib0

A Die Initialisierung erfolgt mit der positiven Flanke (Wechsel von false-> true oder 0->1)

Mit:

Variable > Steuern oder

wird der Befehl "Initialisierung" ausgeführt.

D101578 1209 - BL ident®

Sie können die Ausführung des Befehls im Statusfeld der vartable_pib0 verfolgen.

Abbildung 71: Statusfeld der vartable_pib0

Die Statusvariable "APPL0_DB".DONE wechselt kurzzeitig in den Zustand "Busy" und zeigt dann wieder "Kommando ausgeführt" = "true" an. Die fehlerfreie Ausführung wird mit "APPL0_DB".ERROR = false bestätigt.

Beschreibungen zu einigen Fehlercodes der Statusvariablen "APPLO_DB".STATUS, insbesondere zu den *BL ident* [®] spezifischen Fehlern finden Sie in "Warnungen und Fehlermeldungen" Seite 3-78.

Eine vollständige Beschreibung der Statusdaten finden Sie in "Warnungen und Fehlermeldungen" Seite 3-78 und "Fehler und Warnungen" Seite 4-14.

Setzen Sie die Variable "APPL0_DB".INIT zurück auf "false", wenn die Initialisierung erfolgreich war.

Mit:

Variable > Steuern oder

wird "false" wieder Statuswert.

3.2.8 Lesen des UID vom Datenträger / Kanal 1

Jeder RFID-Datenträger erhält werkseitig einen "UID" Seite 5-4 (unique identifier). Der UID gibt eine weltweit einmalige TAG-Identifikationsnummer wieder und umfasst 8 Byte.

Das Lesen des UID wird mit dem Befehl "inventory" (dt.: Bestandsaufnahme) durchgeführt. Der Befehlscode 0×69 zu inventory ist in dem TURCK Beispielprojekt schon im Feld "Kommando 2" der vartable_pib0 eingetragen. Eine ausführliche Beschreibung dieses Befehlscodes finden Sie in "Inventory" Seite 4-33.

Abbildung 72: Kommando 2 der vartable_pib0

3 // Kommando 2, z.B. Inventory								
4	DB1.DBB 78	"APPLO_DB".CMDBUF[2].CMD	Kommandocode	HEX	B#16#69	B#16#69		
5	DB1.DBW 102	"APPLO_DB".CMDBUF[2].Length	Länge der Daten	DEZ	0			
ID	ID_A\SIMATIC 300(1)\\57-Programm(1)							

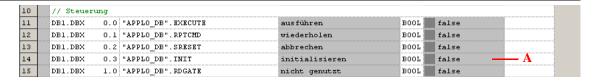
Achten Sie darauf, dass die Online-Verbindung zu Ihrer Steuerung aktiv ist. Der Modus "RUN" wird grün markiert rechts unten im Fenster angezeigt.

Der Steuerwert "APPL0_DP".CMDSEL der vartable_pib0 hat höchstwahrscheinlich noch den Wert "1", weil Sie zuletzt die "Initialisierung" mit Kommando 1 durchgeführt haben.

Geben Sie für diesen Steuerwert jetzt "2" ein, um das Kommando 2 auszuwählen.

Abbildung 73: Steuerungsfeld der vartable_pib0

10	// Steuerung						
11	DB1.DBX 0.0 "APPL0_DB".EXECUTE	ausführen	BOOL	false			
12	DB1.DBX 0.1 "APPL0_DB".RPTCMD	wiederholen	BOOL	false			
13	DB1.DBX 0.2 "APPL0_DB".SRESET	abbrechen	BOOL	false			
14	DB1.DBX 0.3 "APPL0_DB".INIT	initialisieren	BOOL	false			
15	DB1.DBX 1.0 "APPL0_DB".RDGATE	nicht genutzt	BOOL	false			
16	DB1.DBW 4 "APPL0_DB".CMDSEL	Kommandoauswahl	DEZ	2	2		



Hinweis

Laden Sie **alle** Werte in Ihre Steuerung (Variable steuern) und vergewissern Sie sich über die Spalte Statuswerte (Variable beobachten) do , dass die Steuerung die Werte übernommen hat!

Mit einer "positiven Flanke" der Steuervariablen "APPL0_DB".EXECUTE wird der Befehl "Inventory" dargestellt. Sie erzeugen die positive Flanke, indem Sie die Variable von "false" auf "true" setzen. Tragen Sie als Steuerwert eine "1" oder "true" ein.

Abbildung 74: Steuerfeld der vartable_pib0

A "Inventory" erfolgt mit der positiven Flanke (Wechsel von false-> true oder 0->1)

Mit:

Variable > Steuern oder

wird der Befehl "Inventory" ausgeführt.

D101578 1209 - *BL ident*[®] 3-37

Sie können die Ausführung des Befehls im Statusfeld der vartable_pib0 verfolgen.

Die Statusvariable "APPL0_DB".DONE wechselt kurzzeitig in den Zustand "Busy" und zeigt dann wieder "Kommando ausgeführt" = "true" an. Die fehlerfreie Ausführung wird mit "APPL0_DB".ERROR = false bestätigt.

Beim "Inventory" werden 8 UID Datenbyte empfangen. Die Länge der übertragenen Daten ist hier "APPLO_DB".TRLEN = "12".

Eine vollständige Beschreibung der Statusdaten finden Sie in "Warnungen und Fehlermeldungen" Seite 3-78 und "Fehler und Warnungen" Seite 4-14.

Sie können den "Unique Identifier / UID" nun im Empfangsdatenfeld der vartable_pib0 lesen.

Abbildung 75: Der UID im Empfandsdatenfeld

85	// Empfangsdatenfeld							
86	DB2.DBB 200	"BUFFER".BUFFER[201]	gemeinsames Datenfeld	HEX	B#16#00			
87	DB2.DBB 201	"BUFFER".BUFFER[202]	gemeinsames Datenfeld	HEX	B#16#01			
88	DB2.DBB 202	"BUFFER".BUFFER[203]	gemeinsames Datenfeld	HEX	B#16#00			
89	DB2.DBB 203	"BUFFER".BUFFER[204]	gemeinsames Datenfeld	HEX	B#16#08			
90	DB2.DBB 204	"BUFFER".BUFFER[205]	gemeinsames Datenfeld	HEX	B#16#E0			
91	DB2.DBB 205	"BUFFER".BUFFER[206]	gemeinsames Datenfeld	HEX	B#16#04			
92	DB2.DBB 206	"BUFFER".BUFFER[207]	gemeinsames Datenfeld	HEX	B#16#01			
93	DB2.DBB 207	"BUFFER".BUFFER[208]	gemeinsames Datenfeld	HEX	B#16#00	A		
94	DB2.DBB 208	"BUFFER".BUFFER[209]	gemeinsames Datenfeld	HEX	B#16#03			
95	DB2.DBB 209	"BUFFER".BUFFER[210]	gemeinsames Datenfeld	HEX	B#16#1E			
96	DB2.DBB 210	"BUFFER".BUFFER[211]	gemeinsames Datenfeld	HEX	B#16#5C			
97	DB2.DBB 211	"BUFFER".BUFFER[212]	gemeinsames Datenfeld	HEX	B#16#5B			

A Der 8 Byte umfassende UID befindet sich ab Byte 5 im Empfangsdatenbuffer. Byte 5 gibt das MSB und Byte 12 das LSB des UID wieder. Byte 1 und 2 zeigen für BL ident immer 0×0001 an. Pulkfähige Systeme melden hier, welcher der Datenträger aus dem "Pulk" aktuell gelesen wurde. Byte 3 und 4 geben gemeinsam die Länge des UID an (hier: 0×0008).

Setzen Sie die Variable "APPL0_DB". EXECUTE zurück auf "false", wenn der UID erfolgreich gelesen wurde.

Mit:

Variable > Steuern oder

wird "false" wieder Statuswert.

3.2.9 Schreiben auf den Datenträger / Kanal 1

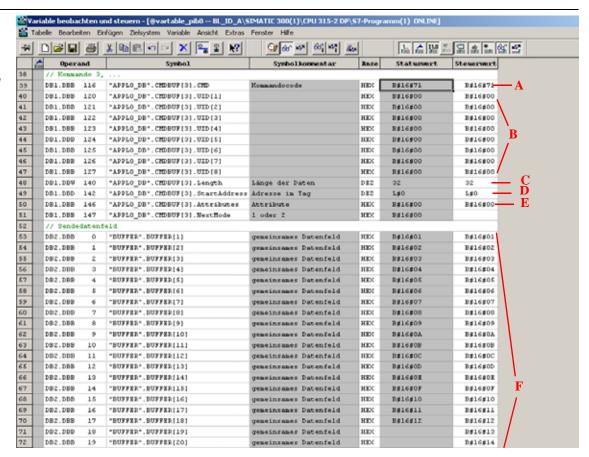
In diesem Abschnitt wird das Schreiben von 32 Byte Daten beliebigen Inhalts auf ihren RFID-Datenträger erläutert.

Das Schreiben auf den Datenträger des 1. Kanals ist möglich, wenn Sie die "Initialisierung des 1. Kanals" Seite 3-13 durchgeführt haben.

Wir haben in diesem Beispiel Daten gewählt, die beim anschließenden "Lesen vom Datenträger / Kanal 1" Seite 3-19 leicht wiederzuerkennen sind.

Das Schreiben der Daten wird mit dem Befehl "Physical_Write" (dt.: physikalisches Schreiben) durchgeführt. Tragen Sie den Kommandocode 0×71 zu Physical_Write in das Feld "Kommando 3" der vartable_pib0 ein. Eine ausführliche Beschreibung dieses Befehlscodes finden Sie in "Physical_Write" Seite 4-26.

Achten Sie darauf, dass die Online-Verbindung zu Ihrer Steuerung aktiv ist. Der Modus "RUN" wird grün markiert rechts unten im Fenster angezeigt.


Geben Sie für den Steuerwert "APPL0_DP".CMDSEL der vartable_pib0 jetzt "3" ein, um das Kommando 3 auszuwählen.

In das Sendedatenfeld tragen Sie die 32 Byte als Hexadezimale Zahlen ein. Im Anschluss an das Schreiben, werden wir das Lesen erläutern. Wir tragen die Zahlenfolge: 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B... 20, die wir leicht wiedererkennen können, ein.

Sie können die hexadezimalen Ziffern einstellig oder zweistellig und ohne weitere Formatangaben (B#16#..) eintragen. Der SIMATIC Manager formt in das passende Format um.

Abbildung 76: Vorbereitung der vartable_pib0 zum Schreiben

- A Hier wird der Code zu dem Kommando, welches als nächstes mit Kommando 3 ausgeführt werden soll, eingetragen. Eine Übersicht zu allen möglichen Kommandos finden Sie in "Befehle" Seite 4-23. Der Kommandocode 0×71 steht für den Befehl zum Schreiben auf ein physikalisch vorhandenes TAG "Physical_Write".
- **B** Dieses 8 Byte umfassende Datenfeld kann einen UID enthalten. Dieser UID wird immer dann mit dem UID des TAGs verglichen, wenn hier Werte ≠ 00 eingetragen wurden. Stellen Sie sicher, dass hier alle 8 Byte den Wert "00" haben, wenn Sie die UID-Vergleichsfunktion nicht ausführen möchten.
- C Hier tragen Sie die Anzahl der Byte ein, die aus dem Sendedatenfeld übertragen werden sollen. Die Anzahl der möglichen Byte hängt von der Größe des Sendedatenfeld (Seite 3-11) und der Speicherkapazität des verwendeten TAGs ab. In diesem TURCK-Beispiel werden 32 Byte auf das TAG (112 Byte) geschrieben. Die Größe des Sendedatenfelds beträgt hier 200 Byte.
- **D** Über diese Adresse kann jedes Byte auf dem TAG als Anfangsadresse explizit angesprochen werden. In dem Beispiel ist die Anfangsadresse L#0 ausgewählt. Verwenden Sie einen anderen Datenträger als in diesem Beispielprojekt beachten Sie den Abschnitt "Nutzerdatenbereiche der Datenträgervarianten" Seite 3-86.
- E Mit diesen "Attributen" können einige Befehle näher spezifiziert werden. Mit dem Schreib- und Lesebefehl wird dieser Wert nicht berücksichtigt.

 In "Befehle" Seite 4-23 finden Sie eine Übersicht zu allen möglichen Befehlen und die Möglichkeiten diese über "Attribute" näher zu spezifizieren. Beachten Sie dabei auf jeden Fall auch die "Definitionen in der Befehls- und Diagnoseebene" Seite 3-45.
- F In diesem Sendedatenfeld, tragen Sie die Daten ein, mit denen Sie Ihr TAG beschreiben wollen.

Hinweis

Laden Sie alle Werte im Feld "Steuerung", "Kommando 3" und "Sendedatenfeld" in Ihre Steuerung (Variable steuern) und vergewissern Sie sich über die Spalte Statuswerte (Variable beobachten) dass die Steuerung die Werte übernommen hat!

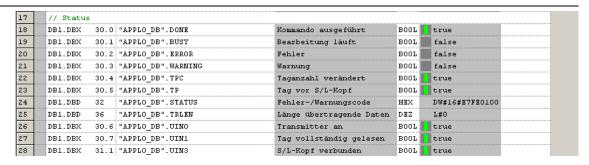
Mit einer "positiven Flanke" der Steuervariablen "APPL0_DB".EXECUTE wird der Befehl "Physical_Write" umgesetzt. Sie erzeugen die positive Flanke, indem Sie die Variable von "false" auf "true" setzen. Tragen Sie als Steuerwert eine "1" oder "true" ein.

Abbildung 77: Steuerfeld der vartable_pib0

10	// Steuer	rung			
11	DB1.DBX	O.O "APPLO_DB".EXECUTE	aus führen	BOOL false	—— A
12	DB1.DBX	O.1 "APPLO_DB".RPTCMD	wiederholen	B00L false	
13	DB1.DBX	0.2 "APPLO DB".SRESET	abbrechen	BOOL false	

A Physical_Write" erfolgt mit der positiven Flanke (Wechsel von false-> true oder 0->1)

Mit:


Variable > Steuern oder

wird der Befehl "Physical_Write" ausgeführt.

Sie können die Ausführung des Befehls im Statusfeld der vartable_pib0 verfolgen.

Abbildung 78: Statusfeld der vartable_pib0

Die Statusvariable "APPL0_DB".DONE wechselt kurzzeitig in den Zustand "Busy" und zeigt dann wieder "Kommando ausgeführt" = "true" an. Die fehlerfreie Ausführung wird mit "APPL0_DB".ERROR = false bestätigt.

Beim "Physical_Write" werden 32 Daten gesendet, deshalb ist die Länge der übertragenen Daten hier "APPLO DB".TRLEN = "32".

Eine vollständige Beschreibung der Statusdaten finden Sie in "Warnungen und Fehlermeldungen" Seite 3-78 und "Fehler und Warnungen" Seite 4-14.

Setzen Sie die Variable "APPL0_DB". EXECUTE zurück auf "false", wenn das Schreiben erfolgreich war.

Mit:

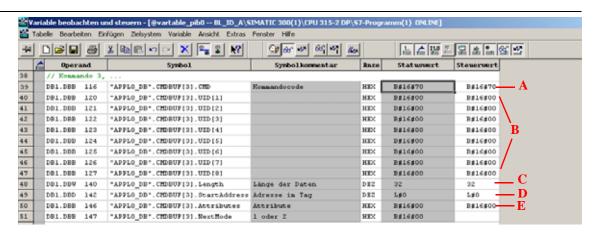
Variable > Steuern oder

wird "false" wieder Statuswert.

3.2.10 Lesen vom Datenträger / Kanal 1

In diesem Abschnitt wird das Lesen von 32 Byte Daten beliebigen Inhalts von ihrem RFID-Datenträger erläutert.

Das Lesen vom Datenträger des 1. Kanals ist möglich, wenn Sie die "Initialisierung des 1. Kanals" Seite 3-13 durchgeführt haben.


Im vorausgehenden Abschnitt haben Sie Daten (beliebig) mit dem "Physical_Write"-Befehl auf den Datenträger geschrieben. Dieselben Daten werden Sie in diesem Abschnitt mit dem "Physical_Read"-Befehl (dt.: physikalisches Lesen) vom Datenträger lesen.

Tragen Sie den Kommandocode 0×70 zu Physical_Read in das Feld "Kommando 3" der vartable_pib0 ein. Eine ausführliche Beschreibung dieses Befehlscodes finden Sie in "Physical_Read" Seite 4-24.

Achten Sie darauf, dass die Online-Verbindung zu Ihrer Steuerung aktiv ist. Der Modus "RUN" wird grün markiert rechts unten im Fenster angezeigt.

Geben Sie für den Steuerwert "APPL0_DP".CMDSEL der vartable_pib0 jetzt "3" ein, um das Kommando 3 auszuwählen.

Abbildung 79: Vorbereitung der vartable_pib0 zum Lesen

- A Hier wird der Code zu dem Kommando, welches als nächstes mit Kommando 3 ausgeführt werden soll, eingetragen. Eine Übersicht zu allen möglichen Kommandos finden Sie in "Befehle" Seite 4-23. Der Kommandocode 0×70 steht für den Befehl zum Lesen von einem physikalisch vorhandenem TAG "Physical_Read".
- **B** Dieses 8 Byte umfassende Datenfeld kann einen UID enthalten. Dieser UID wird immer dann mit dem UID des TAGs verglichen, wenn hier Werte ≠ 00 eingetragen wurden. Stellen Sie sicher, dass hier alle 8 Byte den Wert "00" haben, wenn Sie die UID-Vergleichsfunktion nicht ausführen möchten.
- C Hier tragen Sie die Anzahl der Byte ein, die in das Empfangsdatenfeld übertragen werden sollen. Die Anzahl der möglichen Byte hängt von der Größe des Empfangsdatenfelds (Seite 3-11) und der Speicherkapazität des verwendeten TAGs ab. In diesem TURCK-Beispiel werden 32 Byte von dem TAG (112 Byte) gelesen. Die Größe des Empfangsdatenfelds beträgt hier 200 Byte.
- **D** Über diese Adresse kann jedes Byte auf dem TAG als Anfangsadresse explizit angesprochen werden. In dem Beispiel ist die Anfangsadresse L#0 ausgewählt. Verwenden Sie einen anderen Datenträger als in diesem Beispielprojekt beachten Sie den Abschnitt "Nutzerdatenbereiche der Datenträgervarianten" Seite 3-86.
- E Mit diesen "Attributen" können einige Befehle näher spezifiziert werden. Mit dem Schreib- und Lesebefehl wird dieser Wert nicht berücksichtigt.

In "Befehle" Seite 4-23 finden Sie eine Übersicht zu allen möglichen Befehlen und die Möglichkeiten diese über "Attribute" näher zu spezifizieren. Beachten Sie dabei auf jeden Fall auch die "Definitionen in der Befehls- und Diagnoseebene" Seite 3-45.

Hinweis

Laden Sie alle Werte im Feld "Steuerung" und "Kommando 3" in Ihre Steuerung (Variable steuern) und vergewissern Sie sich über die Spalte Statuswerte (Variable beobachten) of , dass die Steuerung die Werte übernommen hat!

Mit einer "positiven Flanke" der Steuervariablen "APPL0_DB".EXECUTE wird der Befehl "Physical_Read" umgesetzt. Sie erzeugen die positive Flanke, indem Sie die Variable von "false" auf "true" setzen. Tragen Sie als Steuerwert eine "1" oder "true" ein.

Abbildung 80: Steuerfeld der vartable_pib0

10 // Ste	ıerung			
11 DB1.DB	CO.O "APPLO_DB".EXECUTE	aus führen	BOOL	false — A
12 DB1.DB	C 0.1 "APPLO_DB".RPTCMD	wiederholen	BOOL	false
13 DB1.DB	C 0.2 "APPLO_DB".SRESET	abbrechen	BOOL	false
14 DB1.DB	C 0.3 "APPLO_DB".INIT	initialisieren	BOOL	false
15 DB1.DB	(1.0 "APPLO DB".RDGATE	nicht genutzt	BOOL	false

A "Physical_Read" erfolgt mit der positiven Flanke (Wechsel von false-> true oder 0->1)

Mit:

Variable > Steuern oder

wird der Befehl "Physical_Read" ausgeführt.

Sie können die Ausführung des Befehls im Statusfeld der vartable_pib0 verfolgen.

Abbildung 81: Statusfeld der vartable_pib0

17	// Statu	5				
18	DB1.DBX	30.0	"APPLO_DB".DONE	Kommando ausgeführt	BOOL	true
19	DB1.DBX	30.1	"APPLO_DB".BUSY	Bearbeitung läuft	BOOL	false
20	DB1.DBX	30.2	"APPLO_DB".ERROR	Fehler	BOOL	false
21	DB1.DBX	30.3	"APPLO_DB".WARNING	Warnung	BOOL	false
22	DB1.DBX	30.4	"APPLO_DB".TPC	Taganzahl verändert	BOOL	false
23	DB1.DBX	30.5	"APPLO_DB".TP	Tag vor S/L-Kopf	BOOL	true
24	DB1.DBD	32	"APPLO_DB".STATUS	Fehler-/Warnungscode	HEX	DW#16#E7FE0100
25	DB1.DBD	36	"APPLO_DB".TRLEN	Länge übertragende Daten	DEZ	L#32
26	DB1.DBX	30.6	"APPLO_DB".UINO	Transmitter an	BOOL	true
27	DB1.DBX	30.7	"APPLO_DB".UIN1	Tag vollständig gelesen	BOOL	true
28	DB1.DBX	31.1	"APPLO_DB".UIN3	S/L-Kopf verbunden	BOOL	true

Die Statusvariable "APPL0_DB".DONE wechselt kurzzeitig in den Zustand "Busy" und zeigt dann wieder "Kommando ausgeführt" = "true" an. Die fehlerfreie Ausführung wird mit "APPL0_DB".ERROR = false bestätigt.

Die Länge der empfangenen Daten ist hier "APPL0_DB".TRLEN = "32".

Eine vollständige Beschreibung der Statusdaten finden Sie in "Warnungen und Fehlermeldungen" Seite 3-78 und "Fehler und Warnungen" Seite 4-14.

Im Empfangdatenfeld der vartable_pib0 finden Sie die vom TAG gelesenen Daten:

Abbildung 82: Empfangdatenfeld der vartable_pib0 nach erfolgreichem Lesen

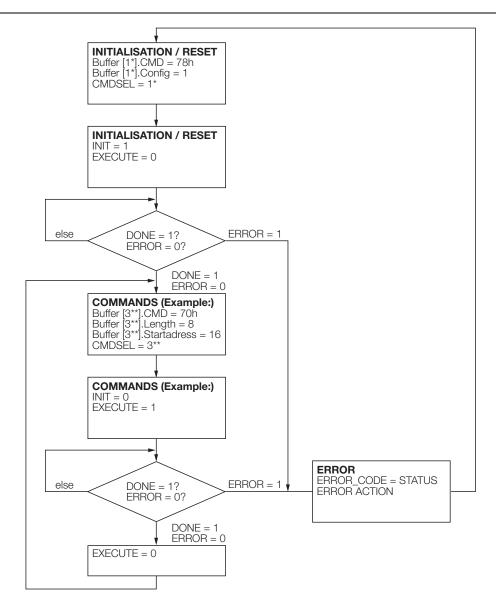
85	// Empfa	ngsdat	enfeld			
86	DB2.DBB	200	"BUFFER".BUFFER[201]	gemeinsames Datenfeld	HEX	B#16#01
87	DB2.DBB	201	"BUFFER".BUFFER[202]	gemeinsames Datenfeld	HEX	B#16#02
88	DB2.DBB	202	"BUFFER".BUFFER[203]	gemeinsames Datenfeld	HEX	B#16#03
89	DB2.DBB	203	"BUFFER".BUFFER[204]	gemeinsames Datenfeld	HEX	B#16#04
90	DB2.DBB	204	"BUFFER".BUFFER[205]	gemeinsames Datenfeld	HEX	B#16#05
91	DB2.DBB	205	"BUFFER".BUFFER[206]	gemeinsames Datenfeld	HEX	B#16#06
92	DB2.DBB	206	"BUFFER".BUFFER[207]	gemeinsames Datenfeld	HEX	B#16#07
93	DB2.DBB	207	"BUFFER".BUFFER[208]	gemeinsames Datenfeld	HEX	B#16#08
94	DB2.DBB	208	"BUFFER".BUFFER[209]	gemeinsames Datenfeld	HEX	B#16#09
95	DB2.DBB	209	"BUFFER".BUFFER[210]	gemeinsames Datenfeld	HEX	B#16#0A
96	DB2.DBB	210	"BUFFER".BUFFER[211]	gemeinsames Datenfeld	HEX	B#16#0B
97	DB2.DBB	211	"BUFFER".BUFFER[212]	gemeinsames Datenfeld	HEX	B#16#0C
98	DB2.DBB	212	"BUFFER".BUFFER[213]	gemeinsames Datenfeld	HEX	B#16#0D
99	DB2.DBB	213	"BUFFER".BUFFER[214]	gemeinsames Datenfeld	HEX	B#16#0E
100	DB2.DBB	214	"BUFFER".BUFFER[215]	gemeinsames Datenfeld	HEX	B#16#0F
101	DB2.DBB	215	"BUFFER".BUFFER[216]	gemeinsames Datenfeld	HEX	B#16#10
102	DB2.DBB	216	"BUFFER".BUFFER[217]	gemeinsames Datenfeld	HEX	B#16#11
103	DB2.DBB	217	"BUFFER".BUFFER[218]	gemeinsames Datenfeld	HEX	B#16#12
104	DB2.DBB	218	"BUFFER".BUFFER[219]	gemeinsames Datenfeld	HEX	B#16#13
105	DB2.DBB	219	"BUFFER".BUFFER[220]	gemeinsames Datenfeld	HEX	B#16#14
106	DB2.DBB	220	"BUFFER".BUFFER[221]	gemeinsames Datenfeld	HEX	B#16#15
107	DB2.DBB	221	"BUFFER".BUFFER[222]	gemeinsames Datenfeld	HEX	B#16#16
108	DB2.DBB	222	"BUFFER".BUFFER[223]	gemeinsames Datenfeld	HEX	B#16#17
109	DB2.DBB	223	"BUFFER".BUFFER[224]	gemeinsames Datenfeld	HEX	B#16#18
110	DB2.DBB	224	"BUFFER".BUFFER[225]	gemeinsames Datenfeld	HEX	B#16#19
111	DB2.DBB	225	"BUFFER".BUFFER[226]	gemeinsames Datenfeld	HEX	B#16#1A
112	DB2.DBB	226	"BUFFER".BUFFER[227]	gemeinsames Datenfeld	HEX	B#16#1B

Setzen Sie die Variable "APPL0_DB". EXECUTE zurück auf "false", wenn das Lesen erfolgreich war.

