

RI360P1-DSU35-CNX4-... Induktiver Winkelsensor mit CANopen-Schnittstelle

Betriebsanleitung

Inhaltsverzeichnis

1	1 Uber diese Anleitung						
	1.1	Zielgruppen	4				
	1.2	Symbolerläuterung	4				
	1.3	Weitere Unterlagen	4				
	1.4	Feedback zu dieser Anleitung					
		3					
2	Hinweise	zum Produkt					
	2.1	Produktidentifizierung	5				
	2.2	Lieferumfang	5				
	2.3	Turck-Service	5				
3	Zu Ihrer	Sicherheit	6				
	3.1	Bestimmungsgemäße Verwendung	6				
	3.2	Naheliegende Fehlanwendung					
	3.3	Allgemeine Sicherheitshinweise					
4		peschreibung					
4		_					
	4.1	Geräteübersicht					
	4.2	Eigenschaften und Merkmale					
	4.3	Funktionsprinzip					
	4.4	Funktionen und Betriebsarten					
	4.4.1	Ausgangsfunktion					
	4.4.2	Abschlusswiderstand					
	4.5	Technisches Zubehör	9				
5	Montieren 1						
	5.1	Sensor auf ferritische Welle (Ø ≤ 14 mm) oder nicht-ferritische Welle montieren	10				
	5.2	Sensor auf ferritische Welle (Ø > 14 mm) montieren	11				
6	Anschlie	ßen	12				
7		b nehmen					
8	Betreibe	n					
	8.1	LED-Anzeigen	14				
9	Einstelle	n	15				
	9.1	Kommunikations-Profile einstellen	15				
	9.1.1	Objekt 0x1000: Device type (Gerätetyp)					
	9.1.2	Objekt 0x1001: Error Register (Fehlerregister)					
	9.1.3	Objekt 0x1002: Manufacturer status register (Hersteller-Status-Register)	16				
	9.1.4	Objekt 0x1005: COB-ID SYNC (COB-ID für SYNC-Nachricht)					
	9.1.5	Objekt 0x1008: Manufacturer device name (Hersteller-Gerätename)					
	9.1.6	Objekt 0x1009: Manufacturer hardware version (Hardware-Version)					
	9.1.7	Objekt 0x100A: Manufacturer software version (Software-Version)					
	9.1.8	Objekt 0x1010: Store parameters (Parameter abspeichern)					
	9.1.9	Objekt 0x1011 Restore default parameters (Standardwerte laden)					
	9.1.10	Objekt 0x1014: COB-ID Emergency (COB-ID für Notfall-Nachrichten)					
	9.1.11	Objekt 0x1015: Inhibit time Emergency (Sperrzeit für Notfallnachrichten)					
	9.1.12	Objekt 0x1017: Producer heartbeat time (Heartbeat-Zyklus)					
	9.1.13	Objekt 0x1018: Identity object (Geräteidentifikation)					
	9.1.14	Objekt 0x1029: Error behaviour (Fehler-Verhalten)					
	9.1.15	Objekt 0x1800: PDO1- Parameter (asynchron)	23				

	9.1.16 9.1.17	Objekt 0x1801: PDO2- Parameter (synchron, zyklisch) Übersicht der Übertragungsarten	
	9.2	Variables PDO-Mapping anlegen	
	9.2.1	Objekt 0x1A00: PDO1 Mapped Object	
	9.2.2	Beispiel: PDO-Mapping für PDO3 anlegen (Geschwindigkeit)	
	9.2.3	Default-Einstellung für das Mapping der Transmit-PDOs	
	9.2.4	PDO-Mapping nach CiA (ab CANopen Version 4)	
	9.3	Herstellerspezifische Parameter einstellen	
	9.3.1	Objekt 0x2100: Baud Rate (Baudrate einstellen)	
	9.3.2	Objekt 0x2101: Node Number (Knotenadresse ändern)	
	9.3.3	Objekt 0x2102: CANBus-Terminierung	
		(Abschlusswiderstand ein- und ausschalten)	31
	9.3.4	Objekt 0x2104: Nmt Autostart	
	9.3.5	Objekt 0x2105: PDO Trigger Threshold (Auslöseschwelle bestimmen)	32
	9.3.6	Objekt 0x2106: Filter Configuration (Filtertypen auswählen)	32
	9.3.7	Objekt 0x2110: Customer Memory (Anwender-Speicherbereich festlegen)	33
	9.4	Standard-Geräte-Parameter einstellen	34
	9.4.1	Objekt 0x6000: Operating parameters (Betriebsparameter)	34
	9.4.2	Objekt 0x6001: MUR – Measuring Units per Revolution	
		(Mess-Schritte pro Umdrehung)	34
	9.4.3	Objekt 0x6002: TMR – Total Measuring Range	
		(Gesamtanzahl der ausgegebenen Mess-Schritte)	
	9.4.4	Objekt 0x6003: Preset-Wert (Nullpunkt-Anpassung)	
	9.4.5	Objekt 0x6004: Position value (aktueller Positionswert)	
	9.4.6	Objekt 0x600C: Position raw value (unskalierter Messwert)	
	9.4.7	Objekt 0x6200: Cycle Timer (Zykluszeit der Messwertausgabe)	
	9.4.8	Objekt 0x6400: Work area state register (aktueller Status der Grenzwerte)	
	9.4.9	Objekte 0x6401 und 0x6402: Working Area Limits (Grenzwerte einstellen)	
	9.4.10 9.4.11	Objekt 0x6500: Operating Status (Betriebszustand)	
	9.4.11	Objekt 0x6501: Single Turn Resolution (Auflösung bei einer Umdrehung) Objekt 0x6502: Number of Distinguishable Revolutions	39
	7. 4 .12	(Anzahl der unterscheidbaren Umdrehungen)	30
	9.4.13	Objekt 0x6503: Alarms	
	9.4.14	Objekt 0x6504: Supported Alarms	
	9.4.15	Objekt 0x6505: Warnings	
	9.4.16	Objekt 0x6506: Supported Warnings	
	9.4.17	Objekt 0x6507: Profil- und Software-Version	
	9.4.18	Objekt 0x6509: Offset Value (Offset-Wert)	
	9.4.19	Objekt 0x650A: Module Identification (Herstellerabgleich)	41
	9.4.20	Objekt 0x650B: Seriennummer	42
	9.4.21	LSS-Dienste DS 305 V2.0	42
	9.4.22	Netzwerkmanagement	43
10	Störunge	n beseitigen	45
11	Instand h	alten	46
12	Repariere	n	46
	12.1	Geräte zurücksenden	46
13	Entsorge	n	47
14	Technisch	ne Daten	48
	14.1	Werkseinstellungen	48
15	Turck-Nic	dorlassungon Kontaktdaton	40