Mit:

Variable > Steuern oder

47


wird "false" wieder Statuswert.

3.3 Ablaufdiagramm zur Funktionsweise des PIB

Das folgende Ablaufdiagramm zeigt die Funktionsweise des PIB auf einen Blick.

Weitere Unterstützung für eine eigene Programmierung liefern der "Auszug aus der Spezifikation" Seite 4-1 und die folgenden Abschnitte.

Abbildung 83: Ablaufdiagramm PIB

^{*} muss 0 sein

^{**} kann 3 sein

Hinweis

Beachten Sie, dass sich die Abfrage der Parameter DONE, ERROR, TP etc. immer auf einen Signalwechsel (Flanke) bezieht.

3.4 Definitionen in der Befehls- und Diagnoseebene

Die Inbetriebnahme des TURCK *BL ident* *-System mit dem "Proxy Ident Function Block" beinhaltet einige Abweichungen zum " Auszug aus der Spezifikation" Seite 4-1 (PROFIBUS-Spezifikation). Die Abweichungen betreffen die Befehls- und die Diagnoseebene.

Die folgende Konformitätstabelle zeigt auf, welche Befehle und Status- bzw. Diagnosemeldungen der vollständigen Spezifikation von *BL ident* [®] nicht unterstützt werden:

Tabelle 42: Konformitäts- tabelle	Name	Тур	Zusätzliche Informati- onen zur TURCK spezifi- schen Ausführung	konform? (Y/N)					
	Zu Punkt 3.1.4 der PRO	Zu Punkt 3.1.4 der PROFIBUS-Spezifikation							
	Read	Befehl		N					
	Get	Befehl		Υ					
	Physical_Read	Befehl		Υ					
	Write	Befehl		N					
	Put	Befehl		N					
	Physical_Write	Befehl		Υ					
	Format	Befehl		N					
	Create	Befehl		N					
	Delete	Befehl		N					
	Clear	Befehl		N					
	Update	Befehl		N					
	Next	Befehl		Υ					
	Get-Directory	Befehl		N					
	Set-Attribute	Befehl		N					
	Get-Attribute	Befehl		N					
	Write-Config	Befehl		Υ					
	Read-Config	Befehl		Υ					
	Mem-Status	Befehl		Υ					
	Dev-Status	Befehl		Υ					
	Inventory	Befehl		Υ					
	Read-Bar-Code	Befehl		N					
	Zu Punkt 4.2.1 der PRC	FIBUS-Spezifikatio	n						
	Reading-Gate	Steuer-Bit		N					
	Repeat-Command	Steuer-Bit		N					

D101578 1209 - BL ident®

Tabelle 42: (Forts.) Konformitäts- tabelle	onen schei		Zusätzliche Informati- onen zur TURCK spezifi- schen Ausführung	konform? (Y/N)
	Soft-Reset	Steuer-Bit		Υ
	Zu Punkt 4.2.2 der PROFI	BUS-Spezifikatio	n	
	Target_Presence_Chan ged	Status Bit		Υ
	Target_Present	Status Bit		Υ
Soft_Reset_Active		Status Bit		Υ
	Repeat_ Command_Active	Status Bit		N
	Busy	Status Bit		Υ
	Error	Status Bit		Υ
	UIN3	Status Bit	Schreib-Lese-Kopf ist angeschlossen	Υ
	UIN2	Status Bit		N
	UIN1	Status Bit	Daten des Tags vollständig in den Schreib-Lese-Kopf gelesen	Y
	UINO	Status Bit	Schreib-Lese-Kopf ist aktiviert (siehe auch Write-Config)	Y

Die folgenden Befehle weisen Abweichungen zu der PROFIBUS-Spezifikation auf:

3.4.1 Write-Config

Dieses Kommando wird im PIB durch INIT ausgelöst und unterstützt Config = 1 (nur Reset) und Config = 3 (Daten schreiben und Reset). Es können 3 Bytes Config-Daten geschrieben werden. Die Config-Daten enthalten die Möglichkeit, den Transmitter des Schreib-Lese-Kopfes ein- und auszuschalten. Das Ein- und Ausschalten des Transmitters kann genutzt werden, um eine gegenseitige Beeinflussung nah platzierter Schreib-Lese-Köpfe zu vermeiden.

Tabelle 43: Konfigurati- onsdaten	Byte	Bit	Bedeutung
	0	07	Reserviert, muss 0 sein
	1 07 Reserviert, muss 0 sein		Reserviert, muss 0 sein
	2 0 1 = Transmitter On / 0 = Transmitter Off, (default =		1 = Transmitter On / 0 = Transmitter Off, (default = 1)
17 Reserviert, muss 0 sein		17	Reserviert, muss 0 sein

Beispiel für Konfigurationsdaten

"0×00, 0×00, 0×01"

3.4.2 Read-Config

Dieses Kommando liest die unter Write-Config beschriebenen Config-Daten. Mögliche befehlspezifische STATUS-Werte nach fehlerhafter Ausführung:

Tabelle 44: STATUS-Wert	STATUS	Beschreibung des Fehlers	
	DW#16#E 4 FE 82 xx	Es ist kein Schreib-Lese-Kopf angeschlossen.	

3.4.3 Inventory

Nur der Parameter Attributes = 0 wird unterstützt. ("Inventory" Seite 4-33)

3.4.4 Physical_Read

Die Parameter StartAddress und Length (+StartAddress) müssen innerhalb des Adressraumes des Tags liegen. ("Physical_Read" Seite 4-24)

3.4.5 Physical_Write

Die Parameter StartAddress und Length (+StartAddress) müssen innerhalb des Adressraumes des Tags liegen. ("Physical_Write" Seite 4-26)

3.4.6 Mem-Status

Beim Kommando Mem-Status wird das Attribut 0×04 (physical status information) unterstützt. Als Daten wird die Antwort des Tags auf ein GET_SYSTEM_INFORMATION-Kommando nach ISO/IEC15693-3 übertragen:

- Byte 0 = Seriennummer (UID), LSB
- <u>.</u>
- **.**
- Byte 7 = Seriennummer (UID), MSB
- Byte 8 = Datenträgerformat (DSFID)
- Byte 9 = Applikationskennung (AFI)
- Byte 10 = Speichergröße: Blockanzahl-1
- Byte 11 = Speichergröße: Bytes/Block-1
- Byte 12 = IC-Kennung

3.4.7 Dev-Status

Nur der Parameter Attributes = 0×04 wird unterstützt. Zurückgegeben wird ein Data-Record nach I&M-Spezifikation I&M0. Beschrieben wird der angeschlossene Schreib-Lese-Kopf. ("Dev-Status" Seite 4-32)

Beispiel:

Tabelle 45: Beispiel zu Dev-Status	el zu		Feld	Inhalt
	0	9	Manufacturer specific header	0, 0, 0, 0, 0,0,0,0,0
	10	11	MANUFACTURER_ID	0×0B12 (299 = TURCK)
	12	31	ORDER_ID	,TN-CK40-H1147', 0×00, 0×20, 0×20, 0×20, 0×20, 0×20, 0×20
	32	47	SERIAL_NUMBER	(nicht unterstützt)
	48	49	HARDWARE _REVISION	0×0003
	50	53	SOFTWARE_REVISION	,V' (0×56), 0×01, 0×03, 0×00 (= V1.3.0)
	54	55	REVISION_COUNTER	(nicht unterstützt)
	56	57	PROFILE_ID	0×5B00 (identification system, PIB profile)
	58	59	PROFILE_SPECIFIC _TYPE	0×0000
	60	61	IM_VERSION	0×01, 0×01 (= I&M V1.1)
	62	63	IM_SUPPORTED	0×01, I&M0 supported

3.4.8 Next

Nur der Parameter NextMode = 0 oder 1 wird unterstützt. ("Next" Seite 4-26)

3.4.9 Get

Mit diesem Befehl ist es möglich, den Schreibschutz eines Blockes eines Tags zu setzen.

Zum Setzen eines Schreibschutzes ist es erforderlich, die Speicherorganisation des verwendeten Tags zu kennen (Anzahl und Größe der Blöcke). Die Speicherorganisation zeigt der Abschnitt: "Zugriff auf die Datenbereiche der Datenträger" Seite 3-86.

Achtung

Das Setzen des Schreibschutzes für einen Block lässt sich nicht mehr rückgängig machen!

Tabelle 46: Sendedaten- feld zum Be- fehl "Get"	Byte im Sendedatenfeld	Inhalt
	0	0×02
	1	UID des Tags, UID = 0 -> beliebig
	2	UID des Tags
	3	UID des Tags
	4	UID des Tags
	5	UID des Tags
	6	UID des Tags
	7	UID des Tags
	8	UID des Tags
	9	0×67
	10	Blocknummer des schreibgeschützt zu schaltenden Blocks (0×00 = 1. Block, 0×FF = 256. Block)

Bei Erfolg werden folgende Daten zurückgesendet:

Tabelle 47: Empfangsdat en	Byte im Empfangsdatenfeld	Inhalt	
	0	0×02	
	1	0×67	
	2	Befehlsindex	

Tritt ein Fehler auf, so wird das in STATUS entsprechend angezeigt.

3.4.10 Weitere Befehle

Eine Übersicht zu weiteren Befehlen finden Sie in "Befehle" Seite 4-23. Zum Ausführen der Befehle gehen Sie wie beim Schreiben und Lesen vor.

3.5 Beispielinbetriebnahme für BL ident®S-Module mit STEP7

3.5.1 Hardwarebeschreibung des Beispielprojektes

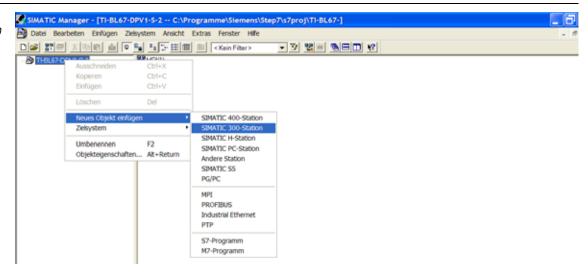
Für das folgende Inbetriebnahmebeispiel wurden folgende Hardwarekomponenten verwendet:

- S7-Steuerung "CPU 315-2DP" (DPV1-fähige CPU)
- BL ident [®]-Interface-Modul "TI-BL67-DPV1-S-2"
- BL ident [®]-Schreib-Lese-Kopf "TN-CK40-H1147"
- Datenträger "TW-R50-B128" (Nutzdaten = 112 Byte)
- Geeignete Verbindungsleitungen

Bei Fragen oder Unklarheiten steht Ihnen das D101582 (zu den Schreib-Lese-Köpfen und den Datenträgern) im Download-Bereich der TURCK-Internetseite zur Verfügung.

3.5.2 Download der aktuellen GSD-Datei

Die aktuelle GSD-Datei benötigen Sie, um die Konfiguration des *BL ident* [®]-Interface-Moduls zu ermöglichen. Die aktuelle GSD-Datei finden Sie über:


http://www.turck.com....

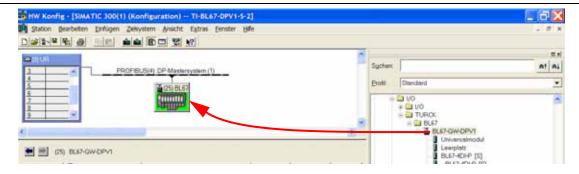
(Download > Konfiguration > GSD PROFIBUS)

3.5.3 Starten der STEP7-Software und Anlegen eines neuen Projektes

Aktualisieren Sie gegebenenfalls die GSD-Datei (vor oder nach dem Start). Starten Sie die "SIMATIC Basissoftware Step 7". Nach dem Start wird das Fenster des "SIMATIC Managers" aktiv. Öffnen Sie mit Datei > Neu ein neues Projekt und vergeben Sie den Projektnamen hier z. B. "TI-BL67-DPV1-S-2". Mit einem Rechtsklick auf den Projektnamen und dann "Neues Objekt einfügen" können Sie die Steuerung auswählen.

Abbildung 84: Steuerung zum Projekt hinzufügen

3.5.4 Konfigurieren der Hardware


Zum Konfigurieren der Hardware, öffnen Sie den Hardware-Konfigurator mit einem Doppelklick auf Hardware . Wählen Sie im Hardware-Konfigurator mit einem Rechtsklick im oberen Fensterbereich "Objekt einfügen" und dann SIMATIC 300 > RACK-300 > Profilschiene. Wählen

Sie aus dem Katalog im rechten Fensterbereich den CPU-Typ (hier: 6ES7 315-2AF02-0AB0) zu Ihrer Steuerung und fügen Sie Ihn mit Drag-and-Drop ein. In dem sich öffnenden Fenster "Parameter" zu der Schnittstelle wählen Sie zu "Subnetz" "neu" und bestätigen Sie den vorgeschlagenen Namen (z. B. PROFIBUS (1)).

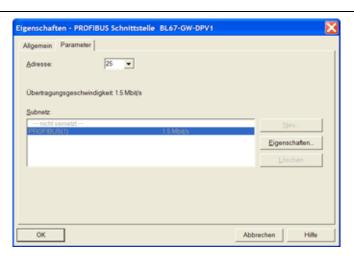

Konfigurieren Sie nun das Interface-Modul, indem Sie zunächst das Gateway mit Drag-and-Drop in das Fenster mit der grafischen Darstellung zum System ziehen. Das Gateway finden Sie in der Geräteübersicht im rechten Fensterbereich unter PROFIBUS-DP > Weitere Feldgeräte > IO > TURCK > BL67 > BL67-GW-DPV1.

Abbildung 85: Konfiguration des Gateways

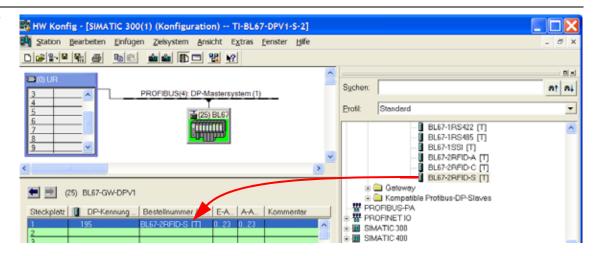
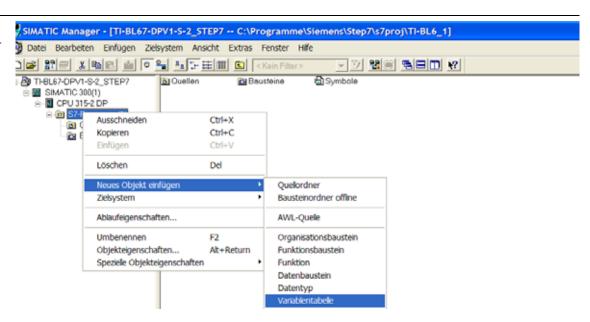

Tragen Sie als Gateway-Parameter die Adresse ein, wie Sie sie mit dem Adressschalter auf dem Gateway-Gehäuse festgelegt haben.

Abbildung 86: Gateway-Adresse

Das Modul "BL67-2RFID-S" befindet sich in demselben Ordner wie das Gateway. Ziehen Sie das Modul mit Drag-and-Drop in die Tabelle zum BL67-GW-DPV1.

Abbildung 87: Konfiguration des BL67-2RFID-S-Moduls

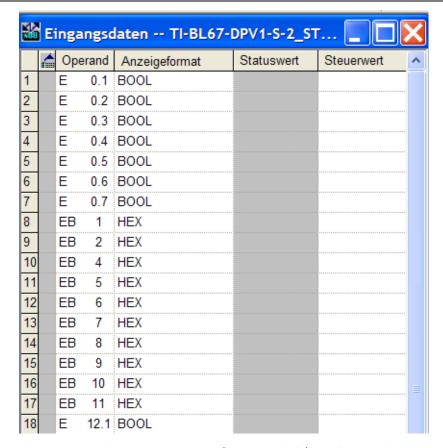


Übertragen Sie die Konfigurationsdaten in das Automatisierungssystem (Zielsystem > Laden.) Stimmen Sie der Frage, ob die Baugruppe jetzt neu gestartet werden soll, zu.

3.5.5 Erstellen der Variablentabellen für die Prozessdaten

Zur Erstellung einer Variablentabelle für die Prozessdaten, wechseln Sie in den Bereich "SIMATIC Manager". Markieren Sie "S7-Programm" und wählen Sie dann "Neues Objekt einfügen" > "Variablentabelle".

Abbildung 88: Variablentabelle einfügen



Vergeben Sie symbolische Namen für die Variablentabellen (z. B. Eingangsdaten und Ausgangsdaten).

Bauen Sie die Tabelle auf. Orientieren Sie Sich dabei an dem Aufbau der "Prozess-Eingangsdaten" Seite 3-66 und der "Prozess-Ausgangsdaten" Seite 3-69.

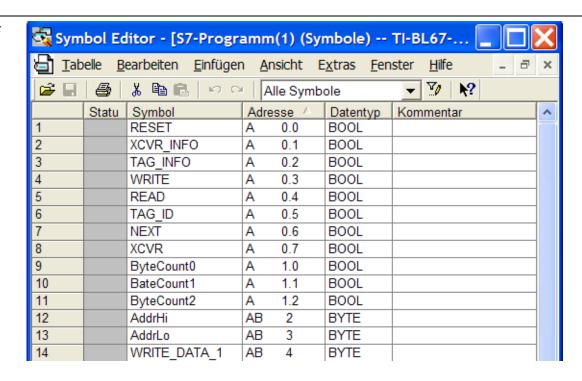


Abbildung 89: Aufbau der Variablentabelle "Eingangsdaten

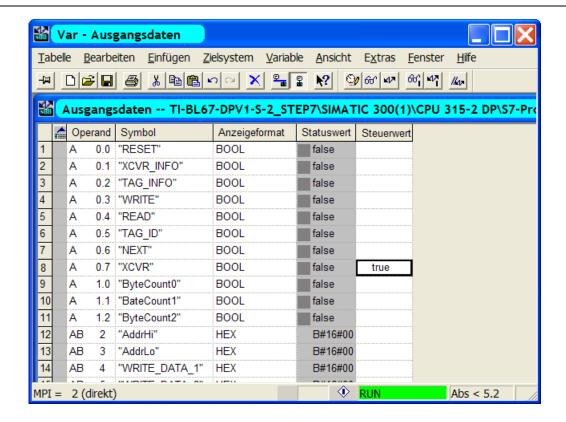
Zur leichteren Orientierung können Sie Namen (hier: Symbole) für die einzelnen Variablen vergeben. Öffnen Sie dazu den "OB1" und wählen Sie "Extras" > "Symboltabelle". Für dieses Beispiel wurden die Bezeichnungen aus den Tabellen "Prozess-Eingangsdaten" Seite 3-66 und "Prozess-Ausgangsdaten" Seite 3-69 übernommen.

Abbildung 90: Symbole (Bezeichnungen) für die Ausgangsdaten

3.5.6 Aktivieren des Schreib-Lese-Kopfes

Über die beiden Variablentabellen haben Sie Zugang zu den Prozessdaten und deren Funktionen.

Öffnen Sie die Variablentabelle "Ausgangsdaten", um den Scheib-Lese-Kopf zu aktivieren. Ein aktiver Schreib-Lese-Kopf erzeugt ein elektro-magnetisches Feld (die Signalübertragung erfolgt z.B. mit 13,56 MHz).


Zum Lesen der Statuswerte und Laden der Steuerwerte aktivieren Sie die Online-Verbindung zu Ihrer Steuerung (Zielsystem > Verbindung herstellen zu direkt angeschlossener CPU). Der Modus "RUN" wird grün markiert rechts unten im Fenster angezeigt.

Die aktuellen Werte der Prozessausgangsdaten erhalten Sie mit (Variable beobachten) <u>off</u>. Setzen Sie in der Spalte "Steuerwert" die Variable "XCVR" auf 1 (true).

3-54 D101578 1209 - *BL ident*®

Abbildung 91: Die Variable "XCVR" zum Schreib-Lese-Kopf

Hinweis


Laden Sie den geänderten Wert in Ihre Steuerung (Variable steuern) und vergewissern Sie sich über die Spalte Statuswerte (Variable beobachten) dass die Steuerung den Wert übernommen hat!

Hinweis

Vergewissern Sie sich erst, dass der Schreib-Lese-Kopf angeschlossen und aktiviert ist, bevor Sie weitere Steuer- und Befehlsbits über die Prozessausgangsdaten setzen.

Abbildung 92: Schreib-Lese-Kopf ist angeschlossen und aktiviert.

D101578 1209 - BL ident[®] 3-55

3.5.7 Initialisierung/RESET Kanal 1

Die Initialisierung sollten Sie durchführen nachdem Sie sich vergewissert haben, dass der Schreib-Lese-Kopf angeschlossen und eingeschaltet ist.

Der Befehl zur Ausführung der Initialisierung wird mit dem Wechsel des entsprechenden Befehlswertes von 0 -> 1 ausgeführt. Vergewissern Sie sich mit (Variable beobachten) das die Variable "RESET" und alle übrigen Variablen von Bit 0.0 bis 0.6 den aktuellen Ausgangswert "false" (0) haben. Setzen Sie dann in der Spalte "Steuerwert" die Variable "RESET" auf 1 (true).

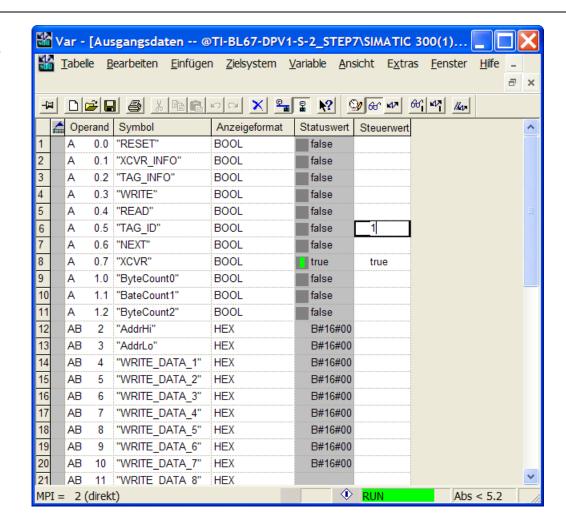
Hinweis

Laden Sie den geänderten Wert in Ihre Steuerung (Variable steuern) und vergewissern Sie sich über die Spalte Statuswerte (Variable beobachten) dass die Steuerung den Wert übernommen hat!

Sie können die Variable "RESET" jetzt oder nach Ausführung zurück auf "false" setzen. Der Abschnitt "Ablaufdiagramme zur Ausführung der Befehle - BL67-2RFID-S/BL20-2RFID-S-Module" Seite 3-65 zeigt die Auswirkung des Ablaufs auf die Statusmeldungen.

Mit.

Variable > Steuern oder


wird "false" wieder Statuswert.

3.5.8 Lesen des UIDs vom Datenträger / Kanal 1

Der Befehl zum Lesen des UID von einem Datenträger wird mit dem Wechsel des entsprechenden Befehlswertes von 0 -> 1 ausgeführt. Vergewissern Sie sich mit (Variable beobachten) das die Variable "TAG_ID" und alle übrigen Variablen von Bit 0.0 bis 0.6 den aktuellen Ausgangswert "false" (0) haben. Setzen Sie dann in der Spalte "Steuerwert" die Variable "TAG_ID" auf 1 (true).

Abbildung 93: Befehl zum Lesen des UID über die Variable "TAG_ID"

Hinweis

Laden Sie den geänderten Wert in Ihre Steuerung (Variable steuern) und vergewissern Sie sich über die Spalte Statuswerte (Variable beobachten) dass die Steuerung den Wert übernommen hat!

Sie können die Variable "TAG_ID" jetzt oder nach Ausführung zurück auf "false" setzen. Der Abschnitt "Ablaufdiagramme zur Ausführung der Befehle - BL67-2RFID-S/BL20-2RFID-S-Module" Seite 3-65 zeigt die Auswirkung des Ablaufs auf die Statusmeldungen.

Mit:

Variable > Steuern oder

wird "false" wieder Statuswert.

Nach dem Lesen des "Unique Identifier / UID", wird dieser mit den Variablen READ_DATE_1 bis READ_DATA_8 der Variablentabelle "Eingangsdaten" anzeigen.

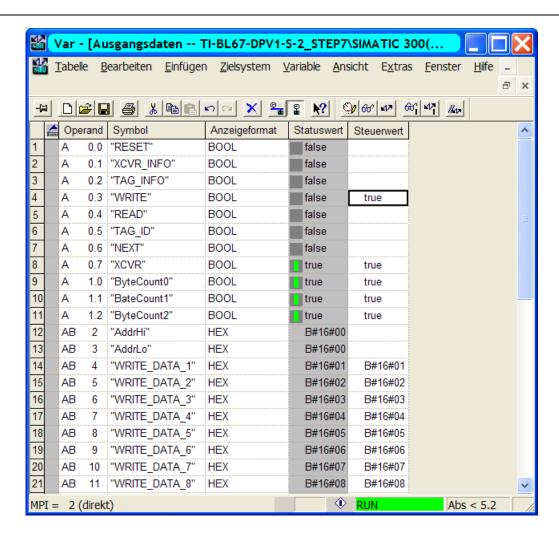
D101578 1209 - *BL ident*[®] 3-57

Abbildung 94: UID in der Variablentabelle "Eingangsdaten"

10	EB	4	"READ_DATA_1"	HEX	B#16#E0
11	EB	5	"READ_DATA_2"	HEX	B#16#04
12	EB	6	"READ_DATA_3"	HEX	B#16#01
13	EB	7	"READ_DATA_4"	HEX	B#16#00
14	EB	8	"READ_DATA_5"	HEX	B#16#0B
15	EB	9	"READ_DATA_6"	HEX	B#16#AE
16	EB	10	"READ_DATA_7"	HEX	B#16#21
17	EB	11	"READ_DATA_8"	HEX	B#16#E4

3-58 D101578 1209 - *BL ident*®

3.5.9 Schreiben auf den Datenträger / Kanal 1


Der Befehl zum Schreiben auf einen Datenträger kann nach einem Wechsel des entsprechenden Befehlswertes "WRITE" von 0 -> 1 ausgeführt werden. Vergewissern Sie sich mit (Variable beobachten) ", dass die Variable "WRITE" und alle übrigen Variablen von Bit 0.0 bis 0.6 den aktuellen Ausgangswert "false" (0) haben. Das Bit "XCVR" muss "true" bleiben. Setzen Sie dann in der Spalte "Steuerwert" die Variable "WRITE" auf 1 (true).

Es sollen hier beispielhaft 8 Byte übertragen werden. Mit ByteCount0 bis ByteCount2 muss der Wert 8-1= 7=111_{binar} dargestellt werden. Setzen Sie die Bits auf "1" (true).

Mit dem Datenträger TW-R30-B128 beginnt der Datenbereich für die Nutzerdaten bei "0", andere Datenträger können abweichende Nutzerdatenbereiche haben. Beachten Sie den Abschnitt "Übersicht zu den Turck Datenträgern" Seite 3-86. Mit den Variablen "AddrHi" und "AddrLo" wird der Bereich auf dem Datenträger angesprochen.

Die Variablen WRITE_DATA_1 bis WRITE_DATA_8 bekommen in diesem Beispiel die Werte: 1,2,3,4,5,6,7,8.

Abbildung 95: Werte in der Variablentabelle "Ausgangsdaten" zum Schreiben auf einen Datenträger

Sie können die Variable "WRITE" jetzt oder nach Ausführung zurück auf "false" setzen. Der Abschnitt "Ablaufdiagramme zur Ausführung der Befehle - BL67-2RFID-S/BL20-2RFID-S-Module" Seite 3-65 zeigt die Auswirkung des Ablaufs auf die Statusmeldungen.

D101578 1209 - BL ident®

Hinweis

Laden Sie den geänderten Wert in Ihre Steuerung (Variable steuern) und vergewissern Sie sich über die Spalte Statuswerte (Variable beobachten) dass die Steuerung den Wert übernommen hat!

3.5.10 Lesen von dem Datenträger / Kanal 1

Der Befehl zum Lesen von einem Datenträger kann nach einem Wechsel des entsprechenden Befehlswertes "READ" von 0 -> 1 ausgeführt werden. Vergewissern Sie sich mit (Variable beobachten) ", dass die Variable "READ" und alle übrigen Variablen von Bit 0.0 bis 0.6 den aktuellen Ausgangswert "false" (0) haben. Setzen Sie dann in der Spalte "Steuerwert" die Variable "READ" auf 1 (true).

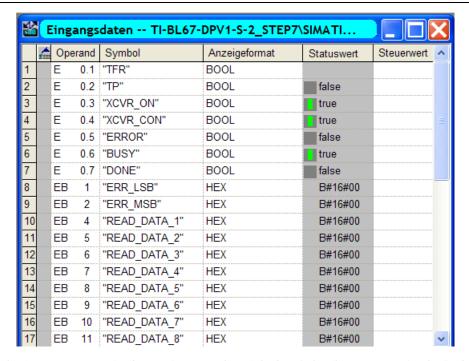
Es sollen hier beispielhaft 8 Byte gelesen werden. Mit ByteCount0 bis ByteCount2 muss der Wert

8-1= 7=111_{binär} dargestellt werden. Setzen Sie die Bits auf "1" (true).

Mit dem Datenträger TW-R30-B128 beginnt der Datenbereich für die Nutzerdaten bei "0", andere Datenträger können abweichende Nutzerdatenbereiche haben. Beachten Sie den Abschnitt "Übersicht zu den Turck Datenträgern" Seite 3-86. Mit den Variablen "AddrHi" und "AddrLo" wird der Bereich auf dem Datenträger angesprochen.

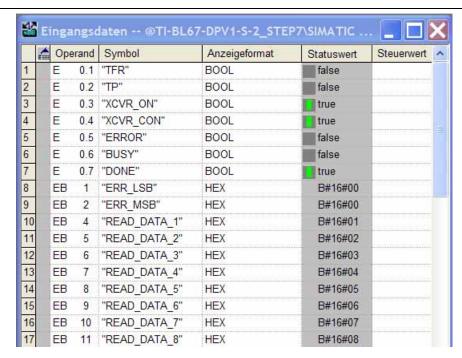
Sie können die Variable "READ" jetzt oder nach Ausführung zurück auf "false" setzen. Der Abschnitt "Ablaufdiagramme zur Ausführung der Befehle - BL67-2RFID-S/BL20-2RFID-S-Module" Seite 3-65 zeigt die Auswirkung des Ablaufs auf die Statusmeldungen.

Hinweis


Laden Sie den geänderten Wert in Ihre Steuerung (Variable steuern) und vergewissern Sie sich über die Spalte Statuswerte (Variable beobachten) dass die Steuerung den Wert übernommen hat!

3-60 D101578 1209 - BL ident®

Die folgende Abbildung zeigt die Statusdaten, wenn das Befehlsbit vor der Ausführung des Befehls schon wieder zurückgesetzt wurde.

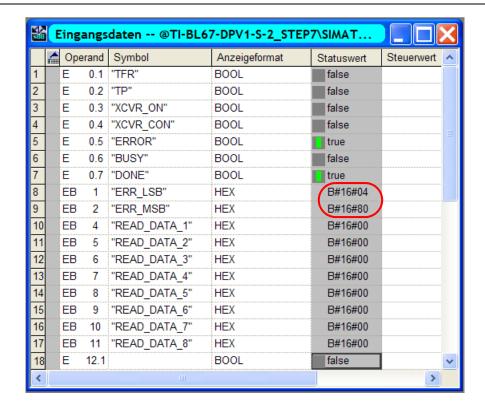

Abbildung 96: Eingangsdaten vor der Ausführung des Befehls

Wenn sich ein Datenträger in dem Erfassungsbereich des Schreib-Lese-Kopfes befindet, wird der Anwenderbereich des Datenträgers automatisch vollständig gelesen. Während dieses Vorgangs ist TFR=0 und wechselt nach dem vollständigen Lesen zu TFR=1. Erst nach dem Verlassen des Erfassungsbereiches, wird TFR wieder "0". Dieser automatische Lesevorgang wird durch alle Anwender-Befehle unterbrochen, das TFR-Bit behält seinen aktuellen Wert. Der Vorgang wird erneut gestartet, wenn keine weiteren Befehle anstehen und TP=1. Lese-Befehle können mit TFR=1 direkt auf schon gespeicherte Daten zugreifen.

Nach der Ausführung des Befehls sind die gelesenen Daten in READ_DATA_1 bis READ_DATA_8.

Abbildung 97: Eingangsdaten nach der Ausführung des Befehls

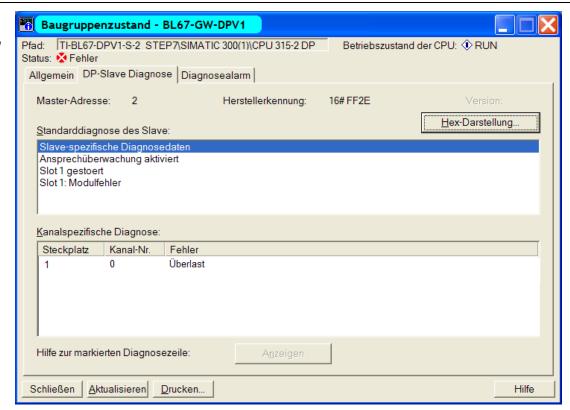
Die Erläuterungen zu den Statusmeldungen erhalten Sie in "Bedeutung der Status-Bits" Seite 3-67.



3.5.11 Fehlermeldungen über die Eingangsdaten

Auftretende Fehler werden mit den Eingangsdaten über das Sammelfehler-Bit "ERROR" gemeldet. Genauere Informationen zu der Fehlerursache liefern die beiden Bytes "ERR_LSB" und "ERR_MSB"

In der Tabelle "Status-Werte" Seite 3-78 entsprechen die beiden fett gedruckten Zahlenwerte dem ersten und dem zweiten Fehler-Byte der Eingangsdaten.


Abbildung 98: Darstellung des Fehlers "Es ist kein Schreib-Lese-Kopf angeschlossen".

3.5.12 DPV1-Diagnose-Meldungen

Zur Anzeige der "Diagnosen" Seite 3-77 wechseln Sie in den Hardware-Konfigurator. Erzeugen Sie mit die Online-Verbindung. Öffnen Sie mit einem rechten Mausklick auf die Darstellung der Baugruppe den Unterpunkt "Baugruppenzustand". Auf der Registerkarte "DP-Slave Diagnose" werden im oberen Feld die Standarddiagnosen des Slave angezeigt. Darunter werden die Diagnosen zum BL67-2RFID-S-Modul in dem Bereich "kanalspezifische Diagnosen" dargestellt.

Abbildung 99: DPV1-Diagnosemeldu ng

3.5.13 Parametrierung

Die Parametrierung des BL67-2RFID-S/BL20-2RFID-S-Modul ist nur dann erforderlich, wenn bei der Inbetriebnahme der Fehler ERR_LSB=1 und ERR_MSB=02 mit den Fehlerbytes der Eingangsdaten gesendet wurde. Die Einstellung des Parameters erfolgt in dem "Hardware-Konfigurator" im "Offline-Modus". Öffnen Sie mit einem Mausklick auf die grafische Darstellung der Baugruppe die Steckplatz-Liste. Mit einem rechten Mausklick auf das BL67-2RFID-S/BL20-2RFID-S-Modul in dieser Liste, wählen Sie den Unterpunkt "Objekteigenschaften". Auf der Registerkarte "Parametrieren" erfolgt die Einstellung des Parameters unter "Gerätespezifische Parameter". Lesen Sie die Abschnitte "Parameter" Seite 3-73.

3.6 Ablaufdiagramme zur Ausführung der Befehle - BL67-2RFID-S/BL20-2RFID-S-Module

Die Werte der Befehls-Bits (TAG-ID, READ, WRITE...) können vor oder nach der Ausführung des Befehls wieder auf den Ausgangswert "0" zurückgesetzt werden. Die beiden folgenden Abbildungen zeigen die Statusmeldungen in Abhängigkeit von der Reihenfolge der Vorgehensweise:

Abbildung 100: Rücksetzen des Befehlsbits nach der Ausführung

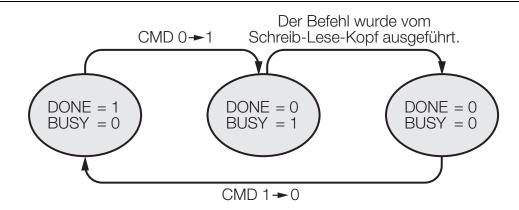
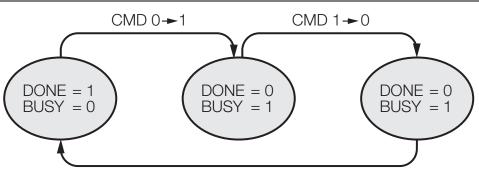



Abbildung 101: Rücksetzen des Befehlsbits vor der Ausführung

Der Befehl wurde vom Schreib-Lese-Kopf ausgeführt.

3.7 Prozessabbild der BL67-2RFID-S/BL20-2RFID-S-Module

3.7.1 Prozess-Eingangsdaten

Tabelle 48: Eingangsda- ten-Bytes			Bit						
		7	6	5	4	3	2	1	0
		Kanal 1							
	O ^{A)}	DONE	BUSY	ERROR	XCVR_ CON	XCVR_ ON	TP	TFR	res.
	1			ehlercode gen und Fel	hlermeldun	gen" Seite	3-78)		LSB
	2	MSB							
	3	res.	res.	res.	res.	res.	res.	res.	res.
	4	8 Byte Le	esedaten (R	EAD_DATA	N)				
	5								
	6								
	7	_							
	8	_							
	9								
	10								
	11								
	Kanal	2							
	12	DONE	BUSY	ERROR	XCVR_ CON	XCVR_ ON	TP	TFR	res.
	13			ehlercode gen und Fel	hlermeldun	gen" Seite	3-78)		LSB
	14	MSB							
	15	res.	res.	res.	res.	res.	res.	res.	res.

3-66 D101578 1209 - *BL ident*®

Tabelle 48: Eingangsda- ten-Bytes					В	it			
		7	6	5	4	3	2	1	0
	16	8 Byte Le	sedaten (R	EAD_DATA)				
	17								
	18								
	19								
	20								
	21								
	22								
	23								

A Byte-Nummer

Bedeutung der Status-Bits

Die folgende Tabelle liefert die Bedeutung zu den Statusbits der oben aufgeführten Prozesseingangsdaten:

Tabelle 49: Bedeutung der Status- Bits	Bezeich- nung	Bedeutung
	DONE	1: Das System arbeitet zur Zeit keinen Befehl ab und ist bereit für den Empfang eines folgenden Befehls. 0: Alle ankommenden Befehle, abgesehen vom RESET-Befehl, werden ignoriert. DONE wechselt nur dann in den Zustand "1", wenn alle Befehls-Bits (READ,WRITE) "0" sind. "Ablaufdiagramme zur Ausführung der Befehle - BL67-2RFID-S/BL20-2RFID-S-Module" Seite 3-65
	BUSY	1: Das System führt aktuell einen Befehl aus. 0: Die Ausführung des Befehls wurde beendet. BUSY ist nicht die Inversion von DONE und kann unter Umständen nicht mit einem Handshake-Verfahren verwendet werden. Verwenden Sie zur Einrichtung eines Handshake-Verfahrens die Variable DONE.
	ERROR	1: Während der Ausführung eines Befehls ist ein Fehler aufgetreten. Wenn dieses Flag z. B. auf einen Schreib-Befehls (WRITE) folgt, wurden die Daten des Sende-Buffers nicht auf den Datenträger geschrieben. Wenn dieses Flag auf einen Lese-Befehl folgt, wurden keine Daten vom Datenträger gelesen und keine neuen Daten in den Empfangs-Buffer geladen. 0: Der letzte Schreib- oder Lese-Befehl konnte erfolgreich ausgeführt werden. Im Empfangs-Buffer sind gültige Daten. Detaillierte Informationen werden über die zwei Byte Fehlercode geliefert. Die Tabelle "Status-Werte" Seite 3-78 liefert die Bedeutung zu dem Fehlercode.

D101578 1209 - BL ident®

Tabelle 49:
Bedeutung
der Status-
Bits

Bezeich- nung	Bedeutung
XCVR_C ON	1: Der Schreib-Lese-Kopf ist korrekt am BL67-2RFID-S-Modul angeschlossen. 0: Der Schreib-Lese-Kopf ist noch nicht korrekt am BL67-2RFID-S-Modul angeschlossen.
XCVR_O N	1: Die Übertragung mit 13,56 MHz zwischen Schreib-Lese-Kopf und Datenträger ist aktiv. 0: Die Übertragung mit 13,56 MHz zwischen Schreib-Lese-Kopf und Datenträger ist nicht aktiv.
TP (Tag Present)	1: Ein Datenträger befindet sich in dem Erfassungsbereich des Schreib-Lese-Kopfes und wird vom Schreib-Lese-Kopf erkannt. 0: Es befindet sich kein Datenträger im Erfassungsbereich des Schreib-Lese-Kopfes oder der Schreib-Lese-Kopf hat den Datenträger nicht erkannt.
TFR (Tag Fully Read)	1: Alle Datenbereiche des Datenträgers wurden vollständig vom <i>BL ident</i> **-System gelesen und der Datenträger befindet sich noch im Erfassungsbereich (TP=1). Dieses automatische Lesen erfolgt immer dann, wenn sich ein Datenträger im Erfassungsbereich des Schreib-Lese-Kopfes befindet. Die Zeit zwischen TP=1 und TFR=1 kann nicht Referenzzeit für einen Lese- und Schreib-Befehl angesehen werden. Wenn mit einem Lese- oder Schreib-Befehl nur wenige Bytes gelesen oder geschrieben werden, wird der Befehl wesentlich schneller ausgeführt, als z. B. das vollständige Lesen eines 2000 Byte Datenträgers. Lese-Befehle können mit TFR=1 direkt auf schon gespeicherte Daten zugreifen. 0: Alle Datenbereiche des Datenträgers wurden noch nicht vollständig vom <i>BL ident</i> **-System gelesen oder der Datenträger befindet sich nicht im Erfassungsbereich des Schreib-Lese-Kopfes. Dieser automatische Lesevorgang wird durch alle Anwender-Befehle unterbrochen, das TFR-Bit behält seinen aktuellen Wert. Der Vorgang wird erneut gestartet, wenn keine weiteren Befehle anstehen und TP=1.

Hinweis

Das Statusbit "BUSY" kann systemabhängig, in vielen Fällen nicht für ein Handshake-Verfahren verwendet werden!

Hinweis

In dem Abschnitt "Warnungen und Fehlermeldungen" Seite 3-78 wird die Aufschlüsselung des 2-Byte-Fehlercodes dargestellt.

3.7.2 Prozess-Ausgangsdaten

Tabelle 50: Ausgangsda- ten-Bytes					E	Bit				
		7	6	5	4	3	2	1	0	
		Kanal 1								
	O ^{A)}	XCVR	NEXT	TAG-ID	READ	WRITE	TAG _INFO	XCVR _INFO	RESET	
	1	res.	res.	res.	res.	res.	Byte Count2	Byte Count1	Byte Count0	
	2	MSB	AddrHi						LSB	
	3	MSB	AddrLo						LSB	
	4	8 Byte S	chreib-Date	en (WRITE_	DATA)					
	5									
	6									
	7	_								
	8									
	9	_								
	10	_								
	11									
	Kanal 2									
	12	XCVR	NEXT	TAG-ID	READ	WRITE	TAG _INFO	XCVR _INFO	RESET	
	13	res.	res.	res.	res.	res.	Byte Count2	Byte Count1	Byte Count0	
	14	MSB AddrHi							LSB	
	15	MSB AddrLo LS							LSB	
	16	8 Byte S	chreib-Date	en (WRITE_	DATA)					
	17									
	18									
	19									
	20									
	21									
	22									
	23									

A Byte-Nummer

Bedeutung der Befehls-Bits/Steuer-Bits

Hinweis

Wenn mehr als ein Befehls-Bit von TAG_ID, READ, WRITE, TRANSCEIVER_INFO oder TAG_INFO gesetzt ist, wird vom BL67-2RFID-S-Modul eine Fehlermeldung generiert! Das Bit "XCVR" muss zur Ausführung eines Befehls immer gesetzt sein, damit der Schreib-Lese-Kopf aktiv bleibt!

Die folgende Tabelle liefert die Bedeutung zu den Befehls-Bits der oben aufgeführten Prozessausgangsdaten:

Tabelle 51: Bedeutung der Befehls- Bits	Bezeich- nung	Bedeutung
	XCVR	1: Der Schreib-Lese-Kopf wird aktiviert (die Signalübertragung erfolgt mit 13,56 MHz). 0: Der Schreib-Lese-Kopf wird deaktiviert (es findet keine Signalübertragung statt). Erst muss die Aktivierung des Schreib-Lese-Kopfes stattfinden, dann kann ein weiterer Befehl mit einem folgenden Prozessabbild angestoßen werden. Wenn XCVR = 0 gesetzt wird, während das BL ident -System mit der Ausführung eines Befehls beschäftigt ist, wird der Befehl erst zu Ende ausgeführt. Der Schreib-Lese-Kopf wird erst dann ausgeschaltet, wenn das Status-Bit "DONE = 1" ist.
	NEXT	1: Genau ein Befehl kann mit demselben Datenträger ausgeführt werden. Wenn ein weiterer Befehl mit demselben Datenträger initiiert wird, bleibt das Status-Bit BUSY = 1. Das <i>BL ident</i> *-System muss zurückgesetzt werden (RESET) oder der Befehl muss mit einem anderen Datenträger ausgeführt werden. 0: Funktion wird nicht verwendet.
	TAG_ID	 0 -> 1: Mit der steigenden Flanke wird der Befehl zum Lesen des UID angestoßen. Der Befehl wird ausgeführt, wenn sich ein Datenträger im Erfassungsbereich des Schreib-Lese-Kopfes befindet. ("UID" Seite 5-4) 0: Funktion wird nicht verwendet.
	READ	 0 -> 1: Mit der steigenden Flanke wird der Lese-Befehl angestoßen. Der Befehl wird ausgeführt, wenn sich ein Datenträger im Erfassungsbereich des Schreib-Lese-Kopfes befindet. Es wird die Byte-Anzahl "ByteCount0ByteCount2" von der Datenträger-Adresse "AddrLo, AddrHi" gelesen. 0: Funktion wird nicht verwendet.
	WRITE	 0 -> 1: Mit der steigenden Flanke wird der Schreib-Befehl angestoßen. Der Befehl wird ausgeführt, wenn sich ein Datenträger im Erfassungsbereich des Schreib-Lese-Kopfes befindet. Es wird die Byte-Anzahl "ByteCount0ByteCount2" auf die Datenträger-Adresse "AddrLo, AddrHi" geschrieben. 0: Funktion wird nicht verwendet.

3-70 D101578 1209 - *BL ident*®

Tabelle 51: Bedeutung der Befehls- Bits	Bezeich- nung	Bedeutung
	TAG_INF O	 0 -> 1: Mit der steigenden Flanke wird der Befehl TAG_INFO (Informationen zum Datenträger) angestoßen. Der Befehl wird ausgeführt, wenn sich ein Datenträger im Erfassungsbereich des Schreib-Lese-Kopfes befindet. Mit den Prozesseingangsdaten werden die Informationen zum Datenträger in dem Bereich Lesedaten mit den folgenden 8 Byte gesendet: Byte 0: Anzahl der Blöcke-1 des Datenträgers (d.h 27 -> 28 Blöcke) Byte 1: Anzahl der Bytes-1 pro Block (d.h. 3 -> 4 Bytes pro Block) Byte 2: Wird nicht unterstützt (DSFID - Datenträgerformat) Byte 3: Wird nicht unterstützt (AFI - Applikationskennung) Byte 4: Wird nicht unterstützt (ICID - IC-Kennung (wird nicht unterstützt) Byte 5 bis Byte 7: "0" 0: Funktion wird nicht verwendet.
	TRAN- SCEIVE R _INFO	0 -> 1: Mit der steigenden Flanke wird der Befehl TRANSCEIVER_INFO (Informationen zum Schreib-Lese-Kopf) angestoßen und ausgeführt. Mit den Prozesseingangsdaten werden die Informationen zum Schreib-Lese-Kopf in dem Bereich Lesedaten mit 8 Byte gesendet. Der Informationsinhalt kann konfiguriert werden. Die Auswahl des Informations-inhalts wird mit "AddrHi, AddrLo" getroffen. 0×00F0: Die ersten 8 Bytes der ORDER_ID (hier: Produktbezeichnung) werden gesendet, z. B. "TNER-Q80" = 0×54 4E 45 52 2D 51 38 30(ASCII-Tabelle) 0×00F1: Die zweiten 8 Bytes der ORDER_ID (hier: Produktbezeichnung) werden gesendet, z. B: "-H1147\0\0" = 0×2D 48 31 31 34 37 5C 00 5C 00 0×00F2: Die dritten 8 Bytes der ORDER_ID (hier: Produktbezeichnung) werden gesendet. 0×00F3: Die vierten 8 Bytes der ORDER_ID (hier: Produktbezeichnung) werden gesendet. 0×00F4: Die Hardware- und Firmware-Versionen des Schreib-Lese-Kopfes werden gesendet. Byte 0: Teil x der Hardware-Version x.y. Byte 1: Teil y der Hardware-Version vx.y. Byte 2: Buchstabe V = 0×56 der Firmwareversion Vx.y.z. Byte 3: Teil x der Firmware-Version Vx.y.z. Byte 5: Teil z der Firmware-Version Vx.y.z. Byte 6 bis Byte 7: wird nicht verwendet.
	RESET	0 -> 1 : Mit der steigenden Flanke wird ein "Reset" des <i>BL ident</i> [®] -Systems durchgeführt. Wenn das Statusbit "BUSY" gesetzt ist, wird die Ausführung des aktuellen Befehls abgebrochen und das Statusbit "DONE" wird gesetzt. Das Statusbit "ERROR" und die zwei Bytes Fehlermeldung (Fehlerkode) der Prozesseingangsdaten werden gelöscht.
	ByteCou nt02	Anzahl der Bytes-1, die noch gelesen (READ) oder geschrieben (WRITE) werden müssen. 111 (0×7) -> 8 Bytes müssen noch gelesen/geschrieben werden.

D101578 1209 - *BL ident*® 3-71

Tabelle 51: Bedeutung der Befehls- Bits	Bezeich- nung	Bedeutung
	AddrHi, AddrLo	Array der Länge 2 Bytes. Gibt die Anfangsadresse des Speicherbereichs auf dem Datenträger wieder, auf den mit dem Schreib- oder Lesebefehl zugegriffen werden soll. Die beschreibbaren/lesbaren Anfangsadressen der Datenträger können ≠ 0 sein. Der Abschnitt "Übersicht zu den Turck Datenträgern" Seite 3-86 gibt Auskunft zu der beschreibbaren/lesbaren Anfangsadresse der Datenträgervarianten.
	WRITE_ DATA	Schreib-Daten - Array der Länge 8 Bytes.

3-72 D101578 1209 - *BL ident*®

3.7.3 Parameter

Hinweis

Nach einem Spannungsreset liest das Gateway die Parameter der Module aus. Sind die Parameter des RFID-Moduls fehlerhaft wird das Gateway diese übernehmen. Werden die Parameter nicht verändert, sprich die Station ist nicht am Feldbus oder es wurde keine Parameteränderung per I/O-Assistant vorgenommen, dann bleiben diese fehlerhaften Parameter im Modul weiter bestehen!