1 Über diese Anleitung

Die Anleitung beschreibt den Aufbau, die Funktionen und den Einsatz des Produkts und hilft Ihnen, das Produkt bestimmungsgemäß zu betreiben. Lesen Sie die Anleitung vor dem Gebrauch des Produkts aufmerksam durch. So vermeiden Sie mögliche Personen-, Sach- und Geräteschäden. Bewahren Sie die Anleitung auf, solange das Produkt genutzt wird. Falls Sie das Produkt weitergeben, geben Sie auch diese Anleitung mit.

1.1 Zielgruppen

Die vorliegende Anleitung richtet sich an fachlich geschultes Personal und muss von jeder Person sorgfältig gelesen werden, die das Gerät montiert, in Betrieb nimmt, betreibt, instand hält, demontiert oder entsorgt.

1.2 Symbolerläuterung

In dieser Anleitung werden folgende Symbole verwendet:

GEFAHR

GEFAHR kennzeichnet eine gefährliche Situation mit hohem Risiko, die zum Tod oder zu schweren Verletzungen führt, wenn sie nicht vermieden wird.

WARNIING

WARNUNG kennzeichnet eine gefährliche Situation mit mittlerem Risiko, die zum Tod oder zu schweren Verletzungen führen kann, wenn sie nicht vermieden wird.

VORSICHT

VORSICHT kennzeichnet eine gefährliche Situation mit mittlerem Risiko, die zu mittelschweren oder leichten Verletzungen führen kann, wenn sie nicht vermieden wird.

ACHTUNG

ACHTUNG kennzeichnet eine Situation, die zu Sachschäden führen kann, wenn sie nicht vermieden wird.

HINWEIS

Unter HINWEIS finden Sie Tipps, Empfehlungen und nützliche Informationen zu speziellen Handlungsschritten und Sachverhalten. Die Hinweise erleichtern Ihnen die Arbeit und helfen Ihnen, Mehrarbeit zu vermeiden.

HANDLUNGSAUFFORDERUNG

Dieses Zeichen kennzeichnet Handlungsschritte, die der Anwender ausführen muss.

 \Rightarrow

HANDLUNGSRESULTAT

Dieses Zeichen kennzeichnet relevante Handlungsresultate.

1.3 Weitere Unterlagen

Datenblatt

1.4 Feedback zu dieser Anleitung

Wir sind bestrebt, diese Anleitung ständig so informativ und übersichtlich wie möglich zu gestalten. Haben Sie Anregungen für eine bessere Gestaltung oder fehlen Ihnen Angaben in der Anleitung, schicken Sie Ihre Vorschläge an techdoc@turck.com.

2 Hinweise zum Produkt

2.1 Produktidentifizierung

Diese Anleitung gilt für die folgenden Winkelsensoren:

RI360P1-DSU35-CNX4-2H1650

2.2 Lieferumfang

Im Lieferumfang sind enthalten:

- Sensor
- Positionsgeber P1-RI-DSU35
- Senkschraube M6 × 25
- 2 Zylinderschrauben M5 × 12
- 2 Federscheiben A5
- Kurzbetriebsanleitung

2.3 Turck-Service

Turck unterstützt Sie bei Ihren Projekten von der ersten Analyse bis zur Inbetriebnahme Ihrer Applikation. In der Turck-Produktdatenbank unter www.turck.com finden Sie Software-Tools für Programmierung, Konfiguration oder Inbetriebnahme, Datenblätter und CAD-Dateien in vielen Exportformaten.

Die Kontaktdaten der Turck-Niederlassungen weltweit finden Sie auf S. [49].

3 Zu Ihrer Sicherheit

Das Produkt ist nach dem Stand der Technik konzipiert. Dennoch gibt es Restgefahren. Um Personen- und Sachschäden zu vermeiden, müssen Sie die Sicherheits- und Warnhinweise beachten. Für Schäden durch Nichtbeachtung von Sicherheits- und Warnhinweisen übernimmt Turck keine Haftung.

3.1 Bestimmungsgemäße Verwendung

Die induktiven Winkelsensoren Rl...DSU35... erfassen berührungslos Winkel im Bereich von 0...360°.

Das Gerät darf nur wie in dieser Anleitung beschrieben verwendet werden. Jede andere Verwendung gilt als nicht bestimmungsgemäß. Für daraus resultierende Schäden übernimmt Turck keine Haftung.

3.2 Naheliegende Fehlanwendung

■ Die Geräte sind keine Sicherheitsbauteile und dürfen nicht zum Personen- und Sachschutz eingesetzt werden.

3.3 Allgemeine Sicherheitshinweise

- Das Gerät erfüllt die EMV-Anforderungen für den industriellen Bereich. Bei Einsatz in Wohnbereichen Maßnahmen treffen, um Funkstörungen zu vermeiden.
- Nur fachlich geschultes Personal darf das Gerät montieren, installieren, betreiben, parametrieren und instand halten.
- Das Gerät nur in Übereinstimmung mit den geltenden nationalen und internationalen Bestimmungen, Normen und Gesetzen einsetzen.

4 Produktbeschreibung

Die induktiven Winkelsensoren der Baureihe RI360...DSU35... messen Winkelbewegungen bis 360°. Sensor und Positionsgeber die Winkelsensoren sind komplett vergossen und als zwei voneinander unabhängige, dichte Einheiten in Schutzart IP67 konstruiert, die berührungslos zusammenarbeiten.

Der Winkelsensor ist mit einer CANopen-Schnittstelle ausgestattet. Für den CANopen-Eingang und den CANopen-Ausgang steht jeweils ein M12-Steckverbinder am Gerät zur Verfügung. Sämtliche CANopen-Parameter werden permanent im internen Gerätespeicher abgelegt.