Zur Zeit werden bei BLxx-2RFID-S folgende Parameter übertragen:

- "Überbrückungszeit [n*4ms]" mit dem 1 Byte Parameter-Datenabbild
- "Betriebsart" mit den Modi "Standardzugriff" und "Schnellzugriff"
- "Datenträgertyp" mit den Wahlmöglichkeiten:
- Automatische Datenträgererkennung
- Philips -ICODE SLI SL2
- Fujitsu M89R118
- TI Tag-it HF-I Plus
- Infineon SRF55V02P
- Philips I-CODE SLI S
- Fujitsu M89R119
- TI Tag-it HF-I
- Infineon SRF55V10P
- TURCK TW-R50-K8
- Melexis MLX90129
- NXP I-CODE SLI L
- "Sendepegel"" (für die UHF-Schreib-Lese-Köpfe)
- "Sendefreqquenz" (für die UHF-Schreib-Lese-Köpfe)

Hinweis

Die Parameter für die UHF-Schreib-Lese-Köpfe "Sendepegel" und "Sendefrequenz" werden zwar angezeigt aber z. Zt. noch nicht unterstützt.

Tabelle 52: Parameterdaten-Bytes

		Bit						
	7	6	5	4	3	2	1	0
O ^{A)}	reserviert ^{B)}				Sendepegel K1			
1	reserviert ^E	reserviert ^{B)}				Sendepegel K2		
2	Betriebsar	t K1	1 Sendefrequenz K1					
3	Betriebsar	t K2 Sendefrequenz K2						
4	Fehler- code ^{C)}	Datenträg	tenträgertyp K1					

D101578 1209 - *BL ident*® 3-73

Tabelle 52:			Bit								
Parameterda- ten-Bytes		7	6	5	4	3	2	1	0		
	5	"Ueberbru	"Ueberbrueckungszeit K1[n*4ms]"								
	6	Fehler- code ^{C)}	Datenträg	ertyp K2							
	7	"Ueberbru	ieckungsze	it K2[n*4ms	sl"						

A Byte-Nummer

B Byte 0: Bit 7 = 1, sonst 0, Byte 1: Bit 7 = 1, sonst 0

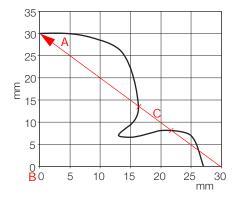
C nur für BLxx-2RFID-S gültig

Überbrückungszeit Kx[n*4ms]

Behalten Sie die Default-Einstellung "=0" dieses Parameters bei, wenn eine Inbetriebnahme ohne die Fehlermeldung "Verweilzeit des Tags im Erfassungsbereich war nicht ausreichend für die erfolgreiche Befehlsverarbeitung." Seite 3-78 erfolgt ist.

Erscheint die Fehlermeldung "Verweilzeit des Tags im Erfassungsbereich war nicht ausreichend für die erfolgreiche Befehlsverarbeitung." Seite 3-78, prüfen Sie, ob Ihre Applikation die "Einhaltung der empfohlenen Abstände" (Mindestabstände), eine Verringerung der Geschwindigkeit oder der Datenmenge ermöglicht. Die Angaben "empfohlener" und "maximaler Abstand" finden Sie in dem Handbuch D101582 in dem Kapitel "Betriebsdaten".

Falls Sie die empfohlenen Abstände nicht einhalten können oder falls durch äußere Einflüsse der Fehler mit den empfohlenen Abständen weiterhin gemeldet wird, muss der Parameter "Ueberbrueckungszeit Kx[n*4ms]" auf einen passenden Wert gesetzt werden.



Ermittlung des Parameterwertes "Ueberbrueckungszeit Kx[n*4ms]"

Der Parameter "Ueberbrueckungszeit Kx[n*4ms]" ergibt sich aus den eingesetzten Komponenten, den Abständen, der Geschwindigkeit des Datenträgers zum Schreib-Lese-Kopf und weiteren äußeren Einflüssen.

Messen Sie deshalb die erforderliche Überbrückungszeit direkt vor Ort. Die folgende Abbildung zeigt den typischen Verlauf des Erfassungsbereichs:

Abbildung 102: Erfassungsberei ch eines Schreib-Lese-Kopfes

- A Wegstrecke, die der Datenträger am Schreib-Lese-Kopf vorbei zurücklegt.
- **B** Zentrum des Schreib-Lese-Kopfes.
- C Abschnitt der Wegstrecke, die überbrückt werden muss.

Der Datenträger darf für den Abschnitt "C" der obigen Abbildung höchstens die "Ueberbrueckungszeit K1[n*4ms]" benötigen. Der Datenträger muss sich vor Ablauf der Überbrückungszeit wieder im Erfassungsbereich des Schreib-Lese-Kopfes befinden, damit die Übertragung fortgesetzt werden kann.

Die LEDs des Schreib-Lese-Kopfes, bzw. das Statusbit "TP" der Prozesseingangsdaten zeigen an, ob sich der Datenträger im Erfassungsbereich befindet oder nicht.

Parameter "Betriebsart" und "Datenträgertyp"

Diese beiden Parameter müssen kombiniert werden:

- Modus "Standardzugriff" und "Automatische Datenträgererkennung" In diesem Modus können 5 bestimmte TURCK-Datenträgertypen automatisch vom Schreib/ Lese-Kopf erkannt werden. Die UID des Datenträgers wird vor dem Zugriff gelesen.
- Modus "Standardzugriff" und "Datenträgertyp" (dabei muss unter "Datenträgertyp" aus den Wahlmöglichkeiten der entsprechende Datenträger ausgewählt werden)
 Dieser Modus unterstützt das Erkennen von Datenträgern, die der Schreib-Lese-Kopf im "Automatikmodus" nicht kennt, anderer seits soll dieser Modus aber äquivalent zum Automatikmodus sein, d. h. auch das Kommmando "NEXT" mit nextMode = 1 soll möglich sein ("Bedeutung der Befehls-Bits/Steuer-Bits" Seite 3-70).

Hinweis

Der Datenträger Melexis MLX90129 hat einen Sonderstatus. Die Blöcke 0 bis 8 der Anwenderdaten können nicht gelesen/beschrieben werden. Daher werden Zugriffe auf die Adressen 0 bis 17 von dem BLxx-2RFID-S mit einem Fehler quittiert.

D101578 1209 - *BL ident*® 3-75

Modus "Schnellzugriff" und "Datenträgertyp" (dabei muss unter "Datenträgertyp" aus den Wahlmöglichkeiten der entsprechende Datenträger ausgewählt werden) In diesem Modus wird der Zugriff "schnell" erreicht, da der Typ und die UID des Datenträgers vorher nicht ausgelesen werden müssen. Die spezifischen Eigenschaften des verwendeten Datenträgers sind vorher bekannt, die gewünschte UID wird beim Schreiben/Lesen mitgesendet.

3-76

Hinweis

Der Modus "Schnellzugriff" und "Datenträgertyp" unterstützt nicht die Datenträger Philips SL1 und TURCK TW-R50-K8

D101578 1209 - *BL ident*®

3.7.4 Diagnosen

Es werden drei Diagnosen zum Schreib-Lese-Kopf mit 2 Byte für jeden Kanal dargestellt. Diese Diagnosen werden auch mit den beiden ERROR-Byte der Prozesseingangsdaten dargestellt.

Tabelle 53: Diagnoseda-		Bit							
ten-Bytes		7	6	5	4	3	2	1	0
	Kanal1	I							
	O ^{A)}		Ungül- tiger Para- meter	Kopf Update erfor- derlich			Über- last		
	1					Fehler			Hard- ware- Fehler
	Kanal	2							
	2		Ungül- tiger Para- meter	Kopf Update erfor- derlich			Über- last		
	3					Fehler			Hard- ware- Fehler

A Byte-Nummer

-		
Tabelle 54: Bedeutung der Fehler- Bits	Bezeichnung	Bedeutung
	Überlast	Die Spannungsversorgung des Schreib-Lese-Kopfes wurde wegen Überstrom ausgeschaltet ("DW#16#E4FE01xx" Seite 3-79).
	Hardware- Fehler	Es liegt ein Hardware-Fehler des Schreib-Lese-Kopfes vor ("DW#16#E4FE81xx" Seite 3-79).
	Unterspan- nung	Die Spannungsversorgung des Schreib-Lese-Kopfes ist nicht im erforderlichen Bereich ("DW#16#E4FE88xx" Seite 3-79).
	Kopf-Update erforderlich	Die Softwareversion des Schreib-Lese-Kopfes ist veraltet ("DW#16#E4FEFE×x" Seite 3-79)
	Ungültiger Parameter	Der gesetzte Parameter ist ungültig ("DW#16#E4FEFD×x" Seite 3-79)

D101578 1209 - BL ident®

3.8 Warnungen und Fehlermeldungen

Bei der Inbetriebnahme eines Interface-Moduls vom Typ "TI-BLxx-DP1-x" oder "TI-BLxx-DP0-x" und dem "Proxy Ident Function Block" wird mit der Variablen "APPLO_DB".STATUS ein Fehler- und Warnungscode übermittelt.

Abbildung 103: Die Variable APPLO_DB. STATUS

Bei der Inbetriebnahme eines Interface-Moduls vom Typ "TI-BLxx-DPV1-**S**-x" wird der Fehlerund Warnungscode mit zwei Byte der Prozesseingangsdaten dargestellt.

Abbildung 104: Zwei Fehlerbyte der Prozesseingang sdaten

Die folgende Tabelle gibt Aufschluss über die Bedeutung der STATUS-Werte – dabei gilt: DW#16#E<"ERR_LSB">FE<"ERR_MSB">xx:

Tabelle 55: Status-Werte	Statuswert von "APPLO_DB".STATUS	Bedeutung des Fehlercodes	gültig für Scheibe
	DW#16#E 1 FE 01 xx	Tag Speicherfehler (z. B. CRC Fehler).	A, C, S
	DW#16#E 1 FE 02 xx	Verweilzeit des Tags im Erfassungsbereich war nicht ausreichend für die erfolgreiche Befehlsverar- beitung. Hinweise zur möglichen Ursache und Behebung dieses Fehler finden Sie für die BLxx-2RFID-S- Module in "Ermittlung des Parameterwertes "Ueberbrueckungszeit Kx[n*4ms]"" Seite 3-75.	A, C, S
	DW#16#E 1 FE 03 xx	Der angegebene Adressbereich oder Befehl passt nicht zum verwendeten Tagtyp.	A, C, S
	DW#16#E 1 FE 04 xx	Tag ist defekt und muss ersetzt werden.	A, C, S
	DW#16#E 1 FE 08 xx	Tag im Übertragungsbereich hat nicht die erwartete UID.	A, C, S
	DW#16#E 1 FE 09 xx	Tag unterstützt nicht das aktuelle Kommando.	A, C, S
	DW#16#E 1 FE 0A xx	Mindestens ein Teil des angegebenen Bereichs im Tag ist schreibgeschützt.	A, C, S
	DW#16#E 1 FE 80 xx	Tag meldet einen nicht näher spezifizierten Fehler	A, C, S

Tabelle 55: (Forts.) Status-Werte	Statuswert von "APPLO_DB".STATUS	Bedeutung des Fehlercodes	gültig für Scheibe
	DW#16#E 1 FE FF xx	Tag meldet unbekannten Fehler	A, C, S
	DW#16#E 2 FE 01 xx	Kommunikations-Time-out im Air-Interface	A, C, S
	DW#16#E 2 FE 02 xx	zu viele Tags im Kommunikationsfenster	A, S
	DW#16#E 2 FE 80 xx	CRC-Fehler im Air-Interface	A, C, S
	DW#16#E 2 FE FF xx	Schreib-Lese-Kopf meldet unbekannten Fehler	A, C, S
	DW#16#E 4 FE 01 xx	Versorgung des Schreib-Lese-Kopfes wurde aufgrund erhöhter Stromaufnahme z.B. Kurz- schluss abgeschaltet.	A, C, S
	DW#16#E 4 FE 03 xx	Antenne bzw. Transmitter des Schreib-Lese- Kopfes abgeschaltet. "Aktivieren des Schreib- Lese-Kopfes" Seite 3-54 erforderlich.	A, C, S
	DW#16#E 4 FE 04 xx	Überlauf des Kommandospeicherpuffers – es ist mehr als ein Kommando-Flag innerhalb der Prozessdaten gesetzt	S
	DW#16#E 4 FE 06 xx	Ein Parameter des aktuellen Befehls wird nicht unterstützt.	A, C, S
	DW#16#E 4 FE 07 xx	Nicht näher spezifizierter Fehler wurde vom zyklischen Status-Wort gemeldet (z.B. Antenne außer Betrieb). Der Fehler ist unabhängig vom aktuellen Befehl.	A, C, S
	DW#16#E 4 FE 8 0×x	Es ist kein Schreib-Lese-Kopf angeschlossen.	A, C, S
	DW#16#E 4 FE 81 xx	Der Schreib-Lese-Kopf ist defekt.	A, C, S
	DW#16#E 4 FE 82 xx	Kommandoan den Schreib-Lese-Kopf ist fehlerhaft	A, C, S
	DW#16#E 4 FE 84 xx	Telegramminhalt ungültig (bei Tags des Typs TW-R22-HT-B64). Bereich schreibgeschützt oder nicht vorhanden.	A, C, S
	DW#16#E 4 FE 88 xx	Der Schreib-Lese-Kopf wird unzureichend versorgt.	A, C, S
	DW#16#E 4 FE 89 xx	Der Schreib-Lese-Kopf meldet permanent CRC- Fehler auf der RS485-Leitung. EMV-Problem?	A, C, S
	DW#16#E 4 FE 8A xx	Das Ident-Gerät meldet permanent CRC-Fehler auf der RS485-Leitung. EMV-Problem?	A, C, S
	DW#16#E 4 FE 9 0×x	Ein mittels Get übermitteltes Kommando ist dem Schreib-Lese-Kopf nicht bekannt.	A, C, S
	DW#16#E 4 FE FD ×x	Parametereinstellung unzulässig	A, C, S
	DW#16#E 4 FE FE ×x	Parametereinstellung wird nicht vom Schreib-Lese- Kopf unterstützt. Update der Firmware durch- führen.	A, C, S

Tabelle 55: (Forts.) Status-Werte

Statuswert von "APPLO_DB".STATUS	Bedeutung des Fehlercodes	gültig fü Scheibe
DW#16#E 4 FE FF ×x	RFID-Scheibe meldet unbekannten Fehler	A, C, S
DW#16#E 5 FE 01 xx	Das Ident-Gerät meldet eine falsche Sequenz- Nummer (SN).	A, C
DW#16#E 5 FE 02 xx	Der PIB-FB meldet eine falsche Sequenz-Nummer.	A, C
DW#16#E 5 FE 04 xx	Das Ident-Gerät meldet eine ungültige Datenblock- nummer.	A, C
DW#16#E 5 FE 05 xx	Der PIB-FB meldet eine ungültige Datenblock- nummer.	A, C
DW#16#E 5 FE 06 xx	Das Ident-Gerät meldet eine ungültige Datenblock- länge.	A, C
DW#16#E 5 FE 07 xx	Der PIB-FB meldet eine ungültige Datenblocklänge.	A, C
DW#16#E 5 FE 08 xx	Ein Kommando von einem anderen User wird verarbeitet.	A, C
DW#16#E 5 FE 09 xx	Das Ident-Gerät führt einen Hardware Reset aus (Init_Active wird auf "1" gesetzt), Init (Bit 15 innerhalb des zyklischen "Control Word") wird vom PIB erwartet.	A, C
DW#16#E 5 FE 0A xx	Der Befehlscode "CMD" und die jeweilige Empfangsbestätigung stimmen nicht überein. Es handelt sich hier um einen Software- oder Synchro- nisierungsfehler, der im Normalbetrieb nicht auftreten darf.	A, C
DW#16#E 5 FE 0B xx	Die Abfolge der Telegramme zur Empfangsbestätigung ist falsch.	A, C
DW#16#E 5 FE 0C xx	Synchronisierungsfehler (Schrittweite von AC_H/AC_L und CC_H/CC_L im zyklischen "Control Word" ist falsch). Eine neue Initialisierung muss durchgeführt werden.	A, C
DW#16#E 6 FE 01 xx	Ungültiges Kommando	A, C
DW#16#E 6 FE 02 xx	Die Ident Unit meldet einen ungültigen Kommando- Index.	A, C
DW#16#E 6 FE 05 xx	Das Ident-Gerät meldet, dass zur Zeit nur Schreib- Befehle (Write-Config) zulässig sind.	A, C
DW#16#E 6 FE 01 ×x	Ungültige CMD	A, C
DW#16#E 6 FE 02 ×X	Ungültiger Kommando-Index wird durch Ident- Gerät gemeldet	A, C
DW#16#E 6 FE 03 ×x	Ungültiger Kommando-Parameter (z. B. Datenbe- reich) wird durch Ident-Gerät gemeldet.	A, C

3-80 D101578 1209 - *BL ident*®

Tabelle 55: (Forts.) Status-Werte	Statuswert von "APPLO_DB".STATUS	Bedeutung des Fehlercodes	gültig für Scheibe
	DW#16#E 6 FE 04 ×x	Falsche Synchronisation zwischen Anwenderprogramm und Tag. Ein erwartetes Kommando fehlt.	A, C
	DW#16#E 6 FE 05 ×x	Es ist nur das Kommando Write-Config in diesem Zustand zulässig.	A, C
	DW#16#E 6 FE 8 1×x	Die UID im Kommando passt nicht zum Tag-Typ in der Parametereinstellung.	A, C
	DW#16#E 7 FE 01 xx	Nur Befehl INIT in diesem Zustand zulässig (vom PIB gemeldet).	A, C
	DW#16#E 7 FE 02 xx	CMDSEL > CMDDIM oder Befehlscode "CMD" nicht zulässig.	A, C
	DW#16#E 7 FE 03 xx	Der PIB meldet: Parameter "Length" des Befehls ist zu lang für den globalen Datenbereich, der innerhalb von TXBUF reserviert wird.	A, C
	DW#16#E 7 FE 04 xx	RXBUF Überlauf (es wurden mehr Daten empfangen, als im Speicher RXBUF abgespeichert werden können).	A, C
	DW#16#E 7 FE 05 xx	Der nächste Befehl muss in jedem Fall das "INIT"- Kommando sein. Alle anderen Befehle werden abgelehnt.	A, C
	DW#16#E 7 FE 06 xx	Der Index ist außerhalb des Bereichs 111/112 und damit falsch.	A, C
	DW#16#E 7 FE 07 xx	BLxx-2RFID-y reagiert nicht auf das INIT- Kommando. Prüfen Sie, ob die richtige ID einge- stellt ist!	A, C
	DW#16#E 7 FE 08 xx	Timeout während der Initialisierung.	A, C
	DW#16#E 7 FE 09 xx	Eine Wiederholung des Kommandos wird vom PIB* nicht unterstützt.	A, C
	DW#16#E 7 FE 0A xx	Fehler während der Feststellung der Datenpaket- größe innerhalb des PIB.	A, C

3.8.1 IEC-konforme Fehlermeldungen

Die folgenden Tabellen zeigen die Zusammensetzung der IEC-konformen Fehlermeldungen. Die Fehlermeldungen erscheinen als 6-stellige hexadezimale Zahlenwerte. Die Bedeutung des Fehlers setzt sich aus 4 Informationen zusammen, die Sie den folgenden drei Tabellen entnehmen können.

Tabelle 56: Stellen 1 und 2 des Hex- Fehlercodes	Stellen 1 und 2 des hexadezimalen Fehlercodes	Bedeutung
	0×40	reserved
	0×41	Get_Master_Diag
	0×42	Start_Seq
	0×43	Download
	0×44	Upload
	0×45	End_Seq
	0×46	Act_Para_Brct
	0×47	Act_Param
	0×48	Idle
	0×49 bis 0×50	reserved
	0×51	Data_Transport
	0×52 bis 0×55	reserved
	0×56	RM
	0×57	Initiate
	0×58	Abort
	0×59	reserved
	0×5A	reserved
	0×5B	reserved
	0×5C	Alarm_Ack
	0×5D	reserved
	0×5E	Read
	0×5F	Write
	0×C0	reserved
	0×C1	FE
	0×C2	NI
	0×C3	AD

Tabelle 56:
(Forts.)
Stellen 1 und
2 des Hex-
Fehlercodes

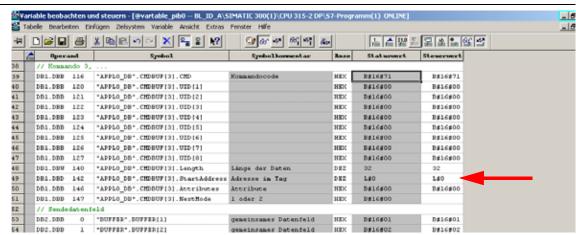
Stellen 1 und 2 des hexadezimalen Fehlercodes	Bedeutung
0×C4	EA
0×C5	LE
0×C6	RE
0×C7	IP
0×C8	SC
0×C9	SE
0×CA	NE
0×CB	DI
0×CC	NC
0×CD	ТО
0×CE	CA
0×CF bis 0×D0	reserved
0×D1	Error Data_Transport
0×D2 bis 0×D6	reserved
0×D7	Error Initiate
0×D8	reserved
0×D9	reserved
0×DA	reserved
0×DB	reserved
0×DC	Error Alarm_Ack
0×DD	reserved
0×DE	Error Read
0×DF	Error Write

Tabelle 57: Stellen 3 und 4 des Hex- Fehlercodes	Stellen 3 und 4 des hexadezimalen Fehlercodes	Bedeutung
	0×00 bis 0×7F	reserved
	0×80	DPV1
	0×81 bis 0×FD	reserved
	0×FE bis 0×FF	PROFILE_SPECIFIC

Tabelle 58: Stellen 5 und 6 des Hex- Fehlercodes	Stelle 5 des hexadezi- malen Fehlercodes	Bedeutung	Stelle 6 des hexadezi- malen Fehlercodes	Bedeutung
	0× A	application	0×0 (0000)	read error
	10 (dezimal) 1010 (binär)		0×1 (0001)	write error
			0×2 (0010)	module failure
			0×3 bis 0×6	not specific
			0×7 (0111)	busy
			0×8 (1000)	version conflict
			0×9 (1001)	feature not supported
			0×A bis 0×F	User specific
	0×B 11 (dezimal) 1011 (binär)	access	0×0 (0000)	invalid index
			0×1 (0001)	write length error
			0×2 (0010)	invalid slot
			0×3 (0011)	type conflict
			0×4 (0100)	invalid area
			0×5 (0101)	state conflict
			0×6 (0110)	access denied
			0×7 (0111)	invalid range
			0×8 (1000)	invalid parameter
			0×9 (1001)	invalid type
			0×A (1010)	backup
			0×B bis 0×F	User specific

3-84 D101578 1209 - *BL ident*®

Tabelle 58:
(Forts.)
Stellen 5 und
6 des Hex-
Fehlercodes


Stelle 5 des hexadezi- malen Fehlercodes	Bedeutung	Stelle 6 des hexadezi- malen Fehlercodes	Bedeutung
0× C	resource	0×0 (0000)	read constrain conflict
12 (dezimal) 1100 (binär)		0×1 (0001)	write constrain conflict
		0×2 (0010)	resource busy
		0×3 (0011)	resource unavailable
		0×4 bis 0×7	not specific
		0×8 bis 0×F	user specific
0×D bis 0×F 13 bis 15 (dezimal) 1101 bis 1111 (binär)	User specific	-	-

3.9 Nutzerdatenbereiche der Datenträgervarianten

3.9.1 Zugriff auf die Datenbereiche der Datenträger

Verwenden Sie einen anderen Datenträger als in "Hardwarebeschreibung des Beispielprojektes" Seite 3-3 angegeben oder wollen Sie auf bestimmte Bereiche des Datenträgers zugreifen, müssen Sie die Werte "Start Address" bei der "Vorbereitung der vartable_pib0 zum Schreiben" Seite 3-17/Seite 3-39 oder bei der "Vorbereitung der vartable_pib0 zum Lesen" Seite 3-19/Seite 3-41 ändern. Der Wert "Start Address" wird dort mit dem Legendpunkt D gekennzeichnet und erläutert.

Abbildung 105: Vorbereitung der vartable_pib0 zum Schreiben

3.9.2 Übersicht zu den Turck Datenträgern

Die Datenträger vom Typ I-Code SL2 sind ab der Bytenummer 0 bis Bytenummer 111 beschreibbar und lesbar.

Die "Start-Bytenummer" ist Teil der Befehlsstruktur "Physical_Read" Seite 4-24 und "Physical_Write" Seite 4-26 und wird dort als "Start Address" bezeichnet.

Die Tabelle beschreibt den Datenaufbau der Datenträger:

- TW-I14-B128
- TW-L43-43-F-B128
- TW-L82-49-P-B128
- TW-R16-B128
- TW-R20-B128
- TW-R30-B128
- TW-R50-B128
- TW-R50-90-HT-B128
- ...

Tabelle 59: Datenaufbau der I-Code SL2- Datenträger	Bytenummer (StartAddres s)	Inhalt	Zugriff	Blocknummer (ein Block umfasst 4 Byte)
	-16 bis -9	UID	Read only über "Inventory" Seite 4-33	-4 bis -3
	-8 bis -5	Informationen zum Tag	Read only über spezi-	-2
	-4 bis-1	Bedingungen für den Schreibzugriff	elle Kommandos	-1
	0 bis 111	Nutzerdatenbereich	Read / write über "Physical_Read" Seite 4-24 und "Physical_Write" Seite 4-26	0 bis 27

Die Datenträger vom Typ **I-Code SL1** sind ab der Bytenummer 18 bis Bytenummer 63 beschreibbar und lesbar.

Die "Start-Bytenummer" ist Teil der Befehlsstruktur "Physical_Read" Seite 4-24 und "Physical_Write" Seite 4-26 und wird dort als "Start Address" bezeichnet.

Die Tabelle beschreibt den Datenaufbau der Datenträger:

- TW-R16-B64
- TW-R22-HT-B64

Tabelle 60: Datenaufbau der I-Code SL1- Datenträger	Bytenummer (StartAddress)	Inhalt	Zugriff	Blocknummer (ein Block umfasst 4 Byte)
	0 bis 7	UID	Read only über "Inventory" Seite 4-33	0 bis1
	8 bis 11	Bedingungen für den Schreibzugriff	Read only über spezi- elles Kommando	2
	12 bis 15	Spezialfunktionen (z. B. EAS / QUIET)	Read / write über spezi- elle Kommandos	3/4
	16	family code		
	17	application identifier		
	18 bis 63	Nutzerdatenbereich	Read / write über "Physical_Read" Seite 4-24 und "Physical_Write" Seite 4-26	4/5 bis 15

Die Datenträger vom Typ **FRAM** sind ab der Bytenummer 0 bis Bytenummer 1999 beschreibbar und lesbar.

Die "Start-Bytenummer" ist Teil der Befehlsstruktur "Physical_Read" Seite 4-24 und "Physical_Write" Seite 4-26 und wird dort als "Start Address" bezeichnet.

Die Tabelle beschreibt den Datenaufbau der Datenträger:

- TW-R20-K2
- TW-R30-K2
- TW-R50-K2
- TW-R50-90-HT-K2

Tabelle 61: Datenaufbau der FRAM- Datenträger	Bytenummer (StartAddress)	Inhalt	Zugriff	Blocknummer (ein Block umfasst 8 Byte)
	0 bis 1999	Nutzerdatenbereich	Read / write über "Physical_Read" Seite 4-24 und "Physical_Write" Seite 4-26	0 bis 249
	2000 bis 2007	UID	Read only über "Inventory" Seite 4-33	250
	2008 bis 2015	AFI, DSFID, EAS	Read / write (mit Einschränkungen) über spezielles Kommando	251
	2016 bis 2047	Spezialfunktionen (z. B. EAS / QUIET)	Read only über spezi- elles Kommando	252 bis 255

3.10 Schreib-/Lesezeit im Erfassungsbereich des Schreib-Lese-Kopfes

Die Zeit, die sich der Datenträger im Erfassungsbereich des Schreib-Lese-Kopfes befinden muss, damit alle erforderlichen Daten sicher gelesen und geschrieben werden können, hängt von den folgenden Faktoren ab:

- Befehlstyp (Schreiben oder Lesen)
- Datenträger mit Speichertyp EEPROM oder FRAM
- Datenmenge
- Ausdehnung des Erfassungsbereichs (ergibt sich aus der Kombination des Schreib-Lese-Kopf-Typs und des Datenträgers).

Hinweis

Halten Sie die empfohlenen Abstände zwischen dem Datenträger und dem Schreib-Lese-Kopf ein.

Die Angaben "empfohlener" und "maximaler Abstand" finden Sie in dem Handbuch D101582 in dem Kapitel "Betriebsdaten".

Die Erfassung der Daten kann gestört werden durch folgende Einflüsse:

- elektromagnetische Störungen
- starke Reflexionen an Metallteilen in der unmittelbaren Umgebung des Erfassungsbereichs

Die folgenden Abschnitte zeigen die erforderliche Zeit für das Lesen oder Schreiben einer bestimmten Datenmenge. Die erforderliche Zeit ist abhängig vom Speichertyp des Datenträgers.

Derzeit bietet *BL ident* [®] Datenträger mit folgenden Speichertypen an:

- EEPROM- I-Code SL1
- EEPROM- I-Code SL2
- FRAM

D101578 1209 - BL ident® 3-89

3.10.1 EEPROM-I-Code-SL2-Datenträger

Die folgenden BL ident ®-Datenträger haben den Speichertyp "EEPROM-I-Code-SL2":

- TW-R7,5-B128
- TW-R9,5-B128
- TW-R16-B128
- TW-R20-B128
- TW-R30-B128
- TW-R50-B128
- TW-R50-90-HT-B128
- TW-I14-B128
- TW-L43-43-F-B128
- TW-L82-49-P-B128
- TW-SPP18x1-B128
- TW-R30-M-B128

Der EEPROM-Datenträger ist aufgeteilt in Datenblöcke. Jeder Datenblock umfasst:

4 Byte

Die Startadresse und Länge der zu lesenden/schreibenden Bytes kann innerhalb des Nutzerdatenbereichs beliebig gewählt werden ("Datenaufbau der I-Code SL2-Datenträger" Seite 3-87).

Für die Betrachtung der erforderlichen Schreib- und Lesezeit sollte berücksichtigt werden, dass der Zugriff auf den Nutzdatenbereich immer blockweise erfolgt. Es ergibt sich z. B. keine Zeitersparnis, wenn die Länge der zu lesenden Bytes kleiner als 4 Byte ist. Die Startadressen der Blöcke sind 0,4,8,12...

Wird als Startadresse "5" gewählt und die Länge der zu lesenden Bytes beträgt "4", werden zwei Blöcke bearbeitet.

Für zeitkritische Applikationen beachten Sie die folgenden beiden Hinweise:

Hinweis

Geben Sie als Startadresse und Länge der zu lesenden/schreibenden Bytes nur Vielfache von "4" ein!

Die Startadresse und Länge der zu lesenden/schreibenden Bytes sind Attribute der Schreib- und Lese-Befehle!

Hinweis

Bevorzugen Sie niedrige Adressen bei der Auswahl des Datenspeicherbereichs ("Nutzerdatenbereiche der Datenträgervarianten" Seite 3-86)!

Achtung

Die folgenden beiden Diagramme haben Gültigkeit, wenn Sie die Hinweise für zeitkritische Applikationen befolgen!

Abbildung 106: Verweilzeiten beim Lesen von einem Datenträger des Typs "EEPROM-I-Code-SL2".

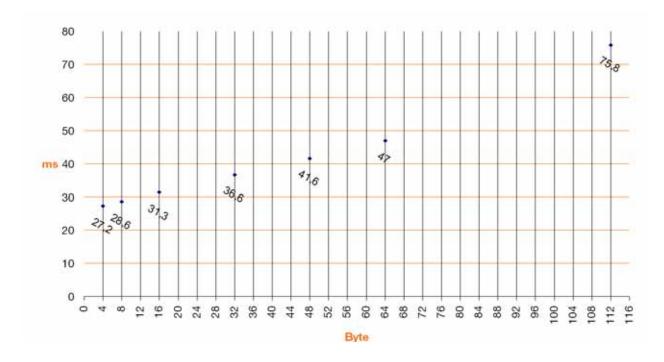
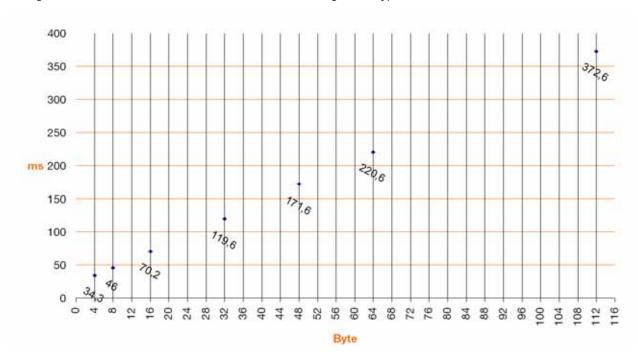



Abbildung 107: Verweilzeiten beim Schreiben auf einen Datenträger des Typs "EEPROM-I-Code-SL2".

D101578 1209 - BL ident®

3.10.2 EEPROM-I-Code-SL1-Datenträger

Die folgenden BL ident®-Datenträger haben den Speichertyp "EEPROM-I-Code-SL1":

- TW-R16-B64
- TW-R22-HT-B64
- ...

Der EEPROM-Datenträger ist aufgeteilt in Datenblöcke. Jeder Datenblock umfasst:

4 Byte

Die Startadresse und Länge der zu lesenden/schreibenden Bytes kann innerhalb des Nutzerdatenbereichs beliebig gewählt werden ("Datenaufbau der I-Code SL1-Datenträger" Seite 3-87)

Für die Betrachtung der erforderlichen Schreib- und Lesezeit sollte berücksichtigt werden, dass der Zugriff auf den Nutzdatenbereich immer blockweise erfolgt. Es ergibt sich z. B. keine Zeitersparnis, wenn die Länge der zu lesenden Bytes kleiner als 4 Byte ist. Die Startadressen der Blöcke sind 16, 20, 24, 28...

Wird als Startadresse "19" gewählt und die Länge der zu lesenden Bytes beträgt "4", werden zwei Blöcke bearbeitet.

Für zeitkritische Applikationen beachten Sie die folgenden beiden Hinweise:

Hinweis

Geben Sie als Startadresse und Länge der zu lesenden/schreibenden Bytes nur Vielfache von "4" ein!

Die Startadresse und Länge der zu lesenden/schreibenden Bytes sind Attribute der Schreib- und Lese-Befehle!

Hinweis

Bevorzugen Sie niedrige Adressen bei der Auswahl des Datenspeicherbereichs ("Nutzerdatenbereiche der Datenträgervarianten" Seite 3-86)!

Achtung

Die folgenden beiden Diagramme haben Gültigkeit, wenn Sie die Hinweise für zeitkritische Applikationen befolgen!

Abbildung 108: Verweilzeiten beim Lesen von einem Datenträger des Typs "EEPROM-I-Code-SL1".

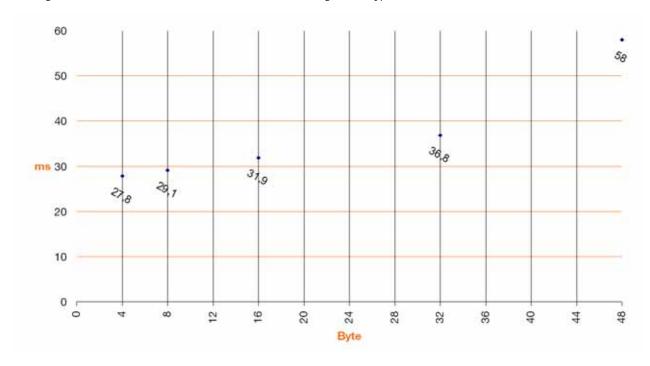
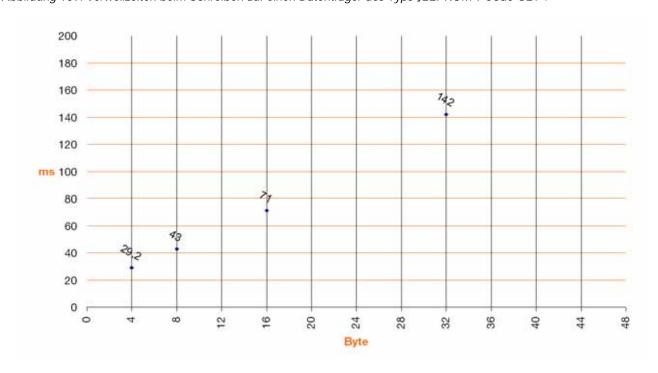



Abbildung 109: Verweilzeiten beim Schreiben auf einen Datenträger des Typs "EEPROM-I-Code-SL1".

3.10.3 FRAM-Datenträger

Die folgenden BL ident ®-Datenträger haben den Speichertyp "FRAM":

- TW-R20-K2
- TW-R30-K2
- TW-R50-K2
- TW-R50-HT-K2
- TW-R50-MF-K2
- TW-BS10X1.5-19-K2
- TW-BD10X1.5-19-K2
- TW-R30-M-K2
- TW-R50-M-K2
- TW-R80-M-K2

Der FRAM-Datenträger ist aufgeteilt in Datenblöcke. Jeder Datenblock umfasst:

8 Byte

Die Startadresse und Länge der zu lesenden/schreibenden Bytes kann innerhalb des Nutzerdatenbereichs beliebig gewählt werden ("Datenaufbau der FRAM-Datenträger" Seite 3-88)

Für die Betrachtung der erforderlichen Schreib- und Lesezeit sollte berücksichtigt werden, dass der Zugriff auf den Nutzdatenbereich immer blockweise erfolgt. Es ergibt sich z. B. keine Zeitersparnis, wenn die Länge der zu lesenden Bytes kleiner als 8 Byte ist. Die Startadressen der Blöcke sind 8, 16, 24, 32...

Wird als Startadresse "19" gewählt und die Länge der zu lesenden Bytes beträgt "8", werden zwei Blöcke bearbeitet.

Für zeitkritische Applikationen beachten Sie die folgenden beiden Hinweise:

Hinweis

Geben Sie als Startadresse und Länge der zu lesenden/schreibenden Bytes nur Vielfache von "8" ein!

Die Startadresse und Länge der zu lesenden/schreibenden Bytes sind Attribute der Schreib- und Lese-Befehle!

Hinweis

Bevorzugen Sie niedrige Adressen bei der Auswahl des Datenspeicherbereichs ("Nutzerdatenbereiche der Datenträgervarianten" Seite 3-86)!

Achtung

Die folgenden beiden Diagramme haben Gültigkeit, wenn Sie die Hinweise für zeitkritische Applikationen befolgen!

Abbildung 110: Verweilzeiten beim Lesen von einem Datenträger des Typs "FRAM".

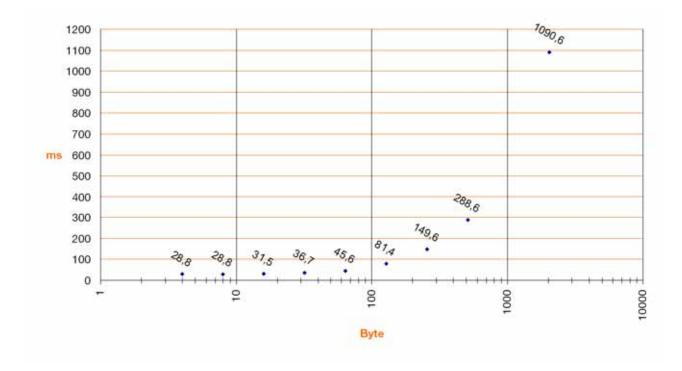
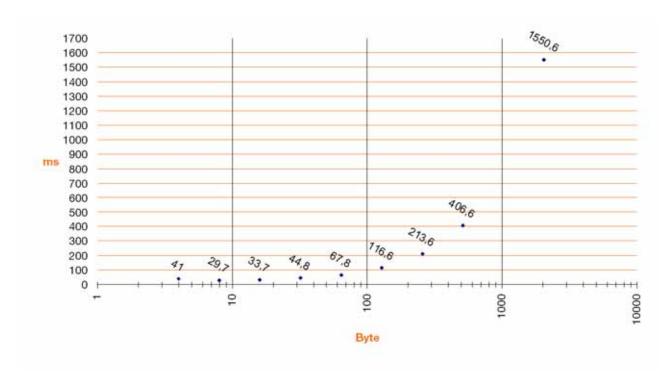



Abbildung 111: Verweilzeiten beim Schreiben auf einen Datenträger des Typs "FRAM".

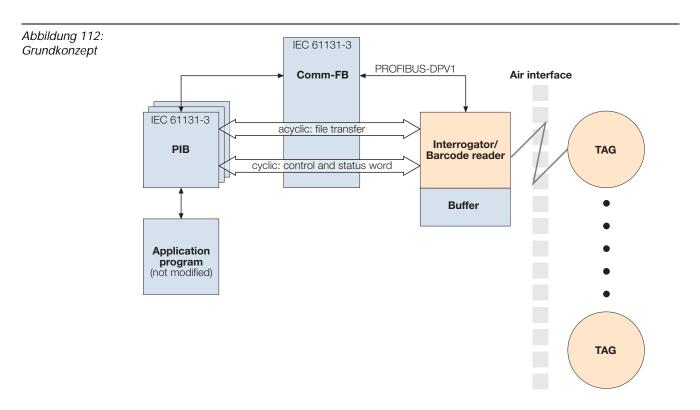
Inbetriebnahme eines TURCK BL ident®-Systems

4 Auszug aus der Spezifikation

4.1	Allgemeines	
4.1.1	Funktionsanforderungen – Allgemeine Anforderungen	
	- Anforderungen durch die Verwendung von RFID-Systemen	
4.2	Modellierung des Proxy-Ident-Blocks (PIB)	5
4.2.1 4.2.2	Grundsätze der Modellierung	
4.2.3	Darstellung	
4.3	Definition des Proxy-Ident-Blocks (PIB)	6
4.3.1	Parameter	
4.3.2	Fehler und Warnungen	
4.3.3	Befehle	
4.3.4	Zeitliche Steuerung des PIB	3
4.4	Kommunikation zwischen PIB und Gerät	32
4.4.1	Datenzugriff im Feldgerät	32
	- Allgemeines Gerätemodell	32
	- Block-Abbildung zum zyklischen PROFIBUS-DP Datentransfer	
	Block-Abbildung zum azyklischen PROFIBUS-DP DatentransferDefinition des Identkanals	
	- Definition des identikanais	32
4.5	Identifikations- & Wartungsfunktionen (I&M-Funktionen)	36
4.5.1	PROFILE_ID	36
4.5.2	Kanalbezogene Informationen	36
4.6	Anhang A - Konformitätstabelle	37
4.7	Anhang B - Elementare Datentypen dieser Spezifikation	39

4.1 Allgemeines

Dieser Auszug aus der PROFIBUS-Spezifikation "Profile for Identification Systems, Proxy Ident Function Block" (Version 1.02, Dezember 2005) wurde mit freundlicher Genehmigung der PNO (PROFIBUS Nutzer Organisation) im Auftrag der Firma TURCK übersetzt.


Beachten Sie auch die "Definitionen in der Befehls- und Diagnoseebene" Seite 3-45.

4.1.1 Funktionsanforderungen

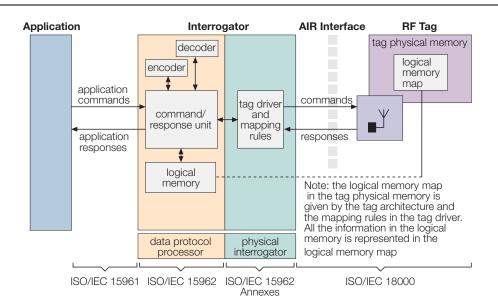
In diesem Abschnitt werden die funktionellen Anforderungen der Anwendung von RFID- und Barcodeleser-Systemen definiert. Diese Anforderungen legen die Einschränkungen bzw. Grenzen fest, die bei der Entwicklung des PIB und bei den entsprechenden innerhalb des Feldgeräts zu realisierenden Funktionen zu beachten sind. Aufgrund der bei RFID- und Barcodeleser-Systemen unterschiedlichen Funktionen werden diese Anforderungen parallel beschrieben.

Allgemeine Anforderungen

Beim Grundkonzept handelt es sich um die Anpassung von vorhandenen RFID- und Barcodeleser-Systemen an die PROFIBUS-Technologie, damit sie in vorhandene Systeme integriert werden können, und damit deren Verwendung in neuen Systemen erleichtert werden kann (siehe nachstehende Abbildung).

Da vorhandene proprietäre Lösungen bewältigt werden müssen, gibt es neben der PROFIBUS-Konformität gewisse Einschränkungen, die zu berücksichtigen sind.

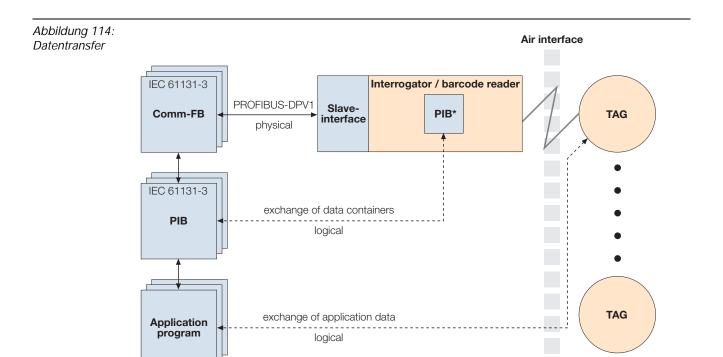
Folgende Anforderungen müssen erfüllt werden:


- Vorhandene PROFIBUS-Systeme dürfen nur minimal von der Integration von RFID- und Barcodeleser-Systemen gestört werden
- Die Flusssteuerung erfolgt zyklisch
- Der Datentransfer erfolgt azyklisch
- Anwenderprogramme sollen von der Integration von PIB unabhängig sein
- Die Fragmentierung und Defragmentierung der Datenpakete soll innerhalb des PIB erfolgen

Anforderungen durch die Verwendung von RFID-Systemen

Die Standardisierungsaktivitäten für RFID-Systeme befinden sich zur Zeit in Arbeit. Ziele hiervon sind die Festlegung der Luftschnittstelle (ISO/IEC 18000), des Dateiformats sowie der Behandlung von Dateien (ISO/IEC 15962). Siehe unten.

Diese Profilspezifikation behandelt explizit den Datentransfer über industrielle Netzwerke, die auf PROFIBUS basieren, sowie die Integration in SPS-Systeme.


Abbildung 113: Relevante Standardisierungsaktivitäten

Aufgrund dieser fortlaufenden Prozesse ist eine Behandlung dieser Themen im Rahmen dieser Spezifikation offensichtlich nicht erforderlich. Auf die jeweiligen Dokumente kann zu einem späteren Zeitpunkt Bezug genommen werden, wenn die Standardisierung im Rahmen der IEC abgeschlossen ist. Daher werden folgende Punkte in diesem Dokument nicht betrachtet:

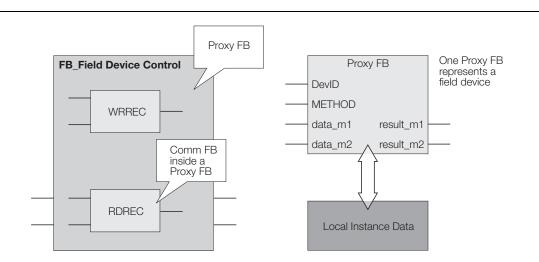
- Air-Interface,
- Dateiformat,
- Datei-Handler,
- Kodierung von Anwenderdaten.

Zur Zeit werden die jeweiligen Daten normalerweise als ein Datenpaket betrachtet, das sowohl von der Applikation in dem Ident-Gerät als auch von der SPS-Applikation interpretiert wird, die den PIB verwendet (siehe Abbildung unten).

4-4 D101578 1209 - *BL ident*®

4.2 Modellierung des Proxy-Ident-Blocks (PIB)

4.2.1 Grundsätze der Modellierung


Die Modellierung des Proxy-Ident-Blocks (PIB) muss nach den folgenden Grundsätzen durchgeführt werden:

- Sie muss vorhandenen SPS-Systemen entsprechen, z. B. durch Verwendung des bestehenden Adressierungskonzeptes
- Sie muss effizient und ohne Overhead sein, d.h. das Modell muss leistungsorientiert sein
- Sie muss eine leichte Portierung des Anwenderprogramms zwischen unterschiedlichen SPS-Systemen erlauben
- Sie sollte die bestehenden Comm-FBs direkt verwenden
- Durch gute Programmierung sollten Abhängigkeiten von der Hardware-Konfiguration vermieden werden, wie z. B. die Adressierung im Anwenderprogramm.

4.2.2 Allgemeines PIB-Modell

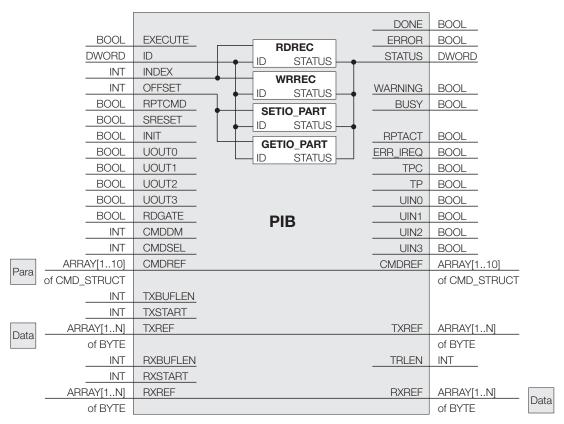
Der PIB wird als Proxy-FB modelliert, der ein komplettes Ident-Gerät darstellt. Dabei werden die Grundsätze der Proxy-FB-Modellierung nach [4] beachtet.

Abbildung 115: Verwendung von Comm-FB und Proxy-FB zur PIB-Modellierung PLC: DP-Master Class1 IEC 61131-3 Programm

4.2.3 Darstellung

Die Schnittstelle des Funktionsbausteintyps wird graphisch und textlich nach IEC 61131-3 dargestellt. Das Verhalten des Funktionsbausteins wird als graphisches Zustandsdiagramm mit Tabellen für die Übergänge (Transitionen) und Aktionen dargestellt.

D101578 1209 - *BL ident*®


4.3 Definition des Proxy-Ident-Blocks (PIB)

Dieser Abschnitt legt die Spezifikation des Proxy-Ident-Blocks nach den in [4] angegebenen Leitlinien fest.

HINWEIS: Werden mehrere PIB-Instanzen gleichzeitig von einem Anwenderprogramm betrieben, muss sichergestellt werden, dass die einzelnen Instanzen einander nicht blockieren. Block-Definition

Folgende Abbildung ist eine graphische Darstellung der PIB-Schnittstelle:

Abbildung 116: Graphische Darstellung der PIB-Schnittstelle

4.3.1 Parameter

Tabelle 62: PIB-Parame- terbeschrei- bung	Name	Beschreibung
	EXECUTE	Durch Setzen dieses Eingangsparameters vom Typ BOOL auf TRUE kann der Anwender (Anwenderprogramm) eine FB-Instanz starten. Bevor der FB in Betrieb gesetzt werden kann, muss der Befehl und die dazugehörigen Parameter in den Speicher geschrieben werden, der dem CMDREF-Parameter zugewiesen ist. Dazu muss der CMDSEL-Parameter richtig gesetzt werden. Dieser Parameter wird mit der positiven Flanke gesetzt.