4.1 Geräteübersicht

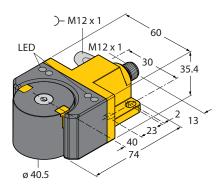


Abb. 1: Abmessungen

4.2 Eigenschaften und Merkmale

- Quaderförmig, Bauform DSU35
- Kunststoff, PP-GF30-VO
- Erfassung von Winkelpositionen von 0...360°
- CANopen-Schnittstelle
- Baudrate 10 Kbit/s bis 1 Mbit/s; Werkseinstellung 125 Kbit/s
- Knotenadresse 1 bis 127; Werkseinstellung 3
- Zuschaltbarer Abschlusswiderstand über CANopen-Gerätezugriff
- Unempfindlichkeit gegenüber elektromagnetischen Störfeldern
- 10...30 VDC
- Steckverbinder, M12 × 1, 5-polig, CAN in, CAN out
- Entsprechend CiA DS-301, CiA 305, CiA 406

4.3 Funktionsprinzip

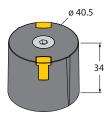
Die Winkelsensoren arbeiten berührungslos auf Basis des induktiven Resonator-Messprinzips. Dieses Messprinzip erlaubt eine Konstruktion ohne Dichtungen mit vollständig vergossenem Sensorgehäuse, das vom Positionsgeber getrennt ist. Magnetfelder stören das Messverfahren kaum, da der Positionsgeber nicht auf einem Magneten, sondern auf einem induktiven Spulensystem basiert, bei dem Sensor und Positionsgeber (Resonator) einen Schwingkreis bilden.

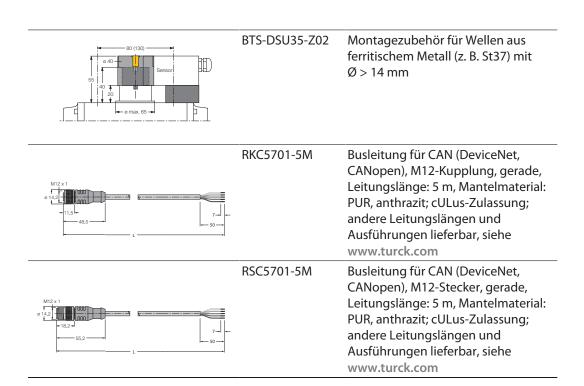
Das Gerät stellt ein der Winkelstellung des Positionsgebers entsprechendes Ausgangssignal zur Verfügung.

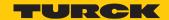
4.4 Funktionen und Betriebsarten

4.4.1 Ausgangsfunktion

Das Gerät verfügt über eine standardisierte CANopen-Schnittstelle nach CiA DS-301 und ein Geräteprofil nach CiA DSP-410. Über die Steuerungsoftware können verschiedene Gerätefunktionen eingestellt und parametriert werden (siehe Abschnitt "Einstellen"). Sämtliche Messwerte und Parameter sind über das Objektverzeichnis zugänglich.


4.4.2 Abschlusswiderstand


Über die CANopen-Schnittstelle kann ein Busabschlusswiderstand zu- und abgeschaltet werden.



4.5 Technisches Zubehör

Maßbild	Тур	Beschreibung
	P1-RI-DSU35	Positionsgeber für induktive Winkelsensoren DSU35

5 Montieren

Das Gerät lässt sich ohne Montagezubehör auf drehbare Wellen aus ferritischem Material mit Durchmessern bis zu 14 mm oder auf nicht-ferritische Wellen befestigen. Bei ferritischen Wellen mit größeren Durchmessern ist das Aufbauset BTS-DSU35-Z02 erforderlich:

ACHTUNG

Zu eng gefasster metallischer Umbau am Positionsgeber Funktionsverlust durch Schwächung des Schwingkreises

- ▶ Auf ausreichenden Abstand zwischen Umbau und Positionsgeber achten.
- ▶ Vor der Inbetriebnahme einen Funktionstest durchführen.

5.1 Sensor auf ferritische Welle ($\emptyset \le 14$ mm) oder nicht-ferritische Welle montieren

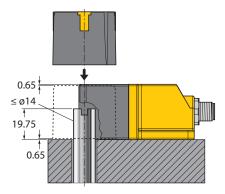


Abb. 2: Sensor montieren – Wellendurchmesser bis 14 mm

Der Positionsgeber muss sich mittig im Erfassungsbereich des Sensors befinden. Dazu müssen die folgenden Voraussetzungen erfüllt sein:

- Die Welle ragt 19,75 mm aus der Einbauumgebung heraus.
- In der Welle ist eine Nut als Verdrehschutz für den Positionsgeber vorhanden.
- ► Sensor auf der Montagefläche festschrauben.
- ▶ Positionsgeber auf die Welle stecken.
- Positionsgeber mittig im Erfassungsbereich des Sensors ausrichten. Der ideale Abstand zu oberer und unterer Sensorkante beträgt jeweils 0,65 mm.
- ► Positionsgeber befestigen. Der Nennabstand zwischen Sensor und Positionsgeber beträgt 1 mm.

5.2 Sensor auf ferritische Welle (\emptyset > 14 mm) montieren

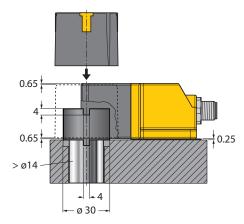


Abb. 3: Sensor montieren – Wellendurchmesser über 14 mm

Mit dem Aufbauset BTS-DSU35-Z02 lässt sich das Gerät auf drehbare Wellen aus ferritischem Material mit einem Durchmesser von über 14 mm montieren.

Der Positionsgeber muss sich mittig im Erfassungsbereich des Sensors befinden. Dazu müssen die folgenden Voraussetzungen erfüllt sein:

- Die Welle schließt bündig mit der Einbauumgebung ab.
- In der Welle ist eine Nut als Verdrehschutz für den Positionsgeber vorhanden.
 - ▶ Distanzplatte (0,25 mm) zwischen Sensor und Einbauumgebung montieren.
- ► Sensor auf Distanzplatte festschrauben.
- ▶ Aufbauset BTS-DSU35-Z02 auf die Welle stecken.
- ▶ Positionsgeber auf das Aufbauset BTS-DSU35-Z02 stecken.
- ▶ Positionsgeber mittig im Erfassungsbereich des Sensors ausrichten. Der ideale Abstand zu oberer und unterer Sensorkante beträgt jeweils 0,65 mm.
- Positionsgeber befestigen. Der Nennabstand zwischen Sensor und Positionsgeber beträgt 1 mm.