Tabelle 62: (Forts.) PIB-Parame- terbeschrei- bung	Name	Beschreibung
	ID*	Der Wert dieses Eingangsparameters wird als eindeutige ID zur Adressierung eines einzelnen Geräts oder eines Steckplatzes innerhalb eines Geräts verwendet. Eine detaillierte Beschreibung hiervon ist in Dokument [4] enthalten. In Verbindung mit dem Parameter "INDEX" adressiert dieser Parameter ein einzelnes Ident-Gerät.
	INDEX*	Der Wert dieses Eingangsparameters wird zur Kennzeichnung eines einzelnen Identkanals innerhalb eines Steckplatzes auf einem Gerät verwendet. Die Verwendung des Parameters entspricht der Definition der Adress-Parameter "Index" nach [1] und [2].
	OFFSET*	Der Wert dieses Eingangsparameters wird zur Kennzeichnung der dem Kanal zugeordneten E/A-Daten verwendet, die zyklisch als Subset der Daten übertragen werden, die einem Steckplatz (Modul) zugewiesen sind.
	RPTCMD*	Wenn dieser Parameter auf "1" gesetzt wird, wiederholt das Ident-Gerät den aktuell durchgeführten oder anschließend durchzuführenden Befehl.Der Parameter wird auf das Bit "Repeat_Command" im zyklischen Steuerwort abgebildet (siehe Abschnitt 4.2.1)
	SRESET*	Wenn dieser Eingangsparameter = "1" ist, wird der im Ident-Gerät aktuell ausgeführte Befehl abgebrochen. Der Parameter wird auf das Bit "Soft_Reset" im zyklischen Steuerwort abgebildet (siehe Abschnitt 4.2.1). Dieser Parameter wird mit der positiven Flanke aktiviert.
	INIT*	Bei Wechsel von "0" nach "1" zwingt dieser Eingangsparameter das Ident-Gerät, den Betrieb mit Ausnahme der Kommunikationsschnittstelle zu starten. Lokal durch dieses Verfahren vom Ident-Gerät ausgeführte Vorgänge sind herstellerspezifisch. Der Parameter wird auf das Bit "Init" im zyklischen Steuerwort abgebildet (siehe Abschnitt 4.2.1). Nachdem die Sequenz "Init_Active = 0 -> Init_Active = 1 Init_Active = 0" (zyklisches Status-Wort) abgeschlossen ist, muss der PIB einen Write-Config-Befehl an das Ident-Gerät senden. Dieser Parameter wird mit der positiven Flanke gesetzt.
	UOUT0*	Dieser Parameter vom Typ BOOL stellt das anwenderspezifische Bit 0 dar, das innerhalb des zyklischen Steuerworts übertragen werden soll (siehe Abschnitt 4.2.1). Der Parameter wird auf Bit 0 des zyklischen Steuerworts abgebildet.
	*Das Anwender ändern.	programm hat die Aufgabe, alle Eingangsparameter zurückzusetzen und zu
	UOUT1*	Dieser Parameter vom Typ BOOL stellt das anwenderspezifische Bit 1 dar, das innerhalb des zyklischen Steuerworts übertragen werden soll (siehe Abschnitt 4.2.1). Der Parameter wird auf Bit 1 des zyklischen Steuerworts abgebildet.
	UOUT2*	Dieser Parameter vom Typ BOOL stellt das anwenderspezifische Bit 2 dar, das innerhalb des zyklischen Steuerworts übertragen werden soll (siehe Abschnitt 4.2.1). Der Parameter wird auf Bit 2 des zyklischen Steuerworts abgebildet.

Tabelle 62: (Forts.) PIB-Parame- terbeschrei- bung	Name	Beschreibung
	UOUT3*	Dieser Parameter vom Typ BOOL stellt das anwenderspezifische Bit 3 dar, das innerhalb des zyklischen Steuerworts übertragen werden soll (siehe Abschnitt 4.2.1). Der Parameter wird auf Bit 3 des zyklischen Steuerworts abgebildet.
	RDGATE*	Dieser Parameter vom Typ BOOL stellt das optionale Bit 8 dar, das innerhalb des zyklischen Steuerworts übertragen werden soll (siehe Abschnitt 4.2.1). Wenn dieses Bit auf "1" gesetzt wird, startet die Operation.
	CMDDIM*	Es können mehrere Befehle im Speicher abgelegt werden, damit ein effizienteres Anwenderprogramm geschrieben werden kann. Die Anzahl der abgelegten Befehle beeinflusst den Speicherbereich, der für die jeweilige PIB-Instanz reserviert werden soll. Der Eingangsparameter CMDDIM definiert die Anzahl der "CMD_STRUCT"-Strukturen für Befehlsparameter.
	CMDSEL*	Da es eine gewisse Anzahl von parallel gespeicherten Befehlen geben könnte, muss eine Wahlmöglichkeit gegeben werden, um einen einzelnen durchzuführenden Befehl auszuwählen. Der Eingangsparameter CMDSEL wird hierzu verwendet, indem er einem der vorgegebenen Befehle zugewiesen wird. Die erste CMD_STRUCT wird für Parameter reserviert, die dem Befehl "Write_Config" zugeordnet sind.
	CMDREF*	Dieser In_Out-Parameter verweist auf einen globalen Speicherbereich, der zum Speichern von Befehlen und den damit verbundenen Parametern verwendet wird. Die maximale Anzahl von Befehlen, die einer einzelnen PIB-Instanz zugewiesen sind, darf 10 nicht überschreiten. Abschnitt 3.1.3 beschreibt die Befehle, die von der
		Profil-Version unterstützt werden.
	TXBUFLEN*	Dieser Eingangsparameter legt die Anzahl der Byte fest, die von dieser PIB-Instanz zum Speichern von Sendedaten verwendet werden. Die Anzahl der Byte wird ab der durch den Parameter TXSTART definierten Position innerhalb des Speicherbereichs gezählt. Aus Konsistenzgründen wird es empfohlen, diesen Parameter nach Installierung des PIB nicht zu ändern.
	*Das Anwende ändern.	rprogramm hat die Aufgabe, alle Eingangsparameter zurückzusetzen und zu
	TXSTART*	Der Eingangsparameter TXSTART gibt die relative Lage des durch "TXREF" definierten "TXBUF" innerhalb des globalen Speicherbereichs an. Diese Lage ist der Start des Speicherbereichs, der der PIB-Instanz zugewiesen ist. Aus Konsistenzgründen wird es empfohlen, diesen Parameter nach Instanzierung des PIB nicht zu ändern.
	TXREF*	Dieser In_Out-Parameter verweist auf einen globalen Speicherbereich, der von mehreren PIB-Bausteinen verwendet wird. Die PIB-Instanz darf den Speicher mit anderen Bausteinen teilen.

D101578 1209 - BL ident® 4-8

Tabelle 62: (Forts.) PIB-Parame- terbeschrei- bung	Name	Beschreibung
	RXBUFLEN*	Dieser Eingangsparameter legt die Anzahl der Byte fest, die von dieser PIB-Instanz zum Speichern von Empfangsdaten verwendet werden. Die Anzahl der Byte wird ab der durch den Parameter RXSTART definierten Position innerhalb des Speicherbereichs gezählt. Aus Konsistenzgründen wird es empfohlen, diesen Parameter nach Instanzierung des PIB nicht zu ändern.
	RXSTART*	Der Eingangsparameter RXSTART gibt die relative Lage des durch "RXREF" definierten "RXBUF" innerhalb des globalen Speicherbereichs an. Diese Lage ist der Start des Speicherbereichs, der der PIB-Instanz zugewiesen ist. Aus Konsistenzgründen wird es empfohlen, diesen Parameter nach Instanzierung des PIB nicht zu ändern.
	RXREF*	Dieser In_Out-Parameter verweist auf einen globalen Speicherbereich, der von mehreren PIB-Bausteinen verwendet wird. Die PIB-Instanz darf den Speicher mit anderen Bausteinen teilen.
	TRLEN	Dieser Ausgangsparameter zeigt die Anzahl der übertragenen (je nach ausgeführtem Befehl gesendeten oder empfangenen) Anwender-Byte an, nachdem der Befehl erfolgreich durchgeführt wurde. Es wird die Anzahl der übertragenen Byte ab der durch (TXSTART + OffsetBuffer) oder (RXSTART + OffsetBuffer) definierten Position gezählt.
	DONE	Dieser Ausgangsparameter ist auf "TRUE" gesetzt, wenn der Befehl mit einem positiven Ergebnis durchgeführt wurde. Das Anwenderprogramm kann dieses Flag abfragen, während der Befehl durchgeführt wird, und bevor die übertragenen Daten berechnet werden.
	ERROR	Dieser Ausgangsparameter ist auf "TRUE" gesetzt, wenn ein Fehler erkannt wurde. Der erkannte Fehler könnte lokal (innerhalb der Host-Steuerung) oder dezentral (innerhalb des Ident-Geräts) vorliegen. Nähere Informationen zum Fehler werden im Parameter "STATUS" gegeben. Dieses Flag wird je nach dem Fehler-Bit im Quittungstelegramm (Bit 0 von CI) vom PIB intern gesetzt. Nach einem erneutem Aufruf eines Befehls wird dieses Flag auf "FALSE" zurückgesetzt.

^{*}Das Anwenderprogramm hat die Aufgabe, alle Eingangsparameter zurückzusetzen und zu ändern.

WARNING	Dieser Ausgangsparameter ist auf "TRUE" gesetzt ist, wenn eine Warnung erkannt wurde. Die erkannte Warnung könnte lokal (innerhalb der Host-Steuerung) oder dezentral (innerhalb des Ident-Geräts) vorliegen. Nähere Informationen zur Warnung werden im Parameter "STATUS" gegeben. Dieses Flag wird je nach den Warn-Bits im Quittungstelegramm (Bit 17 von CI: ein oder mehrere Bits werden auf 1 gesetzt) vom PIB intern gesetzt. Nach einem erneutem Aufruf eines Befehls wird dieses Flag auf "FALSE" zurückgesetzt. Hinweis: Im Falle einer WARNUNG werden alle einem Befehl zugewiesenen Anwenderdaten richtig übertragen (wenn ERROR nicht gesetzt ist). In diesem Fall enthält der Datenpuffer gültige Werte.
---------	---

Tabelle 62: (Forts.) PIB-Parame- terbeschrei- bung	Name	Beschreibung	
	STATUS	Der Ausgangsparameter "STATUS" liefert detaillierte Fehlerinformationen oder/und Warninformationen zum letzten Befehl, der mit einem negativen Ergebnis oder einer Warnung ausgeführt wurde. Der Wert bleibt bis zum nächsten Auftreten einer Warnung bzw. eines Fehlers erhalten. Die Kodierung hängt von der möglichen Quelle der jeweiligen Warnungs- bzw. Fehlermeldung ab.	
		Folgende Quellen sind möglich: die eingebetteten Comm-FBs, die Funktionen zum zyklischen Datenzugriff, das Ident-Gerät, der Tag oder die internen Funktionen des PIB.	
	BUSY	Wenn dieser Ausgangsparameter auf "TRUE" gesetzt wird, ist der PIB "besetzt". Ein Befehl kann zum Ausführen nicht übergeben werden (Ausnahmen: "INIT" und "SRESET"). Der Parameter zeigt an, dass der PIB noch in Betrieb ist.	
	RPTACT	Wenn dieser Ausgangsparameter auf "TRUE" gesetzt wird, hat der PIB* die Anforderung übernommen, den laufenden Befehl zu wiederholen. Er wird vom Bit "Repeat_Command_Active" der zyklischen Eingangsdaten abgebildet. Der Ausgangsparameter bleibt aktiv, solange das Bit innerhalb des zyklischen Telegramms gesetzt wird. Solange dieser Ausgangsparameter gesetzt wird, liefert der PIB* Daten nach einem ausgeführten Befehl. Der Anwender ist in der Lage, das Ergebnis des Befehls zu lesen.	
	ERR_REQ	Dieser Ausgangsparameter ist auf "TRUE" gesetzt, wenn der PIB* einen fatalen Fehler erkannt hat. Er wird von dem Error_Flag der zyklischen Eingangsdaten abgebildet. Der Ausgangsparameter bleibt aktiv, solange das Bit innerhalb des zyklischen Telegramms gesetzt wird. Der PIB bleibt in dem aktuellen Zustand (Zustandsmaschine). Wenn dieser Parameter auf "TRUE" gesetzt ist, muss der Anwender den Eingangsparameter INIT des PIB-Bausteins setzen oder einen Dev-Status-Befehl auslösen (wenn möglich).	
	UINO	Dieser Ausgangsparameter vom Typ BOOL stellt das anwenderspezifische Bit 0 dar, das innerhalb des zyklischen Status-Worts übertragen werden soll (siehe Abschnitt 4.2.2).	
	*Das Anwenderprogramm hat die Aufgabe, alle Eingangsparameter zurückzusetzen und zu ändern.		
	UIN1	Dieser Ausgangsparameter vom Typ BOOL stellt das anwenderspezifische Bit 1 dar, das innerhalb des zyklischen Status-Worts übertragen werden soll (siehe Abschnitt 4.2.2).	
	UIN2	Dieser Ausgangsparameter vom Typ BOOL stellt das anwenderspezifische Bit 2 dar, das innerhalb des zyklischen Status-Worts übertragen werden soll (siehe Abschnitt 4.2.2).	
	UIN3	Dieser Ausgangsparameter vom Typ BOOL stellt das anwenderspezifische Bit 3 dar, das innerhalb des zyklischen Status-Worts übertragen werden soll (siehe Abschnitt 4.2.2).	

4-10 D101578 1209 - *BL ident*®

Tabelle 62: (Forts.) PIB-Parame- terbeschrei- bung	Name	Beschreibung
	TP	Dieser Ausgangsparameter ist auf "1" gesetzt, wenn ein Ziel innerhalb des Bereichs des Ident-Geräts liegt. Der Parameter entspricht dem Bit "Target_Present" des zyklischen Status-Worts (siehe Abschnitt 4.2.2). Er wird zurückgesetzt, falls kein Ziel innerhalb des Bereichs des Ident-Geräts liegt. Wenn ein Ident-Gerät diese Eigenschaft nicht unterstützt, wird der Parameter auf "0" gesetzt. Dieser Parameter wird nicht für Barcodeleser verwendet.
	TPC	Dieser Ausgangsparameter wird auf "1" gesetzt, wenn ein neues Ziel innerhalb des Bereichs des Ident-Geräts liegt. Der Parameter entspricht dem Bit "Target_Presence_Changed" des zyklischen Status-Worts (siehe Abschnitt 4.2.2). Er wird auf "0" zurückgesetzt, nachdem der nächste Befehl "Inventory" erfolgreich abgeschlossen wurde. Wenn ein Ident-Gerät diese Eigenschaft nicht unterstützt, wird der Parameter auf "0" gesetzt. Dieser Parameter wird nicht für Barcodeleser verwendet.

^{*}Das Anwenderprogramm hat die Aufgabe, alle Eingangsparameter zurückzusetzen und zu ändern.

-				
Tabelle 63: Eigenschaf- ten von PIB-	Name	Datentyp	Bereich	Nutzungsbedingunge n
Parametern				z = zwingend, o = optional
	EXECUTE	BOOL	Wenn DONE≠O oder ERROR≠O, zwingt ein Wechsel des Parameters EXECUTE von "0" nach "1" den Funktionsbaustein, einen Befehl auszuführen (wenn DONE = 0 und ERROR = 0, wurde der PIB-Baustein nicht initialisiert oder wird der Befehl gerade ausgeführt)	Z
	ID	DWORD	0×00000000 0×FFFFFFF (siehe [4])	Z
	INDEX	INT	101108, 111118,201254	Z
	OFFSET	INT	0244	Z
	RPTCMD	BOOL	0 = Kein Repeat_Command 1 = Repeat_Command	0
	SRESET	BOOL	Wechsel von "0" nach "1" zwingt den Funktionsbaustein den Befehl SRESET (Beenden des aktuellen Befehls) auszuführen.	Z

Tabelle 63:

(Forts.) Eigenschaften von PIB-

Parametern

Name	Datentyp	Bereich	Nutzungsbedingungen n z = zwingend, o = optional	
INIT	BOOL	Wechsel von "0" nach "1" zwingt den Funktionsbaustein die Init-Prozedur auszuführen.	Z	
UOUT0	BOOL	Bit 0 = 0/1	0	
UOUT1	BOOL	Bit 0 = 0/1	0	
UOUT2	BOOL	Bit 0 = 0/1	0	
UOUT3	BOOL	Bit 0 = 0/1	0	
RDGATE	BOOL	0 = Lese-Gate nicht aktiv 1 = Lese-Gate aktiv	0	
CMDDIM	INT	2 10	Z	
CMDSEL	INT	110	Z	
CMDREF	ARRAY[2 CMDDIM] von CMD_STRUC T	CMDDIM x 42	Z	
TXBUFLEN	INT	0 32768	Z	
TXSTART	INT	0 32768	Z	
TXREF	ARRAY [1N]of BYTE		Z	
RXBUFLEN	INT	0 32768	Z	
RXSTART	INT	0 32768	Z	
RXREF	ARRAY [1N]of BYTE	N	Z	
TRLEN	INT	0 32768	Z	
DONE	BOOL	0 = Befehl nicht ausgeführt 1 = Befehl ausgeführt	Z	
ERROR BOOL		0 = Letzter Befehl fehlerfrei abgeschlossen 1 = Letzter Befehl mit Fehler abgeschlossen	Z	
WARNING BOOL		0 = Keine Warninformationen z vorhanden 1 = Warninformationen vorhanden		
STATUS	DWORD	Siehe Abschnitt 3.1.2	Z	

4-12 D101578 1209 - *BL ident*®

Tabelle 63: (Forts.) Eigenschaften von PIB-Parametern

Name	Datentyp	Bereich	Nutzungsbedingunge n z = zwingend, o = optional
BUSY	BOOL	0 = PIB führt momentan keinen Befehl aus 1 = Befehl wird momentan vom PIB ausgeführt	Z
RPTACT	BOOL	0 = Keine Befehlswiederholung am PIB* aktiv 1 = Befehlswiederholung am PIB* aktiv	0
ERR_REQ	BOOL	0 = Kein Fehler vom PIB* gemeldet 1 = Fehler über PIB* gemeldet	Z
UINO	BOOL	Bit 0 = 0/1	0
UIN1	BOOL	Bit 0 = 0/1	0
UIN2	BOOL	Bit 0 = 0/1	0
UIN3	BOOL	Bit 0 = 0/1	0
TP	BOOL	0 = Kein Ziel vorhanden 1 = Ziel vorhanden	o (nicht für Barcodeleser verwendet)
TPC	BOOL	0 = Kein Ziel geändert 1 = Ziel geändert	o (nicht für Barcodeleser verwendet)

Um den Zugriff auf einzelne Elemente der Befehlsstruktur zu erleichtern, wurde für jeden Befehl eine einheitliche Struktur definiert, unabhängig davon, welche einzelnen Parameter verwendet werden. Die verwendeten Parameter hängen von der Definition des jeweiligen Befehls ab. Diese Parameter werden im Abschnitt 3.1.3. definiert.

```
Abbildung 117:
Datentyp-Defi-
nition des PIB-
Befehls:
```

```
TYPE

CMD STRUCT

STRUCT

CMD: BYTE;

Confiq: BYTE;

OffsetBuffer: INT;

UID: ARRAY[1..8] OF BYTE;

FileName: ARRAY[1..8] OF BYTE;

Offset: DINT;

Length: INT;

StartAddress: DINT;

Attributes: BYTE;

NextMode: BYTE;

Timeout: INT;

ObjectNumber: INT;

END STRUCT;

END TYPE
```

4.3.2 Fehler und Warnungen

Der PIB meldet, ob der angeforderte Befehl erfolgreich ausgeführt wurde oder nicht. Die Fehlermeldung dient zwei Zwecken:

- 1 Um die Reaktion auf den Prozess zu ändern, d.h. eine Ersatzreaktion auszulösen, wie z. B. die Wiederholung der Anforderung zu einem anderen Zeitpunkt bzw. an einem anderen Ort oder der Abbruch der Prozessaufgabe
- **2** Eine Alarmmeldung an ein HMI-System über das Anwenderprogramm oder automatisch über das SPS-System zu senden.

Hinweis

Zum ersten Fall gehören normalerweise nur sehr wenige unterschiedliche Reaktionen, die von der jeweiligen Fehlermeldung abhängig sind. Detaillierte Fehlerinformationen werden kaum verwendet.

Da andere Funktionsbausteine (Comm-FBs) und Funktionen im PIB eingebettet sind, stellt der Parameter STATUS Status-Informationen aus mehreren Quellen dar.

Der Parameter STATUS kann auch für Warninformationen verwendet werden.

Alternativ zur Verwendung des STATUS-Parameters können Fehler- und Warninformationen innerhalb der Diagnosedaten gesendet werden (siehe Abschnitt 4.4).

Der STATUS-Ausgang vom Typ DWORD wird als gepacktes, aus vier Byte bestehendes Array interpretiert, wie in der folgenden Tabelle dargestellt.

Tabelle 64:
Struktur des
STATUS-Aus-
gangs

Byte	Name	Definition	Datentyp
0	Function_Num	Siehe Tabelle 65:	Byte
1	Error_Decode	Siehe Tabelle 66:	Byte
2	Error_Code_1	Siehe Tabelle 67:	Byte
3	Error_Code_2	Warnungen oder herstellerspezifischer Fehler	Byte

Die Definition des Byte Function_Num basiert auf (IEC 61158_6, Part 6; 1999) und erweitert die in (PROFIBUS Comunication and Proxy Function Blocks acc. to IEC 61131-3 Vers. 1,2) realisierten Ergänzungen. Es wird zur Gruppierung von Fehlern und Warnungen verwendet.

Tabelle 65:
Werte vom
Byte
Function_
Num

Frame Select oder (Bit 7), dezimal	PDU - Bezeichner (Bit 5 bis 6), dezimal	Error_Code_2 wird für Warnungen verwendet (Bit 4)*	Function_ Code / Error_Code (Bit 0 bis 3) dezimal	Beschreibung nach diesem Profil
0	0 3	0/1	0 15	Keine Fehler

Tabelle 65:
(Forts.)
Werte vom
Byte
Function_
Num

Frame Select oder (Bit 7), dezimal	PDU - Bezeichner (Bit 5 bis 6), dezimal	Error_Code_2 wird für Warnungen verwendet (Bit 4)*	Function_ Code / Error_Code (Bit 0 bis 3) dezimal	Beschreibung nach diesem Profil
1	0, 1	0/1	0 15	Fehler nicht mit DP- Protokoll verbunden und nicht für dieses Profil definiert
1	2	0/1	0 15	Fehlermeldung bezüglich DP- Protokoll, siehe /2/ und [4]
1	3	0/1	0	herstellerspezifische Kodierung von Error_Code_1 und Error_Code_2
1	3	0/1	1	Error_Code_1 liefert Fehlerinformationen zum Tag/ Datenträger/ Barcode herstellerspezifische Kodierung von Error_Code_2
1	3	0/1	2	Error_Code_1 liefert Fehlerinformationen zur Luftschnittstelle herstellerspezifische Kodierung von Error_Code_2
1	3	0/1	3	Error_Code_1 liefert Fehlerinformationen zum Dateisystem herstellerspezifische Kodierung von Error_Code_2
1	3	0/1	4	Error_Code_1 liefert Fehlerinformationen zum Ident-Gerät (Transponder/ Barcodeleser) herstellerspezifische Kodierung von Error_Code_2

Tabelle 65: (Forts.) Werte vom Byte Function_ Num	Frame Select oder (Bit 7), dezimal	PDU - Bezeichner (Bit 5 bis 6), dezimal	Error_Code_2 wird für Warnungen verwendet (Bit 4)*	Function_ Code / Error_Code (Bit 0 bis 3) dezimal	Beschreibung nach diesem Profil
	1	3	0/1	5	Error_Code_1 liefert Fehlerinformationen zur Kommunikation zwischen PIB und Ident-Gerät (außer DP-Fehler) herstellerspezifische Kodierung von Error_Code_2
	1	3	0/1	6	Error_Code_1 liefert befehlsspezifische Fehlerinformationen herstellerspezifische Kodierung von Error_Code_2
	1	3	0/1	7	Error_Code_1 liefert Fehlerinformationen , die intern vom PIB generiert werden herstellerspezifische Kodierung von Error_Code_2
	1	3	0/1	8 15	Hier nicht definiert

 $^{^*}$ Bit 4 = 0: Error_Code_2 enthält herstellerspezifische Informationen, Bit 4 = 1: Error_Code_2 enthält Warninformationen (Byte 5 (Cl) vom Quittungstelegramm)

Das Error_Decode-Byte wird verwendet, um die Bedeutung von Function_Num, Error Code 1 und Error Code 2 zu definieren.

Tabelle 66: Werte vom Byte Error Decode	Error_Decode	Quelle	Bedeutung
	0×00	SPS	Keine Fehler, keine Warnungen
	0×01 0×7F	SPS	Warnung (nicht für dieses Profil verwendet)
	0×80	DP V1	Fehler entsprechend IEC 61158-6 111 gemeldet
	0×81 0×8F	SPS	0×8x meldet einen Fehler nach dem x-ten Parameter des Aufrufs des Comm-FB, wie in [4]
	0×90 0×FD		reserviert
	0×FE	Profil (PIB, Ident-Gerät)	Profilspezifischer Fehler

4-16 D101578 1209 - *BL ident*®

Tabelle 66: (Forts.) Werte vom Byte Error Decode	Error_Decode	Quelle	Bedeutung
	0×FF	Profil (PIB, Ident-Gerät)	Für zukünftige Nutzung reserviert

Error_Code_1 liefert eine Nummer, die den Fehler oder die Warnung darstellt. Das Byte Error_Decode wird auf 0×FE in der folgenden Tabelle festgelegt.