6 Anschließen

Das Gerät verfügt über zwei 5-polige M12 \times 1-Steckverbinder für CANopen-Eingang und CANopen-Ausgang.

Abb. 4: Pinbelegung

▶ Gerät gemäß Anschlussbild an eine Steuerung oder ein Feldbusgerät anschließen.

7 In Betrieb nehmen

Nach Anschluss und Einschalten der Spannungsversorgung ist das Gerät automatisch betriebsbereit.

8 Betreiben

8.1 LED-Anzeigen

LED	Anzeige	Bedeutung
PWR	grün	Sensor einwandfrei versorgt, Positionsgeber im Erfassungsbereich
	aus	Sensor nicht versorgt
SIG	aus	Positionsgeber im Messbereich
	blinkt gelb	Positionsgeber nicht im Erfassungsbereich
	gelb	Positionsgeber im Messbereich, verminderte Signalqualität (z. B. zu großer Abstand)
RUN	grün	CAN-Kommunikation aktiv
	blinkt grün	Zustand Pre-Operational
	blinkt grün 1 ×	CAN-Kommunikation gestoppt
	blinkt grün abwechselnd mit ERR-LED	LSS-Dienst aktiv
ERR	rot	CAN-Kommunikation nicht aktiv
	blinkt rot abwechselnd mit RUN-LED	LSS-Dienst aktiv
	blinkt rot 2 ×	Error Control Event
	blinkt rot 3 ×	SYNC-Error

9 Einstellen

Das Gerät lässt sich über die CANopen-Schnittstelle einstellen.

HINWEIS

Alle nicht beschriebenen Objekte dienen der zusätzlichen Information und können dem Geräteprofil DS406 3.1 entnommen werden.

9.1 Kommunikations-Profile einstellen

9.1.1 Objekt 0x1000: Device type (Gerätetyp)

Mit dem Objekt wird der Gerätetyp festgelegt.

0x1000	VAR		Device type	Unsigned32	RO	M
Geräteprofil-Nu	mmer			Gebertyp		
Byte 0 (LSB)		Byte 1		Byte 2		Byte 3 (MSB)
0x96		0x01		0x01 (absolut, Sing	gleturn)	0x00
Beispiel: 0x0001	10196 = Prof	fil DS406: a	absolut, Singleturn			

9.1.2 Objekt 0x1001: Error Register (Fehlerregister)

Im Fehlerregister werden Gerätefehler angezeigt.

0x1001	VAR	Error register	Unsigned 8	RO	M
	Bit	Wert	Bedeutung		
	0	0	kein Fehler		
		1	Fehler: keine S nicht im Erfass	•	pplung, Positionsgeber
	17		unbenutzt		

9.1.3 Objekt 0x1002: Manufacturer status register (Hersteller-Status-Register)

Das Hersteller-Status-Register enthält diverse Fehlerbits und den aktuellen Status der eingestellten Grenzwerte aus Objekt 0x6400. Zusätzlich werden die Grenzwerte im Objekt 0x6401 und 0x6402 hinterlegt.

0x1002	VAR	Manufacturer	Unsigned 32	RO	M
		status register			

Bit	Wert	Bedeutung
0	1	EEPROM-Fehler
1	1	keine Schwingkreiskopplung (kein Resonator erkannt, Winkelmessung nicht möglich)
2	1	Schwingkreiskopplung gering (ggf. verringerte Linearität)
37		unbenutzt
8	1	Arbeitsbereich 1 außerhalb des Bereichs
9	1	Arbeitsbereich 1 Unterschreitung
10	1	Arbeitsbereich 1 Überschreitung
11	1	Arbeitsbereich 2 außerhalb des Bereichs
12	1	Arbeitsbereich 2 Unterschreitung
13	1	Arbeitsbereich 2 Überschreitung

9.1.4 Objekt 0x1005: COB-ID SYNC (COB-ID für SYNC-Nachricht)

Das Objekt definiert den COB-ID für die SYNC-Nachricht. Außerdem wird definiert, ob das Gerät ein Erzeuger oder Empfänger von SYNC-Objekten ist.

0x1005	VAR	COB-ID SYNC	Unsigned 32	RW	0	
--------	-----	-------------	-------------	----	---	--

Dateninhalt:

Bit	Wert	Bedeutung
010		Identifier (11 Bit), Standard-ID: 0x80
1129		reserviert für Geräte mit 29 Bit Identifier
30	0	Gerät erzeugt keine SYNC-Nachricht
31	1	Gerät ist Empfänger für SYNC-Nachrichten

9.1.5 Objekt 0x1008: Manufacturer device name (Hersteller-Gerätename)

Das Objekt enthält den Hersteller-Gerätenamen.

0x1008	VAR	Manufacturer de- Vis-String	RO	0
		vice name		

Beispiel: RI360P1-DSU35-CNX4-2H1650

9.1.6 Objekt 0x1009: Manufacturer hardware version (Hardware-Version)

Das Objekt enthält die Hardware-Versionsnummer.

0x1009	VAR	Manufacturer	Vis-String	RO	0	
		hardware				
		version				

Dateninhalt:

z. B. "HW-12718801 -" im ASCII-Code

Hardware Version (127xxxxx) mit Änderungsindex (-, A, B...)

9.1.7 Objekt 0x100A: Manufacturer software version (Software-Version)

Das Objekt enthält die Software-Versionsnummer.

0x100A	VAR	Manufacturer	Vis-String	RO	0
		software version			

Dateninhalt:

z. B. "SW-1.0.0.1" im ASCII-Code

9.1.8 Objekt 0x1010: Store parameters (Parameter abspeichern)

Durch das Schreiben des Kommandos "save" wird das Abspeichern der Parameter in den nichtflüchtigen Speicher (EEPROM) veranlasst.