Tabelle 67: Werte vom Byte Error Code 1	Function _Code/ Error_Code*	Error_Code_1 (dezimal)	Gemeldet von	Bedeutung	zwingend / optional
	1	1	IG	Tag-Speicher Fehler (z. B. CRC-Fehler)	0
	1	2	IG	Anwesenheitsfehler (vom Ident-Gerät gemeldet), Tag hat das Übertragungsfenster verlassen	0
	1	3	IG	Adresse oder Befehl entspricht nicht den Tag-Eigenschaften (Speichergröße) (vom Ident-Gerät gemeldet)	0
	1	4	IG	Tag defekt, (Tag oder Batterie ersetzen)	0
	1	5	IG	Überlauf des Tag- Speichers	0
	1	6	IG	Unformatierter Tag	0
	1	7	IG	Datenstruktur des Tags nicht konsistent. Tag neu formatieren	0
	1	8	IG	Tag innerhalb des Übertragungsfensters hat nicht den erwarteten UID (vom Ident-Gerät gemeldet)	0
	1	9	IG	Befehl nicht vom Tag unterstützt	0
	1	10	IG	Zugriffsverletzung (z. B. Baustein gesperrt); siehe ISO18000-X	0

Tabelle 67:

(Forts.) Werte vom Byte Error

Function _Code/ Error_Code*	Error_Code_1 (dezimal)	Gemeldet von	Bedeutung	zwingend / optional
1	11127	IG	Für zukünftige Nutzung vom Profil reserviert	0
1	128255	IG	Herstellerspezifisch	0
2	1	IG	Kommunikations- Timeout an der Luftschnittstelle (vom Ident-Gerät gemeldet)	0
2	2	IG	Mehr Tags/Barcodes im Übertragungsfenster als zulässig, (vom Ident-Gerät gemeldet)	0
2	3127	IG	Für zukünftige Nutzung vom Profil reserviert	0
2	128255	IG	Herstellerspezifisch	0
3	1	IG	Falscher Dateiname (vom Ident-Gerät gemeldet)	0
3	2	IG	Datei nicht vorhanden (vom Ident-Gerät gemeldet)	0
3	3	IG	Der Tagtyp ist falsch oder für die angewählte Betriebsart nicht geeignet. Kein Dateisystem auf Tag vorhanden. (vom Ident- Gerät gemeldet)	0
3	4	IG	Befehl erstellen; Keine Verzeichniseinträge mehr verfügbar, (vom Ident-Gerät gemeldet)	0
3	5	IG	Befehl erstellen; Datei schon im Verzeichnis vorhanden, (vom Ident- Gerät gemeldet)	0
3	6	IG	Zugriffsverletzung (vom Ident-Gerät gemeldet)	0
3	7	IG	Dateilängenüberschreit ung (vom Ident-Gerät gemeldet)	0

4-18 D101578 1209 - *BL ident*®

Tabelle 67:
(Forts.)
Werte vom
Byte Error

Function _Code/ Error_Code*	Error_Code_1 (dezimal)	Gemeldet von	Bedeutung	zwingend / optional
3	8	IG	Datei nicht verfügbar (verfälscht) (vom Ident- Gerät gemeldet)	0
3	9127	IG	Für zukünftige Nutzung vom Profil reserviert	0
3	128255	IG	Herstellerspezifisch	0
4	1	IG	Spannungsausfall (vom Ident-Gerät gemeldet)	0
4	2	IG	Hardwarefehler innerhalb des Ident- Geräts (vom Ident- Gerät gemeldet)	0
4	3	IG	Antenne funktioniert nicht (vom Ident-Gerät gemeldet); z.B. ausgeschaltet oder getrennt	0
4	4	IG	Überlauf des Befehlspuffers des Ident-Geräts (vom Ident-Gerät gemeldet)	0
4	5	IG	Überlauf des Datenpuffers des Ident- Geräts (vom Ident- Gerät gemeldet)	0
4	6	IG	Befehl in dieser Betriebsart vom Ident- Gerät nicht unterstützt (vom Ident-Gerät gemeldet)	0
4	7	IG	Ident-Gerät meldet unspezifischen Fehler, der über das zyklische Status-Wort gemeldet wird (z. B. Antenne funktioniert nicht). Dieser Fehler ist keinem spezifischen Befehl zugeordnet.	0
4	8127	IG	Für zukünftige Nutzung vom Profil reserviert	0
4	128255	IG	Herstellerspezifisch	0

Tabelle 67:

(Forts.) Werte vom Byte Error

Function _Code/ Error_Code*	Error_Code_1 (dezimal)	Gemeldet von	Bedeutung	zwingend / optional
5	1	IG	Falsche Sequenz- Nummer (SN) vom Ident-Gerät gemeldet	Z
5	2	PIB	Falsche Sequenz- Nummer (SN) vom PIB gemeldet	Z
5	4	IG	Ungültige Datenblock- Nummer (DBN) vom Ident-Gerät gemeldet	Z
5	5	PIB	Ungültige Datenblock- Nummer (DBN) vom PIB gemeldet	Z
5	6	IG	Ungültige Datenblock- Länge (DBL) vom Ident- Gerät gemeldet	0
5	7	PIB	Ungültige Datenblock- Länge (DBL) vom PIB gemeldet	Z
5	8	IG	Befehl von einem anderen Anwender wird ausgeführt (vom Ident- Gerät gemeldet)	0
5	9	PIB	Das Ident-Gerät führt einen Hardware-Reset durch (Init Active auf "1" gesetzt), Init (Bit 15 des zyklischen Steuerworts) wird vom PIB erwartet.	Z
5	10	PIB	Der Befehlscode "CMD" und die jeweilige Quittung stimmen nicht überein. Es handelt sich hier um einen Software- oder Synchronisierungsfehle r, der im Normalbetrieb nicht auftreten darf.	Z
5	11	PIB	Falsche Sequenz der Quittungstelegramme (TDB/DBN)	Z

4-20 D101578 1209 - *BL ident*®

Tabelle 67:
(Forts.)
Werte vom
Byte Error

Function _Code/ Error_Code*	Error_Code_1 (dezimal)	Gemeldet von	Bedeutung	zwingend / optional
5	12	PIB	Synchronisierungsfehle r (Inkrementieren von AC_H/AC_L und CC_H/CC_L im zyklischen Steuerwort ist falsch), INIT muss ausgeführt werden	Z
5	13127	IG	Für zukünftige Nutzung vom Profil reserviert (darf nicht verwendet werden)	0
5	128255	IG	Herstellerspezifisch	0
6	1	IG	Ungültiger CMD	Z
6	2	IG	Ungültiger Befehlsindex CI, vom Ident-Gerät gemeldet.	Z
6	3	IG	Ungültiger Befehlsparameter (z. B. Datenbereich) vom Ident-Gerät gemeldet.	0
6	4	IG	Falsche Synchronisierung zwischen Anwenderprogramm und Tag. Ein erwarteter Befehl fehlt. (Objekterfassungsfehle r)	0
6	5	IG	Nur Befehl Write-Config in diesem Zustand zulässig (vom Ident- Gerät gemeldet)	Z
6	6127	IG	Für zukünftige Nutzung vom Profil reserviert	0
6	128255	IG	Herstellerspezifisch	0
7	1	PIB	Nur Befehl INIT in diesem Zustand zulässig (vom PIB gemeldet)	Z
7	2	PIB	Befehlscode "CMD" nicht zulässig	Z

Tabelle 67: (Forts.) Werte vom Byte Error	Function _Code/ Error_Code*	Error_Code_1 (dezimal)	Gemeldet von	Bedeutung	zwingend / optional
	7	3	PIB	Parameter "Length" des Befehls ist zu lang für den globalen Datenbereich, der innerhalb von TXBUF reserviert wird. (vom PIB gemeldet)	Z
	7	4	PIB	RXBUF-Überlauf (mehr Empfangsdaten als vorhandener Speicher im RXBUF)	Z
	7	5	PIB	Diese Meldung teilt dem Anwender mit, dass nur ein "INIT" als nächster Befehl zulässig ist. Alle andere Befehle werden zurückgewiesen.	Z
	7	6	PIB	Falscher Index (außerhalb des Bereichs: 101 108)	Z
	7	7	PIB	Ident-Gerät antwortet nicht auf INIT (Init_Active im zyklischen Status- Telegramm erwartet)	Z
	7	8	PIB	Timeout während des Init-Vorgangs (60 Sekunden wie von TC3WG9 definiert)	Z
	7	9	PIB	Befehlswiederholung nicht vom PIB* unterstützt	0
	7	9127	PIB	Für zukünftige Nutzung vom Profil reserviert	0
	7	128255	PIB	Herstellerspezifisch	0

^{*)} Bit 0 bis 3 (dezimal kodiert) von Function_Num IG ... Ident-Gerät

Das Byte Error_Code_2 liefert entweder Warninformationen (wenn Bit 4 von Function_Num auf "1" gesetzt ist) oder optional eine herstellerspezifische Fehlernummer (wenn Bit 4 von Function_Num auf "0" zurückgesetzt ist). Die Warnungen werden vom Byte 5 (CI) des azyklischen Quittungstelegramms abgebildet.

4-22 D101578 1209 - BL ident®

Tabelle 68: Kodierung von Warnun- gen	Error_Decode	Error_Code_2 (Bitposition)	Quelle	Bedeutung
	0×FE	0	Ident-Gerät	Bit fest auf "0" gesetzt
	0×FE	1	Ident-Gerät	Herstellerspezifisch
	0×FE	2	Ident-Gerät	Wenn das Ident-Gerät ein Barcodeleser ist: herstellerspezifisch Wenn das Ident-Gerät ein RFID-Gerät ist: Batterie fast leer
	0×FE	3	Ident-Gerät	Herstellerspezifisch
	0×FE	4	Ident-Gerät	Herstellerspezifisch
	0×FE	5	Ident-Gerät	Herstellerspezifisch

4.3.3 Befehle

0×FE

0×FE

6

7

In diesem Abschnitt werden die Befehle beschrieben, die vom PIB-Baustein unterstützt werden, und deren zugehörige Parameter. Für die Verwendung von Befehlen gelten folgende Einschränkungen:

Ident-Gerät

Ident-Gerät

Herstellerspezifisch

Herstellerspezifisch

- Der zyklische Steuerfluss hat Vorrang über azyklisch übertragene Befehle
- "INIT" und "SRESET" brechen die Ausführung eines Befehls innerhalb des Ident-Geräts ab
- Nach Sendung eines zyklischen Steuertelegramms (INIT, SRESET) bezieht sich der fortlaufende Wechsel des Parameters "DONE" auf das zyklische Steuertelegramm und nicht auf den von INIT oder SRESET abgebrochenen Befehl
- "INIT" setzt die Kommunikation (zyklischer Steuerfluss und Statusfluss, zyklische Befehle) zwischen dem PIB und dem Ident-Gerät zurück. Für diese Prozedur wird "Init" zuerst innerhalb des zyklischen Steuerworts gesendet. Nach Rücksetzen des Bits "Init_Active" im Status-Wort wird ein "Write-Config"-Befehl ausgelöst und an das Ident-Gerät gesendet. Dafür muss der Anwender "Write-Config"-Parameter innerhalb des Befehlsbereichs liefern, bevor der Befehl "INIT" angefordert wird. (siehe Abschnitt 4.2.3)
- Mit Ausnahme der Kommunikation setzt der Befehl "Write-Config" alle Funktionen im Ident-Gerät zurück
- Der Befehl "SRESET" beendet den letzten Befehl

Tabelle 69: Beschrei- bung der PIB- Befehle	Name	Beschreibung			
	Get	Mit diesem Befehl werden herstellerspezifische Daten im Ident-Gerät geles Dabei wird der TXBUF-Bereich als herstellerspezifischer Speicherbereich für Parameterdaten (optionale Sendedaten) verwendet. Empfangsdaten werde RXBUF-Bereich ab dem Start des Bereichs abgelegt. Der Parameter TRLEI PIB-Bausteins zeigt die Anzahl der empfangenen Byte an.			
		VAR CMD : BYTE := 0×62; (* b * END_VAR	·)		
		Parameter	Beschreibung		
		OffsetBuffer	Dieser Parameter legt das relative Offset im TXBUF fest. Damit wird die erste Adresse im Speicherbereich festgelegt, in der das erste Byte der zu sendenden Parameterdaten abgelegt wird. Weitere Parameterdaten werden danach konsistent abgelegt.		
		Length	Dieser Parameter legt die Anzahl der an das Ident-Gerät zu sendenden Byte fest, die mit der durch den Parameter OffsetBuffer definierten Adresse beginnen. Dieser Bereich liegt zwischen folgenden Werten: 0 226.		
	Physical _Read	Mit diesem Befehl werden Daten von eine physische Startadresse und die Länge de Der Parameter TRLEN des PIB-Bausteins an.	er zu lesenden Daten definiert werden.		
		VAR CMD : BYTE := 0×70; (* p *) END_VAR			
		Parameter	Beschreibung		
		OffsetBuffer	Dieser Parameter legt das relative Offset im RXBUF fest. Damit wird die erste Adresse im Speicherbereich festgelegt, in der das erste Byte der zu empfangenden Parameterdaten abgelegt wird. Alle darauffolgenden Byte müssen an inkrementierten Adressen abgelegt werden.		

4-24 D101578 1209 - *BL ident*®

Tabelle 69: (Forts.) Beschrei- bung der PIB- Befehle	Name	Beschreibung		
		UID	Dieser Parameter kennzeichnet einen einzelnen Datenträger. UID = 0: Beliebig (kein spezifischer Datenträger) Der aktuell vorhandene Tag wird gelesen.	
		Length	Dieser Parameter legt die Anzahl der vom Datenträger zu lesenden Byte fest, die mit der durch den Parameter StartAddress definierten Adresse beginnen.	
		Start Address	Dieser Parameter legt eine physische Adresse innerhalb des Datenträger- Speichers fest.	

Tabelle 69: (Forts.) Beschrei- bung der PIB- Befehle	Name	Beschreibung	
	Physical _Write	Mit diesem Befehl werden Daten an eine physische Startadresse und die Länge werden.	en Datenträger geschrieben, die über eine der zu schreibenden Daten definiert
		VAR CMD : BYTE := 0×71; (* q *) END VAR	
		Parameter	Beschreibung
		OffsetBuffer	Dieser Parameter legt das relative Offset im TXBUF fest. Damit wird die erste Adresse im Speicherbereich festgelegt, in der das erste Byte der zu sendenden Parameterdaten abgelegt wird.
		UID	Dieser Parameter kennzeichnet einen einzelnen Datenträger. UID = 0: Beliebig (kein spezifischer Datenträger) Der aktuell vorhandene Tag wird gelesen.
		Length	Dieser Parameter legt die Anzahl, der an den Datenträger zu sendenden Byte fest, die mit der durch den Parameter StartAddress definierten Adresse beginnen.
		Start Address	Dieser Parameter legt eine physische Adresse innerhalb des Datenträger- Speichers fest.
	Next	Mit diesem Befehl werden Vorgänge be Next wird ausgeführt, wenn der nächste	ei einem Datenträger beendet. Der Befehl e Datenträger erkannt/gemeldet wird.
		VAR CMD : BYTE : = 0×6E; (* n *) END VAR	
		Parameter	Beschreibung
		UID	Dieser Parameter kennzeichnet einen einzelnen Datenträger. UID = 0: Beliebig Der aktuell vorhandene Tag wird gelesen.

4-26 D101578 1209 - *BL ident*®

Tabelle 69: (Forts.) Beschrei- bung der PIB- Befehle	Name	Beschreibung	
		NextMode	Gültige Werte: NextMode = 0 (der Befehl Next gilt für jeden (einen anderen oder denselben) Tag) NextMode = 1 (es wird nur ein anderer Tag behandelt)

Tabelle 69: (Forts.) Beschrei- bung der PIB- Befehle	Name	Beschreibung	
	Write- Config	\boldsymbol{S}	
		VAR CMD : BYTE := 0×78; (* x *) END VAR	
		Parameter	Beschreibung
		OffsetBuffer	Dieser Parameter legt das relative Offset im TXBUF fest. Damit wird die erste Adresse im Speicherbereich festgelegt, in der das erste Byte der zu sendenden Daten abgelegt wird.
		Length	Mit diesem Parameter wird die Anzahl der "config data"-Byte festgelegt, die an das Ident-Gerät geschrieben werden.
		Config	Config = 0unzulässig Config = 1Reset, kein ConfigData Config = 2kein Reset, ConfigData wird gesendet Config = 3 Reset, ConfigData wird gesendet Config > 3 reserviert
		Definition von in der Antwort gelieferten	Subparametern:

4-28 D101578 1209 - *BL ident*®

Tabelle 69: (Forts.) Beschrei- bung der PIB- Befehle	Name	Beschreibung	
		MaxPacketSize	Dieser Parameter wird vom PIB* an den PIB gesendet. Er enthält Informationen über die maximale Länge der Ident-PDU (Ident-Header + Daten), die der Slave empfangen oder senden kann. Anhand dieses Parameters ermittelt der PIB während der Initialisierungsphase (INIT) dynamisch die vom PIB* unterstützte PDU-Länge und passt dann den internen Algorithmus für die Paketierung von Daten an und stellt die entsprechende PDU-Länge ein. 00 = Standard (entspricht 240 Byte) 64240 = max. zulässige PDU-Länge innerhalb des PIB* 01 63 = reserviert 241 255 = reserviert

Tabelle 69: (Forts.) Beschrei- bung der PIB- Befehle	Name	Beschreibung		
	Read- Config	Mit diesem Dienst werden Konfigurationsdaten aus dem Ident-Gerät gelesen. Für Konfigurationsdaten wird RXBUF als herstellerspezifischer Bereich verwendet, da Konfigurationsdaten (Config data) herstellerspezifisch sind. Der Parameter TRLEN des PIB-Bausteins zeigt die Anzahl der empfangenen Byte an.		
		VAR CMD : BYTE := 0×61; (* a *) END VAR		
		Parameter	Beschreibung	
		OffsetBuffer	Dieser Parameter legt das relative Offset im RXBUF fest. Damit wird die erste Adresse im Speicherbereich festgelegt, in der das erste Byte der zu lesenden Daten abgelegt wird.	
	Mem- Status	Mit diesem Dienst wird der Status eines Tags (Batteriezustand, Speichergröße, vorhandene Kapazität) gelesen. Der RXBUF wird als herstellerspezifischer Bereich für Statusdaten verwendet, da Statusdaten herstellerspezifisch sind. Der Parameter TRLEN des PIB zeigt die Anzahl der empfangenen Byte an.		
		VAR CMD : BYTE := 0×73; (* s *) END VAR		
		Parameter	Beschreibung	
		UID	Dieser Parameter kennzeichnet einen einzelnen Datenträger. UID = 0: Beliebig (kein spezifischer Datenträger). Der aktuell vorhandene Tag wird gelesen.	
		Attributes	Dieser Parameter legt die Klasse der zu lesenden Informationen fest. Gültig sind folgende Werte: 0×00reserviert 0×01Warn-Infos 0×02reserviert 0×03reserviert 0×04physische Statusinformationen (herstellerspez. Detailinfos) 0×05Statusinformation zum Dateisystem (hersteller- spez. Detailinfos) 0×06 - 0×7F reserviert 0×80 - 0×FF herstellerspezifisch	

4-30 D101578 1209 - *BL ident*®

Tabelle 69: (Forts.) Beschrei- bung der PIB- Befehle	Name	Beschreibung		
		OffsetBuffer	Dieser Parameter legt das relative Offset im RXBUF fest. Damit wird die erste Adresse im Speicherbereich festgelegt, in der das erste Byte der zu lesenden Daten abgelegt wird.	

Tabelle 69: (Forts.) Beschrei- bung der PIB- Befehle	Name	Beschreibung		
	Dev- Status	Mit diesem Dienst wird der Status eines Ident-Geräts gelesen. Für Statusdater wird RXBUF als herstellerspezifischer Bereich verwendet, da Statusdaten herstellerspezifisch sind. Der Parameter TRLEN des PIB-Bausteins zeigt die Anzahl der empfangenen Byte an.		
		VAR CMD : BYTE := 0×74; (* t *) END VAR		
		Parameter	Beschreibung	
		Attributes	Dieser Parameter legt die Klasse der zu lesenden Informationen fest. Gültig sind folgende Werte: 0×00reserviert 0×01 Warn-Infos (herstellerspez. Detailinfos) 0×02 Fehlerhistorie (herstellerspez. Detailinfos) 0×03 Befehlshistory (herstellerspez. Detailinfos) 0×04 kanalbezogene I&M-Infos (Datensatz I&M0) 0×05kanalbezogene I&M-Infos (Datensatz I&M1) 0×06 kanalbezogene I&M-Infos (Datensatz I&M2) 0×07kanalbezogene I&M-Infos (Datensatz I&M3) 0×08kanalbezogene I&M-Infos (Datensatz I&M4) 0×09 - 0×7F reserviert 0×80 - 0×FF herstellerspezifisch	
		OffsetBuffer	Dieser Parameter legt das relative Offset im RXBUF fest. Damit wird die erste Adresse im Speicherbereich festgelegt, in der das erste Byte der zu lesenden Daten abgelegt wird.	

4-32 D101578 1209 - *BL ident*®

Tabelle 69: (Forts.) Beschrei- bung der PIB- Befehle	Name	Beschreibung	
	Inventor	Dieser Befehl wird verwendet, um eine Liste aller innerhalb der Antennenkeule aktuell erreichbaren UIDs anzufordern. Die Möglichkeit für herstellerspezifische Zusatzinformationen ist gegeben. Der RXBUF hat folgende Struktur. Das folgende Beispiel zeigt den Aufbau der zu sendenden Datei und soll nicht als strukturierter Text im SPS-Programm verwendet werden. Im Beispiel werden 5 Objekte (ObjectNumber = 5) mit ObjectLength = 16 übertragen. VAR CONSTANT ObjectNumber : INT := 5; ObjectLength : INT := 16; END_VAR TYPE UID_STRUCT STRUCT STRUCT UID : ARRAY[18] OF BYTE; Data : ARRAY [1 (ObjectLength-8)] OF BYTE; END STRUCT; END_TYPE TYPE UidList: ARRAY[1ObjectNumber] OF UID_STRUCT; END_TYPE	
		CMD : BYTE := 0×69 ; (* i *) END VAR	
		Parameter	Beschreibung
		Attributes	Dieser Parameter legt die Klasse der zu lesenden Informationen fest. Gültig sind folgende Werte: 0×00Alle UIDs werden gelesen(ohne Zusatzinfos) 0×01 - 0×7F reserviert 0×80 - 0×FF herstellerspezifisch
		OffsetBuffer	Dieser Parameter legt das relative Offset im RXBUF fest. Damit wird die erste Adresse im Speicherbereich festgelegt, in der das erste Byte der zu lesenden Daten abgelegt wird.

D101578 1209 - BL ident®

Tabelle 69: (Forts.) Beschrei- bung der PIB- Befehle	Name	Beschreibung			
		Definition von in der Antwort geliefer	ten Subparametern:		
		Parameter	Beschreibung		
		Object Number	Dieser Parameter legt die Anzahl der UIDs fest, die im Quittungstelegramm geliefert werden.		
		Object Length	Dieser Parameter legt die Anzahl der Byte fest, die einem einzelnen UID (UID-Länge + Zusatzdaten) zugeordnet sind. Bei Attributes = 0×00 gilt folgendes: ObjectLength = 8.		
		UidList	Dieser optionale Parameter enthält eine Liste herstellerspezifischer Informationen, die den UIDs zugeordnet sind, die aktuell innerhalb der Antennenkeule erreichbar sind.		

D101578 1209 - BL ident® 4-34

4.3.4 Zeitliche Steuerung des PIB

Das folgende Diagramm zeigt die zeitliche Steuerung des PIB:

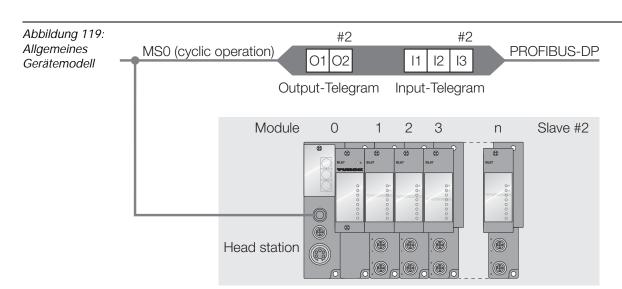
Abbildung 118:
Allgemeine zeitliche Steuerung
beim PIB

EXECUTE,
SRESET
or INIT

DONE

BUSY

ERROR


- 1 Die Variable EXECUTE/INIT/SRESET bleibt hier für die gesamte Zeit "1", die der entsprechende Funktionsblock zum Abarbeiten des Befehls benötigt. Erst nachdem DONE = 1 geworden ist, wird der Befehl vom Anwender auf "0" zurückgesetzt.
- **2** Der Befehl EXECUTE/INIT/SRESET wird hier nur durch einen kurzen Impuls angeregt. Die Ausführung des Befehls wird **nicht** abgebrochen.
- **3** Wie 1), jedoch wird die Ausführung des Befehls abgebrochen, weil ein Fehler aufgetreten ist.

4.4 Kommunikation zwischen PIB und Gerät

4.4.1 Datenzugriff im Feldgerät

Allgemeines Gerätemodell

Ein PROFIBUS-Gerät ist entweder als Kompaktgerät oder modulares Gerät ausgeführt (siehe Abbildung unten). Modulare Geräte bestehen aus einer Kopfstation und mehreren Modulen. Optional wird das Gerät mit binären Ein- und Ausgängen ausgestattet. Die Geräte und Module können unterschiedliche Granularitätswerte aufweisen.

Kopfstation

Die Kopfstation enthält die PROFIBUS-Schnittstelle und die entsprechenden Parameter. Die Kopfstation kann redundant ausgeführt sein. In diesem Fall könnte die redundante Kopfstation mit einem Steckplatz in der Rückwand ausgestattet sein, der mit einer Zahl außer 0 gekennzeichnet wird.

Modul

Normalerweise enthält ein Modul eine logische oder physische Kombination von Kanälen. Die Module werden in die Steckplätze eingelegt oder sonst montiert. Ein Modul kann mehrere Kanäle enthalten. Module werden fortlaufend ab dem Modul gezählt, das neben der Kopfstation platziert ist. Es kann Module geben, die keine Kanäle enthalten (z. B. zur Spannungsversorgung). Jedes Modul wird logisch mit einer Steckplatz-Nummer wie in der Abbildung oben gekennzeichnet. Die Steckplatz-Nummer (Slot-Number) wird zur Adressierung verwendet.

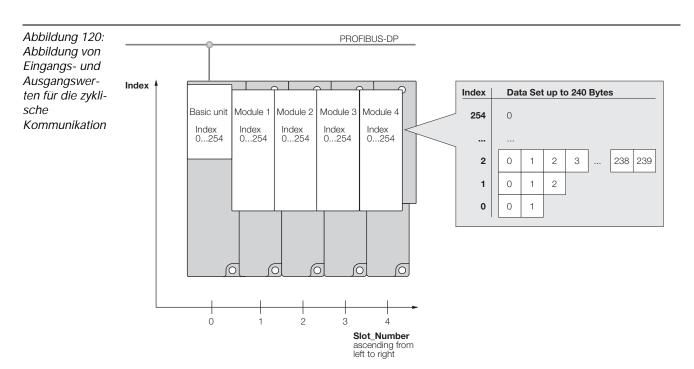
Kanal

Ein Kanal enthält alle Hard- und Softwarekomponente, die zur Erfassung des Messwerts (Eingangskanal) oder zur Erzeugung des physischen Ausgangssignals (Ausgangskanal) verwendet werden. Der Identkanal stellt also das Ident-Gerät dar. Kanäle werden einzeln für jedes Modul ab dem ersten Kanal 1 gezählt. Ein Modul kann bis zu 8 Identkanäle enthalten.