		· · · · · · · · · · · · · · · · · · ·				
0x1010	ARRAY	Store parameters	Unsigned 32	RW	Ο	

Folgende Objekte werden durch dieses Kommando abgespeichert: 0x1005, 0x1014, 0x1800 (Sub-Index 1 und 3), 0x1802 (Sub-Index 1), 0x2000, 0x2001, 0x2005, 0x6000, 0x6001, 0x6002, 0x6003, 0x6200. Um ein versehentliches Abspeichern zu verhindern, wird der Befehl nur ausgeführt, wenn als Codewort der String "save" in dien Index (Objekt 0x1010) eingetragen wird.

HINWEIS

Die im EEPROM abgespeicherten Werte (Power-ON-Werte) werden durch dieses Kommando unwiderruflich überschrieben.

Eine Lesezugriff auf das CANopen-Gerät zeigt, ob Werte gespeichert werden können (Data: 0x01 = Speicherung möglich).

Dateninhalt für Schreibzugriff (save = 0x65766173):

Bit	Wert	Bedeutung
0	0x73	ASCII-Code für s
1	0x61	ASCII-Code für a
2	0x76	ASCII-Code für v
3	0x65	ASCII-Code für e

9.1.9 Objekt 0x1011 Restore default parameters (Standardwerte laden)

Die Parameter im Arbeitsspeicher werden mit dem Befehl gelöscht und durch Standardwerte (Herstellerwerte wie bei Auslieferung des Drehgebers) ersetzt.

0x1011	ARRAY	Restore Default	Unsigned32	RW	0
		Parameters			

Mehrere Parametergruppen werden unterschieden:

- Sub-Index 0x00: enthält den höchsten Sub-Index, der unterstützt wird.
- Sub-Index 0x01: Restore all Parameters bezieht sich auf alle Parameter, die wiederhergestellt werden können.
- Sub-Index 0x02: Restore Communication Parameters bezieht sich auf kommunikationsbezogenen Parameter (Index von 0x1000 bis 0x1FFF).
- Sub-Index 0x03: Restore Application Parameters bezieht sich auf anwendungsbezogenen Parameter (Index von 0x6000 bis 0x9FFF).

Beispiel: Restore all Parameters

Das Schreiben des Befehls 0x64616F6C (load) unter Sub-Index 0x01 setzt alle Parameter im Geräte-RAM auf ihre Standardwerte zurück.

Ein Lesezugriff auf den Sub-Index zeigt, ob ein Laden der Standardwerte möglich ist.

Dateninhalt für den Schreibzugriff (load = 0x64616F6C):

Bit	Wert	Bedeutung
0	0x6C	ASCII-Code für I
1	0x6F	ASCII-Code für o
2	0x61	ASCII-Code für a
3	0x64	ASCII-Code für d

Dateninhalt für den Lesezugriff:

Bit	Wert	Bedeutung
0	1	Gerät unterstützt das Laden von Standardwerten.
31	reserviert	

- NMT-Reset durchführen, um die Standardwerte zu übernehmen.
- ▶ Wenn die Standardwerte auch in das EEPROM übernommen werden sollen, Parameter speichern (siehe Objekt 0x1010).

9.1.10 Objekt 0x1014: COB-ID Emergency (COB-ID für Notfall-Nachrichten)

Das Objekt definiert den COB-ID für Notfall-Nachrichten. Das Verhalten im Fehlerfall wird im Objekt 0x1029 (Error Behavior) beschrieben.

0x1014	VAR	COB-ID EMCY	Unsigned 32	RW	0	
--------	-----	-------------	-------------	----	---	--

Dateninhalt:

Bit	Wert	Bedeutung
010		Identifier (11 Bit), Standard-ID: 0x80 + Knotennummer
1029		reserviert für Geräte mit 29 Bit Identifier
30		reserviert
31		reserviert

Emergency-Objekte treten bei fehlerhaften Situationen innerhalb eines CAN-Netzwerkes auf und werden je nach Ereignis ausgelöst und über den Bus mit einer hohen Priorität gesendet.

HINWEIS

Ein Emergency-Objekt wird nur einmal pro Event ausgelöst. Solange der Fehler besteht, wird kein neues Objekt generiert. Ist der Fehler behoben, wird ein erneutes Emergency-Objekt mit dem Inhalt 0x0000 (Error Reset oder No Error) generiert und auf den Bus gesendet.

Emergency-Nachrichten:

Code	Code-Klasse	Bedeutung
0x0000		kein Fehler; beim Start nach einer Boot-up-Message wird eine "Emergency Clear Message" (0x0000) übertragen
0x1389		keine Messung möglich, Positionsgeber fehlt, keine Schwing- kreiskopplung
0x6100		interner Software-Fehler; Emergency-Nachricht mit Code 0x6100 und Code-Klasse wird erzeugt
0x6100	0x4000	Warnmeldung, kein Programmabbruch
0x6100	0x4810	Überlauf Schreibpuffer, TPDO-Nachricht verloren
0x6100	0x4820	Überlauf Schreibpuffer, TPDO-Nachricht verloren
0x6100	0x4830	Überlauf Schreibpuffer, SDO-Nachricht verloren
0x6100	0x4840	Überlauf Schreibpuffer, Heartbeat-Nachricht verloren
0x6100	0x8000	Schwerwiegender Fehler, Abbruch oder Reset erforderlich
0x6100	0x8010	MCO-Initialisierung fehlgeschlagen
0x6100	0x8021	nicht im CAN-Eingangsfilter, NMT
0x6100	0x8022	nicht im CAN-Eingangsfilter, PDO
0x6100	0x8023	nicht im CAN-Eingangsfilter, SDO
0x6100	0x8031	Initialisierung der PDO-Parameter außerhalb des Bereichs
0x6100	0x8032	Zugriff auf Prozessabbild außerhalb des Bereichs
0x6100	0x8041	außerhalb TPDOs

Code	Code-Klasse	Bedeutung
0x6100	0x8042	außerhalb RPDOs
0x6100	0x8043	kein RPDO-Mapping gefunden

9.1.11 Objekt 0x1015: Inhibit time Emergency (Sperrzeit für Notfallnachrichten)

Das Objekt definiert die Sperrzeit für Emergency-Nachrichten (konfigurierte Sperrzeit für die EMCY-Nachricht).

- ▶ Wert für die Sperrzeit in Vielfachen von 100 μs angeben.
- ▶ Um die Sperrzeit zu deaktivieren, den Wert 0 wählen. (max. 6553 ms)

0x1015	VAR	Inhibit time	Unsigned 16	RW	0
		EMCY			

Defaultwert: 1000_{dez}= 100 ms

Wertebereich: 0, 10...65530 (entspricht 1...6553 ms)

HINWEIS

Nur volle Millisekunden-Werte werden abgespeichert. Zwischenwerte werden aufgerundet.

9.1.12 Objekt 0x1017: Producer heartbeat time (Heartbeat-Zyklus)

Die Producer-Heartbeat-Zeit definiert den Zyklus des Heartbeats.

- ► Funktion aktivieren: Zeit im Bereich von 1...32767 ms angeben.
- ► Funktion deaktivieren: Zeit **0** eintragen.

0x1017 VAR Producer heart- Unsigned16 RW O beat time

- Wertebereich: 0...32767_{dez} (entspricht 0...32767 ms)
- Defaultwert: 0_{dez}

HINWEIS

Ein "Heartbeat-Producer" überträgt die Nachricht zyklisch mit der eingestellten Zeit.

Der Inhalt des Datenbyte entspricht dem Status des CAN-Knotens:

Status des CAN-Knotens	Inhalt des Datenbyte
Pre-operational	0x7F
Operational	0x05
Stopped	0x04

9.1.13 Objekt 0x1018: Identity object (Geräteidentifikation)

Über das Objekt kann die Device-Identifikation gelesen werden.

0x1018	RECORD	Device-	Identity (0x23)	RW	0
		Identifikation			

Sub-Index	Bedeutung
0x00	Anzahl der Einträge (4)
0x01	Turck-Vendor-ID
0x02	Produktcode
0x03	Software-Revisionsnummer Beispiel: Version 1.0.0.1: $10_{dez}01_{dez} = 0x0A 0x01 = 0x0A01$
0x04	Seriennummer des Geräts

9.1.14 Objekt 0x1029: Error behaviour (Fehler-Verhalten)

Über das Objekt wird das Verhalten des Geräts im Fehlerfall eingestellt.

0x1029 ARRAY	Error behaviour	Unsigned8	RW	0	
--------------	-----------------	-----------	----	---	--

Fehlerklassen

Sub-Index	Bedeutung
0x01	Kommunikationsfehler (Default 1): Bus-off-Zustand Heartbeat-Überwachung fehlgeschlagen
0x02	Geräteprofil-spezifisch (Default 1) Fehler Positionsgeber: Schwingkreiskopplung nicht vorhanden
0x02	herstellerspezifisch (Default 1) Fehler NV-RAM/EEPROM Fehler System-Monitoring

Die Sub-Indizes können die folgenden Werte annehmen:

- 0: Sensor wechselt in den Pre-operational Mode.
- 1: Sensor ändert seinen Zustand nicht.
- 2: Sensor wechselt in den Stopped Mode.

9.1.15 Objekt 0x1800: PDO1- Parameter (asynchron)

Das Objekt enthält die Parameter für das Prozessdatenobjekt PDO1. Über diesen Dienst werden in der Standardeinstellung die Prozessdaten des Gebers asynchron, ausgelöst durch den internen Zyklus-Timer (Voraussetzung: Zyklus-Timer über Objekt 0x6200 eingestellt) ausgegeben.

0x1800	RECORD	PDO1-Parameter	PDO COMMPAR	RW	M/O
			(0x20)		

Dateninhalt:

Sub-Index	Bedeutung
0x00	Anzahl der unterstützten Sub-Indizes Read only Wertebereich 25
0x01	COB-ID und Freigabe Bit 010: 11-Bit-Identifier; Standard-ID = 0x180 + Knotennummer Bit 1129: 0 (reserviert für Geräte mit 29-Bit-Identifier) Bit 30: 0 = RTR erlaubt (nicht veränderbar) Bit 31: 0 (PDO enabled), 1 (PDO disabled) Standard-Wert = 0
0x02	Übertragungsart = 255 _{dez} (siehe Übertragungsarten) (Übertragungsart = asynchron) (Übersicht siehe Objekt 0x1800)
0x03	Verbotszeit, Mindestwartezeit, bevor der gewählte PDO erneut gesendet werden darf Default-Wert = 0x00 (keine Verbotszeit) Wertebereich: 1065530 _{dez} (entspricht 16553 ms) Zulässig sind nur volle Millisekunden-Werte. Zwischenwerte werden aufgerundet.
0x04	reserviert
0x05	Event-Timer (Einstellung im Objekt 0x6200) Wertebereich: 10065535 (entspricht 10065535 ms) 0: keine Datenausgabe Default-Wert: 100 _{dez}

9.1.16 Objekt 0x1801: PDO2- Parameter (synchron, zyklisch)

HINWEIS

Zykluszeiten unter 100 ms führen zu Messwertabweichungen.

Das Objekt enthält die Parameter für das Prozessdatenobjekt PDO2. Über diesen Dienst werden in der Standardeinstellung die Prozessdaten des Gebers asynchron, ausgelöst durch den internen Zyklus-Timer (Voraussetzung: Zyklus-Timer über Objekt 0x6200 eingestellt) ausgegeben.