Block-Abbildung zum zyklischen PROFIBUS-DP Datentransfer

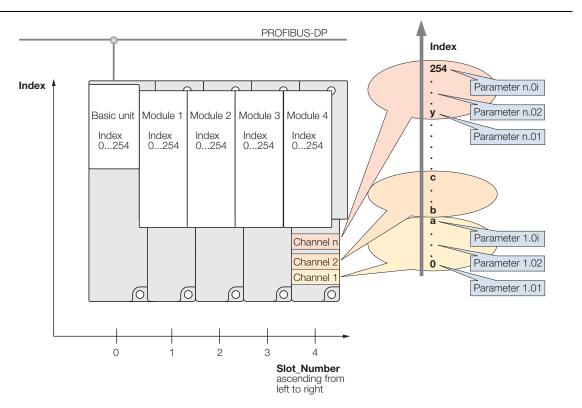
Als zyklische Daten werden die Ausgangswerte vom Master an das Slave sowie die Eingangswerte von den angeschlossen Sensoren übertragen. Zyklische Daten werden über den Data_Exchange-Dienst ("...zyklischer Austausch der E/A-Daten mit dem DP-Master (Klasse 1)...") übertragen. Die Eingangs- und Ausgangswerte können in die zyklischen Daten abgebildet werden. Diese Abbildung gilt für das ganze Gerät.

D101578 1209 - BL ident®



Die Abbildung basiert auf der modularen Struktur der GSD [7]. Die Module eines Gerätes werden mit den Schlüsselwörtern Module/EndModule definiert. Die Zuordnung zu einem Steckplatz wird mit den Werten zwischen den Schlüsselwörtern SlotDefinition/EndSlotDefinition festgelegt. Die Module werden durch das Konfigurationsgerät zu den physischen Steckplätzen zugeordnet.

Block-Abbildung zum azyklischen PROFIBUS-DP Datentransfer


Die azyklischen Lese- und Schreibdienste von PROFIBUS basieren auf Adressen, die aus Steckplatz-Nummern (Slot-Number) und Index-Nummern gebildet werden. In diesem Profil wird eine Abbildung zwischen der Gerätestruktur und den Steckplätzen definiert. Der Geräteblock wird immer der Steckplatz-Nummer 0 (Null) zugeordnet. Jedes Modul eines Gerätes wird einem Steckplatz zugeordnet.

Jeder Parameter eines Moduls muss auf einen Index abgebildet werden, damit er von MS1/MS2-Diensten angesprochen werden kann.

Wenn mehrere Kanäle einem Modul zugeordnet werden, teilen sie den Adressraum des jeweiligen Steckplatzes. Unabhängig von dem Kanal, dem sie zugeordnet werden, müssen alle Parameter mit einem einzelnen Index adressiert werden, wie unten dargestellt.

Abbildung 121: Zuordnung von Parametern und Adressen

Definition des Identkanals

In diesem Abschnitt wird die Abbildung der Identkanäle auf die Module beschrieben. Grundsätzlich können jedem Modul bis zu 8 Identkanälen zugeordnet werden. Das Modul 0 wird nicht für einen Identkanal verwendet. Für jeden Identkanal werden zwei Indexe für azyklische Kommunikation verwendet.

Indexe 101 bis 108 werden zur Parametrierung eines Identkanals verwendet. Nur der Befehl Write_Config darf über diese Indexe übertragen werden. Nach Hochlauf der Module muss an jeden Identkanal ein Write-Config-Befehl gesendet werden. Erst nach Durchführung dieses Befehls ist der Kanal betriebsbereit. Auch während des normalen Betriebs kann ein Write-Config-Befehl übernommen werden. Laufende Befehle werden vom Write-Config-Befehl unterbrochen. Der Anwender erhält in diesem Fall keine weitere Quittung für den unterbrochenen Befehl.

Index 11x ("x" steht f\u00fcr die Kanalnummer)

Indexe 111 bis 118 werden zur Sendung der aktuellen Befehle und der zugehörigen Quittungen (alle Befehle außer Write_Config) verwendet.

Hinweis

BL ident [®]-Module haben 2 Kanäle pro Modul. Damit können ausschließlich die Indices 111 und 112 verwendet werden!

Andere Indices führen zur Fehlermeldung "DW#16#E7FE06xx" Seite 3-81!

Die Indexe eines Moduls werden wie folgt verwendet:

Tabelle 70: Indexe eines Moduls	Index	Verwendung
	0 100	reserviert
	101	Parametrierung Kanal 1 (CHL = 1)
	102	Parametrierung Kanal 2(CHL = 2)
	103	Parametrierung Kanal 3(CHL = 3)
	104	Parametrierung Kanal 4(CHL = 4)
	105	Parametrierung Kanal 5(CHL = 5)
	106	Parametrierung Kanal 6(CHL = 6)
	107	Parametrierung Kanal 7(CHL = 7)
	108	Parametrierung Kanal 8(CHL = 8)
	109, 110	reserviert
	111	Datentransfer Kanal 1 (CHL = 1)
	112	Datentransfer Kanal 2(CHL = 2)
	113	Datentransfer Kanal 3(CHL = 3)
	114	Datentransfer Kanal 4(CHL = 4)
	115	Datentransfer Kanal 5(CHL = 5)
	116	Datentransfer Kanal 6(CHL = 6)
	117	Datentransfer Kanal 7(CHL = 7)
	118	Datentransfer Kanal 8(CHL = 8)
	119 200	reserviert
	201 254	herstellerspezifisch
	255	I&M-Funktionen

4.5 Identifikations- & Wartungsfunktionen (I&M-Funktionen)

Die Hauptaufgabe der I&M-Funktionen (Identifikations- und Wartungsfunktionen) liegt in der Unterstützung des Endanwenders bei unterschiedlichen Prozessen während der Lebensdauer eines Gerätes, wie z. B. Konfiguration, Inbetriebnahme, Parametrierung, Diagnose, Instandsetzung, Firmware-Updates, Asset-Management-Aufgaben, Buchungskontrolle u. ä.. Klar definierte, einheitliche Parameter und Regeln sollten Herstellern helfen, Geräte mit einem einheitlichen Verhalten anzubieten, damit Endanwender schneller und direkt handeln können. Die von den I&M-Funktionen vorgesehenen Informationen können sich auf das ganze Gerät, ein einzelnes Modul innerhalb eines Geräts oder einen auf einem Modul zugeordneten Kanal beziehen. Datenstrukturen und Zugriffsmechanismen für geräte- und modulbezogene I&M-Funktionen werden im "PROFIBUS Profile Guideline, Part 1, Identification and Maintenance Functions" [5] festgelegt.

Die Adressierung von kanalbezogenen I&M-Funktionen wird zur Zeit innerhalb des TC3 der PNO abgestimmt. Die nächste Version der "PROFIBUS Profile Guideline, Part 1, Identification and Maintenance Functions" wird den Zugriff auf diese Informationen definieren. Diese neue Version der "PROFIBUS Profile Guideline, Part 1, Identification and Maintenance Functions" wird hier gültig, da die Arbeitsgruppe WG9 der TC3 beabsichtigt, keine proprietäre Version der kanalbezogenen I&M-Funktionen zu definieren.

4.5.1 PROFILE_ID

Folgende Profil-IDs werden im Profil "PROFIBUS Proxy Ident Function Blocks nach IEC 61131-3" verwendet:

- 5B00H für RFID-Systeme und
- 5B10H für Barcodeleser.

Die Zuordnung der Profil-IDs wird von der PNO verwaltet.

4.5.2 Kanalbezogene Informationen

Für jeden Kanal können kanalbezogene I&M-Funktionen vorgesehen werden. Aus diesem Grund kann ein Gerät so viele kanalbezogene Informationen enthalten, wie Kanäle in den einzelnen Modulen realisiert werden können. Die Gültigkeit dieser Informationen beschränkt sich auf ein einzelnes Modul. Die kanalbezogenen I&M-Informationen haben dieselbe semantische Bedeutung wie die Informationen eines Geräts oder Moduls. Sie werden von den in [5] beschriebenen Datentypen dargestellt.

4.6 Anhang A - Konformitätstabelle

Die folgende Tabelle enthält eine Auflistung der zulässigen "Implementierungsabhängigen Eigenschaften" des PIB. Ein Hersteller, der Konformität mit dieser PNO-Spezifikation erklärt, muss eine Liste von allen konformen Eigenschaften des unterstützten PIB in diesem tabellarischen Format unterbreiten.

Tabelle 71:
Implementie-
rungsabhän-
gige
Eigenschaf-
ten für den
PIB

Ziffer	Eigenschaft	Gewählte Implementierung
3	Maximal unterstützte Speichergröße für den TXBUF	
3	Maximal unterstützte Speichergröße für den RXBUF	
3	Maximale Anzahl der Befehle, die im CMDREF gespeichert werden sollen	

Die folgende Tabelle enthält eine Auflistung der kommunikationsbezogenen Eigenschaften des Ident-Geräts, die für diese Profil-Spezifikation relevant sind. Der Hersteller eines Ident-Geräts, das mit einer PIB-Instanz kommunizieren soll, muss eine Liste von allen konformen Eigenschaften des unterstützten Ident-Geräts in diesem tabellarischen Format unterbreiten.

Tabelle 72:
Konformitäts-
tabelle für
Ident-Geräte

Ziffer	Eigenschaft	Erklärung	Implementierungss pezifische Zusatzinformatione n	konform (J/N)
3.1.3	Read	Befehl		
3.1.3	Get	Befehl		
3.1.3	Physical_Read	Befehl		
3.1.3	Write	Befehl		
3.1.3	Put	Befehl		
3.1.3	Physical_Write	Befehl		
3.1.3	Format	Befehl		
3.1.3	Create	Befehl		
3.1.3	Delete	Befehl		
3.1.3	Clear	Befehl		
3.1.3	Update	Befehl		

Tabelle 72: (Forts.) Konformitäts- tabelle für Ident-Geräte	Ziffer	Eigenschaft	Erklärung	Implementierungss pezifische Zusatzinformatione n	konform (J/N)
	3.1.3	Next	Befehl		
	3.1.3	Get-Directory	Befehl		
	3.1.3	Set-Attribute	Befehl		
	3.1.3	Get-Attribute	Befehl		
	3.1.3	Write-Config	Befehl		
	3.1.3	Read-Config	Befehl		
	3.1.3	Mem-Status	Befehl		
	3.1.3	Dev-Status	Befehl		
	3.1.3	Inventory	Befehl		
	3.1.3	Read-BarCode	Befehl		
	4.2.1	Reading_Gate	Steuer-Bit		
	4.2.1	Command repetition	Steuer-Bit		
	4.2.2	Target_Presence_Cha nged	Status-Bit		
	4.2.2	Target_Present	Status-Bit		
		MaxPacketSize	Max. unterstützte Größe der Ident-PDU		

4-42 D101578 1209 - *BL ident*®

4.7 Anhang B - Elementare Datentypen dieser Spezifikation

Dieser Anhang enthält Informationen über die definierten Datentypen, die in dieser Profilspezifikation verwendet werden.

Tabelle 73: Datentypen	Name	Definition	Bezugsquelle
	BOOL	Boolsche (die möglichen Werte für Variablen dieses Datentyps müssen 0 und 1 sein, entsprechend den Schlüsselwörtern FALSE and TRUE.)	IEC 61131-3
	DWORD	Bit-Folge der Länge 32	IEC 61131-3
	WORD	Bit-Folge der Länge 16	IEC 61131-3
	INT	Ganze Zahl (der Wertebereich für Variablen dieses Datentyps reicht von - (2 ¹⁶⁻¹) bis (2 ¹⁶⁻¹)-1.)	IEC 61131-3
	ANY		IEC 61131-3
	DINT	Doppelte ganze Zahl (der Wertebereich für Variablen dieses Datentyps reicht von - (2 ³²⁻¹) bis (2 ³²⁻¹)-1.)	IEC 61131-3
	ВҮТЕ	Bit-Folge der Länge 8	IEC 61131-3
	ARRAY[1x] of Data Type		IEC 61131-3
	CMD_ STRUCT	TYPE CMD STRUCT STRUCT CMD: BYTE; Config: BYTE; OffsetBuffer: INT; UID: ARRAY[18] OF BYTE; FileName: ARRAY[18] OF BYTE; Offset: DINT; Length: INT; StartAddress: DINT; Attributes: BYTE; NextMode: BYTE; Timeout: INT; ObjectNumber: INT; FileType: Word; END STRUCT;	

D101578 1209 - *BL ident*® 4-43

Tabelle 73: (Forts.) Datentypen	Name	Definition	Bezugsquelle
	DIRELEMENTS_STR UCT	TYPE DIRELEMENTS_STRUCT STRUCT FileName : ARRAY[18] OF BYTE; UsedLength : DINT; Attributes : BYTE; FileLength : DINT; FileType : WORD; END_STRUCT; END_TYPE	
	DIRLIST_ STRUCT	Obwohl diese Struktur in der ST-Sprache definiert wird, soll sie nicht in ein ST-Programm kopiert werden, da sie ein Array (Feld) mit einer dynamischen Länge enthält, das nicht IEC 61131-3 (ST) entspricht. ST wurde nur aus Konsistenzgründen im Dokument gewählt.	
		TYPE DIRLIST_STRUCT STRUCT UID1: ARRAY[18] OF BYTE; TagName: ARRAY[18] OF BYTE; FreeUserMem: DINT; Checksum: WORD; FileCount: INT; FileList: ARRAY[1FileCount] of DIRELEMENTS_STRUCT; END STRUCT; END TYPE	
	UID_STRUCT	Obwohl diese Struktur in der ST-Sprache definiert wird, soll sie nicht in ein ST-Programm kopiert werden, da sie ein Array (Feld) mit einer dynamischen Länge enthält, das nicht IEC 61131-3 (ST) entspricht. ST wurde nur aus Konsistenzgründen im Dokument gewählt.	
		TYPE ObjectLength: INT; END_TYPE TYPE UID STRUCT STRUCT UID: ARRAY[18] OF BYTE; Data: ARRAY[1(ObjectLength-8)] OF BYTE; END_STRUCT; END_TYPE	

4-44 D101578 1209 - *BL ident*®

Tabelle 73: (Forts.) Datentypen	Name	Definition	Bezugsquelle
	UidList	Obwohl diese Struktur in der ST-Sprache definiert wird, soll sie nicht in ein ST-Programm kopiert werden, da sie ein Array (Feld) mit einer dynamischen Länge enthält, das nicht IEC 61131-3 (ST) entspricht. ST wurde nur aus Konsistenzgründen im Dokument gewählt. TYPE ObjectNumber: INT; END TYPE TYPE UldList: ARRAY[1ObjectNumber] OF UID_STRUCT; END TYPE	

Die Kodierung einer UID wird wie folgt im Technical Report ISO/IEC /TR 15963, Automatic identification - Radio Frequency Identification for item management -Unique identification for RF tags, Annex A definiert:

Tabelle 74: Kodierung ei- ner UID	AC (Allocation Class)	UID issuer Registration Number	Serial number
	8 Bit	Größe von AC_Wert definiert	Größe von AC_Wert definiert
	MSB		LSB

Tabelle 75: AC-Werte	AC-Wert	Klasse	UID issuer identifier size	Größe der Serien-Nr.	Registrierungsb ehörde (der "UID issuer Registration Number")
	'11100000'	7816-6	8 Bit	48 Bit	APACS (ISO/IEC 7816-6 Registrierungsbe hörde)
	'11100001'	14816	perNEN	perNEN	NEN (ISO 14816 Registrierungsbe hörde)
	'11100010'	EAN.UCC	per EAN.UCC	per EAN.UCC	EAN.UCC
	000×xxxx	INCITS 256	per ANS INCITS 256	per ANS INCITS 256	ANSI ASC INCITS T6

D101578 1209 - *BL ident*® 4-45

4-46

'11100011' bis '11101111'	RFU	entfällt	entfällt	Für zukünftige Nutzung vom ISO reserviert
'11101111'				ISO reserviert

5 Glossar

Automatisierungsgerät

Gerät zur Steuerung mit Eingängen und Ausgängen, das an einen technischen Prozess angeschlossen wird. Speicherprogrammierbare Steuerungen (SPS) sind eine spezielle Gruppe von Automatisierungsgeräten.

B Bus

Sammelleitungssystem für den Datenaustausch, zwischen Hardwarekomponenten (z. B. CPU, Speicher, I/O-Ebene). Ein Bus kann aus mehreren parallelen Leitungen für die Datenübertragung bestehen (Adressierung, Steuerung und Stromversorgung).

Bussystem

Die Gesamtheit aller Einheiten, die über einen Bus miteinander kommunizieren.

C CPU

Abk. für engl. "Central Processing Unit". Zentrale Einheit zur Datenverarbeitung, das Kernstück eines Rechners.

D Distribution

Die Distribution umfasst alle Aktivitäten, die Güterübertragung zwischen Wirtschaftssubjekten betreffen.

DIN

Abk. für "Deutsches Institut für Normung e.V".

DP-Master Klasse 1

Das Automatisierungssystem (SPS), welches hauptsächlich die zyklische Prozessdatenverarbeitung durchführt. Die "DPV1"-Funktionen können zusätzlich/ optional genutzt werden. (auch DPM1/DPC1).

DP-Master Klasse 2

Ausschließlich azyklische Bedarfsdaten werden übertragen. Diese Datenübertragung kann z. B. durch ein Engineeringtool (PC-Anwenderprogramm) durchgeführt werden.

DPV1

Funktionserweiterung zu PROFIBUS-DP. Zusätzlich zu den zyklischen Prozessdaten können Bedarfsdaten über azyklische Kommunikationsfunktionen übertragen werden. Die azyklischen Dienste werden zeitlich parallel und zusätzlich zur zyklischen Prozessdatenübertragung mit niedriger Priorität abgewickelt.

EEPROM - Electrically Erasable Programmable Read-Only Memory

EEPROM bezeichnet einen nichtflüchtiger, elektronischer Speicherbaustein. Ein EEPROM besteht aus einer Feldeffekt-Transistorenmatrix mit isoliertem Floating Gate, in welcher jeder Transistor ein Bit repräsentiert.

EMV

Die Elektromagnetische Verträglichkeit (EMV) kennzeichnet den üblicherweise erwünschten Zustand, dass technische Geräte einander nicht wechselseitig mittels ungewollter elektrischer oder elektromagnetischer Effekte störend beeinflussen.

Erde

In der Elektrotechnik die Bezeichnung für leitfähiges Erdreich, dessen elektrisches Potenzial an jedem Punkt gleich Null ist. In der Umgebung von Erdungseinrichtungen kann das elektrische Potenzial der Erde ungleich Null sein, dann spricht man von "Bezugserde".

erden

Verbinden eines elektrisch leitfähigen Teils über eine Erdungseinrichtung mit dem Erder.

D101578 1209 - *BL ident*[®] 5-1

Erder

Eine oder mehrere Komponenten, die mit dem Erdreich direkten und guten Kontakt haben.

F Feldbus

Datennetz auf der Sensor-/Aktorebene. Ein Feldbus verbindet die Geräte in der Feldebene mit einem Steuerungsgerät. Kennzeichnend für einen Feldbus sind hohe Übertragungssicherheit und Echtzeitverhalten.

FRAM - Ferroelectric Random Access Memory

FRAM bezeichnet einen nichtflüchtigen elektronischen Speichertyp auf der Basis von Kristallen mit ferroelektrischen Eigenschaften.

GSD - General Station Description

(Früher Gerätestammdatei) Die GSD-Datei beschreibt die Eigenschaften der Geräte, die in PROFIBUS-DP eingesetzt werden. Die GSD-Datei ist eine lesbare Textdatei und wird in verschiedenen Sprachen geliefert. Projektierungstools benötigen die Informationen zu den Geräten für eine Konfiguration und Inbetriebnahme. Inhalt der GSD-Datei sind typischerweise allgemeine Angaben (z. B. Herstellername und Version) und bei modularen Geräten die Kommunikationsmerkmale (z. B. Modulbezeichnungen, Texte für Diagnosemeldungen, Parametriermöglichkeiten und Parameternamen) der einzelnen Module.

hexadezimal

Zahlensystem mit der Basis 16. Gezählt wird von 0 bis 9 und weiter mit den Buchstaben A, B, C, D, E und F.

IEC 61131

Die IEC 61131 ist eine internationale Norm, die sich mit den Grundlagen für speicherprogrammierbare Steuerungen befasst.

Initialisierung

Bei der Initialisierung (vgl. engl. to initialize) wird der zur Ausführung benötigte Speicherplatz (zum Beispiel Variablen, Code, Puffer, ...) reserviert und mit Startwerten gefüllt.

IP - International Protection

Die Schutzart (IP) gibt die Eignung von elektrischen Betriebsmitteln (zum Beispiel Geräte, Installationsmaterial) für verschiedene Umgebungsbedingungen an, zusätzlich den Schutz von Menschen gegen potentielle Gefährdung bei deren Benutzung.

Konfigurieren

Systematisches Anordnen der I/O-Module einer Station.

LSB

Abkürzung für engl. "Least Significant Bit". Bit mit dem niedrigsten Stellenwert.

Logistik

Die Logistik ist Lehre der ganzheitlichen Planung, Steuerung, Durchführung, Bereitstellung, Optimierung und Kontrolle von Prozessen der Ortsveränderung von Gütern, Daten, Energie und Personen sowie der notwendigen Transportmittel selbst.

M Master

Bei einem Master-Slave-Verfahren im Feldbusbereich beherrscht der Master die Zugriffsverhältnisse.

Mode

engl., dt. Betriebsart (Modus).

MSB

Abkürzung für engl. "Most Significant Bit". Bit mit dem höchsten Stellenwert.

Parametrieren

Festlegen von Parametern der einzelnen Busteilnehmer bzw. ihrer Module in der Konfigurationssoftware des DP-Masters.

PIR

Abkürzung für "Proxy Ident Function Block". Dieser Funktionsbaustein repräsentiert ein Ident-System in der Steuerung. Damit existiert eine einheitliche Programmschnittstelle zur eigentlichen Applikation.

Pulkerfassung

gleichzeitiges, eindeutiges Erkennen von mehreren RFID-Datenträgern, die an einem Schreib-Lese-Kopf (Transceiver) vorbeigeführt werden.

Repeater

Der Repeater in der digitalen Kommunikationstechnik ist ein Signalregenerator, der in der Bitübertragungsschicht ein Signal empfängt, dieses dann neu aufbereitet und wieder aussendet. Rauschen sowie Verzerrungen der Laufzeit (Jitter) und der Pulsform werden bei dieser Aufbereitung aus dem empfangenen Signal entfernt.

RFID

Radio Frequency Indentification - Radiofrequenzidentifikation.

RFID-Technologie

Diese Technologie ermöglicht eine kontaktlose Übermittlung von Daten mit Hilfe eines elektromagnetischen Wechselfeldes. Diese Übertragungsart wird auch als Radiofrequenztechnologie bezeichnet. Als Datenträger wird ein "Tag" Seite 5-3 eingesetzt.

Schreib-Lese-Kopf

Der Schreib-Lese-Kopf (auch Schreib-Lese-Gerät) erzeugt ein elektromagnetisches Hochfrequenzfeld. Damit werden Daten übertragen und der Datenträger (Transponder) wird mit Energie versorgt. Die Daten werden durch Modulation des elektromagnetischen Feldes dargestellt.

SPS

Abk. für Speicherprogrammierbare Steuerung.

Station

Funktionseinheit oder Baugruppe, bestehend aus mehreren Elementen.

STEP 7

STEP 7 ist die aktuelle Programmiersoftware der Simatic-S7-SPS-Familie der Firma Siemens AG und ist der Nachfolger von STEP 5

Tag

RFID-Tags sind kleine Transponder in anwendungsgerechtem Gehäuse z. B. Aufkleber, Chipkarten, Anhänger.

Transceiver

Kombination aus Sender und Empfänger

In der RFID-Technik kommen Transceiver in Form der sogenannten "Reader" zum Einsatz. Diese Geräte senden zunächst ein Signal, auf welches vom Transponder (z.B. RFID-tag) eine Antwort gesendet wird, die dann wieder vom Transceiver empfangen und an ein (Computer-)System zur weiteren Verarbeitung weitergeleitet wird.

Transponder

(Transmitter + Responder)

Antwortsendegerät. Ein Transponder besteht aus einem Mikrochip (mir einer eindeutigen Identifikationsnummer), einer Sende-/Empfangsantenne und einem Gehäuse. Über elektromagnetische Wellen werden Daten zwischen einem Lesegerät und dem Transponder übertragen.

D101578 1209 - *BL ident*[®] 5-3

Transponder-Technologie

(auch "RFID-Technologie" Seite 5-3)

UHF - Ultra High Frequency

Dieser Frequenzbereich gehört in den Microwellenbereich. RIFD arbeitet in Europa mit 865..868 MHz / USA 902..928 MHz / Japan 955MHz / China 840..845 MHz und 920..925 MHz.

UID

Abk. für engl. "Unique Identifier". Der UID ist eine eindeutige Seriennummer für Transponder. Als Adresse verweist sie auf die zu dem Transponder bzw. dem getaggten Produkt gehörenden Daten. Diese Daten können z. B. in einer Datenbank hinterlegt sein.

Industri<mark>elle Automation</mark>

www.turck.com

Support RFID

Tel. +49 (0) 208 4952-4666 E-Mail rfid-support@turck.com

Hans Turck GmbH & Co. KG

Witzlebenstraße 7 45472 Mülheim an der Ruhr Germany Tel. +49 (0) 208 4952-0 Fax +49 (0) 208 4952-264 E-Mail more@turck.com Internet www.turck.com