0x1801	RECORD	PDO2-Parameter	PDO COMMPAR	RW	M/O
			(0x20)		

Dateninhalt:

Sub-Index	Bedeutung
0x00	Anzahl der unterstützten Sub-Indizes Read only Wertebereich 25
0x01	COB-ID und Freigabe Bit 010: 11 Bit Identifier; Standard-ID = 0x180 + Knotennummer Bit 1129: 0 (reserviert für Geräte mit 29-Bit-Identifier) Bit 30: 0 = RTR erlaubt (nicht veränderbar) Bit 31: 0 (PDO enabled), 1 (PDO disabled) Standardwert = 0
0x02	Übertragungsart = 255 _{dez} (Siehe Übersicht der Übertragungsarten) (Übertragungsart = asynchron) (Übersicht siehe Objekt 0x1800)
0x03	Verbotszeit: Mindestwartezeit, bevor der gewählte PDO erneut gesendet werden darf Default-Wert = 0x00 (keine Verbotszeit) Wertebereich: 1065530 _{dez} (entspricht 16553 ms) Zulässig sind nur volle Millisekunden-Werte. Zwischenwerte werden aufgerundet.
0x04	reserviert
0x05	Event-Timer (Einstellung im Objekt 0x6200) Wertebereich: 10065535 (entspricht 10065535 ms) 0: keine Datenausgabe Default-Wert: 100 _{dez}

9.1.17 Übersicht der Übertragungsarten

Das PDO wird bei einem Wert zwischen 1...240 synchron und zyklisch gesendet. Die Nummer des Transmission Type entspricht der Anzahl der für das Versenden von PDOs erforderlichen SYNC-Impulse.

Bei Transmission Type 254 wird das Ereignis applikationsabhängig getriggert. Transmission Type 255 ist geräteprofilabhängig. Für die Transmission Types 254 und 255 kann ein zeitgesteuerter Event-Timer (1...65535 ms) eingesetzt werden.

Code (dezimal)	Übertragungsart					
	zyklisch	azyklisch	synchron	asynchron	nur RTR	
0		Χ	Χ			
1240	X		X			
241251	reserviert					
252 (nicht unterstützt)			X		X	
253 (nicht unterstützt)				X	X	
254				Χ		
255				Х		

Bedeutung der Dezimal-Codes für die Übertragungsart:

Code (dezimal)	Bedeutung
0	synchron (0x00), nach SYNC (nur bei Wert- änderung seit dem letzten SYNC)
1240	zyklisch-synchron (0xEF), Wert wird nach SYNC gesendet
241251	reserviert
252253	nicht unterstützt
254	Hersteller, asynchron (0xFE) Geräte-Timer ≠ 0: Wert wird nach einer Wertänderung gesendet Geräte-Timer = 0: Wert wird nach Ablauf der Zykluszeit gesendet Kombination mit Inhibit-Timer (Sperrzeit) möglich
255	asynchron (0xFF) Geräte-Timer ≠ 0: Wert wird nach Ablauf der Zykluszeit gesendet

9.2 Variables PDO-Mapping anlegen

Mit dem variablen PDO-Mapping der verschiedenen Objekte kann der Inhalt der Transmit PDOs applikationsabhängig konfiguriert werden.

Das Mapping lässt sich über zwei Vorgehensweisen anlegen:

- Die Eigenschaften der PDOs (Übertragungsart, Inhibit-Zeit, Event-Zeit) können individuell über das Objekt 0x1800FF konfiguriert werden.
- Mehrere PDOs bis max. 64 Bit können in einem CAN-Telegramm übertragen werden. Die PDOs werden in einer Mapping-Tabelle aus den Objekten 0x1A00FF und 0x01FF zusammengestellt. Die max. Datenlänge des CAN-Telegramms beträgt 64 Bit (8 Byte). Mit 64 Bit großen CAN-Telegrammen lassen sich z. B. zwei Applikationsobjekteinträge mit je 32 Bit oder vier Einträge mit je 16 Bit in einer Tabelle mappen.

Mapping-Tabellen erstellen

Die Gesamtgröße der gemappten Objekte innerhalb einer PDO-Mappingtabelle (Objekte 0x1A00FF) darf 64 Bit nicht überschreiten. Für alle gemappten Objekte innerhalb einer PDO-Mapping-Tabelle (Objekte 0x1A00FF) muss die gleiche Übertragungsart, Inhibit-Zeit und Event-Zeit eingestellt sein.

Beispiel: Mapping-Tabellen für TPDO1 und TPDO2

0x1800 Mapping- Tabelle TPDO 1		0x1801 Mapping- Tabelle TPDO 2	
Position ValuePositon Raw Value		Position ValueSpeed ValueAlarms	
COB ID 0x1800, 0x01	XXXXXXX	COB ID 0x1801, 0x01	XXXXXXXX
Transmission Type 0x1800, 0x02	255 asynchron	Transmission Type 0x1801, 0x02	254 synchron
Inhibit-Time 0x1800, 0x03	0	Inhibit-Time 0x1801, 0x03	0
Event-Time 0x1800, 0x05	100	Event-Time 0x1801, 0x05	0
Mapping-Objekt 1 0x1A00, 0x01	Position Value 32 Bit	Mapping-Objekt 1 0x1A01, 0x01	Position Value 32 Bit
Mapping-Objekt 2 0x1A00, 0x02	Position Raw Value 32 Bit	Mapping-Objekt 2 0x1A01, 0x02	Speed Value 16 Bit
Mapping-Objekt 3 0x1A00, 0x03	Kein Eintrag, da 64 Bit belegt	Mapping-Objekt 3 0x1A01, 0x03	Alarms 16 Bit
Mapping-Objekt 4 0x1A00, 0x04	Kein Eintrag, da 64 Bit belegt	Mapping-Objekt 4 0x1A01, 0x04	Kein Eintrag, da 64 Bit belegt

Beispiel für einen Eintrag in die Mapping-Tabelle:

Das gemappte PDO besteht aus drei Applikationsobjekteinträgen mit unterschiedlicher Länge:

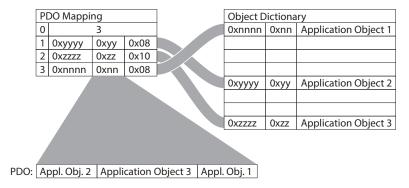


Abb. 5: PDO-Mapping

Das Applikationsobjekt 2 belegt im Sende-PDO 1 Byte (0x08). Danach folgt das Applikationsobjekt 3 mit 16 Bit Länge (0x10 = 2 Bytes) und zum Schluss mit 1 Byte Länge das Applikationsobjekt 1. Insgesamt werden 32 Bit in diesem PDO belegt.

9.2.1 Objekt 0x1A00: PDO1 Mapped Object

In einem PDO können bis zu vier Applikationsobjekte übertragen werden (z. B. Position und Geschwindigkeit). Die maximale Datenlänge beträgt 64 Bit. Das PDO-Mapping ist nur mit den Objekten 0x6000...0x6FFF möglich.

0x1A00	RECORD	PDO1 Mapping-	PDO MAPPING (0x21)	RW	M/O
		Parameter			

Dateninhalt:

Sub-Index	Bedeutung	
0x00	Anzahl der unterstützten Sub-Indizes Read only Wertebereich 14	
0x01	1_Mapped_Object Default: 0x60040020, Position Value Beispiel: Mapping: TPDO1 Position Value Objekt: 0x6004 Sub-Index des Objekts: 0x00 Datenlänge: 0x20 (32 Bit)	
0x02	2_Mapped_Object Default: kein Eintrag	
0x03	3_Mapped_Object Default: kein Eintrag	
0x04	4_Mapped_Object Default: kein Eintrag	

9.2.2 Beispiel: PDO-Mapping für PDO3 anlegen (Geschwindigkeit)

In einem PDO können bis zu vier Applikationsobjekte (Position, Geschwindigkeit...) übertragen werden. Die maximale Datenlänge beträgt 64 Bit.

► Kommunikationsparameter über das Objekt 0x1802 einstellen. Zu den Kommunikationsparametern gehören COB-ID, Übertragungsart, Verbotszeit und Event-Zeit.

Abb. 6: Kommunikationsparameter

► Aktuelle Messwerte im Objekt 0x6030 Sub-Index 0x01 hinterlegen.

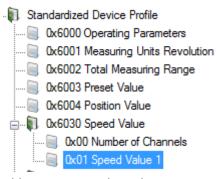


Abb. 7: Messwerte hinterlegen

▶ Das Mapping im Objekt 0x1A02 Sub-Index 0x01 hinterlegen.

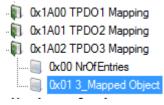


Abb. 8: Mapping

Das Mapping setzt sich wie folgt zusammen:

- Mapping TPDO3: Geschwindigkeit
- Objekt: 0x6030
- Sub-Index des Objekts: 0x01
- Datenlänge: 0x10 (16 Bit)
- Mapping: 0x60300110
- ► Im Objekt 0x1A02, 0x01 den Wert 0x60300110 eintragen.
- ▶ Parameter über Objekt 0x1010, 0x01 speichern: 0x6576617 eintragen.
- Spannungsreset durchführen.

9.2.3 Default-Einstellung für das Mapping der Transmit-PDOs

Das Gerät unterstützt ein variables Mapping auf allen vier Transmit-PDOs.

PDO	TPDO1	TPDO2	TPDO3	TPDO4
Mapping-Objekt	0x1A00	0x1A01	0x1A02	0x1A03
Übertragungstyp Objekt: 0x1800FF, 0x02	0x255 Position in eingestellten Zeitzyklen	Position bei SYNC- Anforderung (0x80)	Position bei Werte- änderung	Geschwindigkeit in eingestellten Zeitzyklen
Objekt des Messwerts	0x6004	0x6004	0x6004	0x6030
Sub-Index	0x00	0x00	0x00	0x01
Datenlänge	0x20 (32 Bit)	0x20 (32 Bit)	0x20 (32 Bit)	0x10 (16 Bit)
Mapping	0x60040020	0x60040020	0x60040020	0x60300110

9.2.4 PDO-Mapping nach CiA (ab CANopen Version 4)

Die Default-Belegung der Prozessdatenobjekte (Default Mapping) erfüllt die Anforderungen der CiA. Für spezielle Anwendungsfälle kann die Belegung über das variable Mapping verändert werden. Beim variablen Mapping lassen sich die Applikationsobjekte (Ein- und Ausgangsdaten) den PDOs über Mapping-Tabellen frei zuordnen. Ab CANopen Version 4 ist nur noch die folgende Vorgehensweise zulässig.

- PDO sperren: Objekt 0x1800 und folgende, Sub-Index 1, COB-ID, Bit 31 auf 1 setzen. (Data: z. B. 0x4000 019B → 0xC000 019B)
- Anzahl der Mapping-Einträge in Objekt 0x1A00 und folgenden, Sub-Index 0, auf $\mathbf{0}$ setzen. (Data: z. B. 0x01 \rightarrow 0x00. Im Beispiel wird von einem Eintrag auf 0 Einträge umgestellt.)
- ► Objekt 0x1A00 und folgende, Sub-Index 1(...8) verändern (Data: z. B. 0x6004 0020 → 0x600C 0020)
- ► Anzahl der Mapping-Einträge in Objekt 0x1A00 und folgenden, Sub-Index 0 auf 1, 2, 3... setzen. (Data: z. B. 0x00 → 0x01. Im Beispiel wird ein Eintrag ausgewählt.)
- PDO freigeben: Objekt 0x1800 und folgende, Sub-Index 1, COB-ID, Bit 31 auf **0** setzen. (Data z. B. 0xC000 019B → 0x4000 019B)

9.3 Herstellerspezifische Parameter einstellen

9.3.1 Objekt 0x2100: Baud Rate (Baudrate einstellen)

Über das Objekt wird die Übertragungsrate ohne LSS-Service eingestellt. Der Default-Wert ist 125 kBit/s.

0x2100	VAR	Baud Rate	Unsigned16	RW	M

- ► Zur Veränderung des Objekts Passwort im Service-Passcode-Objekt 0x2900, 0x01 eingeben (Unsigned32). Das Passwort lautet 0x3039 (12345_{dez}).
- ▶ Dateninhalt in Objekt 0x2100, Sub-Index 0x00 gemäß folgender Tabelle angeben:

Daten	Übertragungsrate	Format
Data: 1000	1000 kBit/s	Unsigned16
Data: 500	500 kBit/s	Unsigned16
Data: 250	250 kBit/s	Unsigned16
Data: 125	125 kBit/s	Unsigned16
Data: 50	50 kBit/s	Unsigned16
Data: 20	20 kBit/s	Unsigned16
Data: 10	10 kBit/s	Unsigned16

▶ Spannungsreset durchführen, um die Änderungen in das Gerät zu laden.

9.3.2 Objekt 0x2101: Node Number (Knotenadresse ändern)

Über das Objekt kann die Knotenadresse verändert werden. Der Default-Wert ist 0x03.

VAR RW 0x2101 Node Number Unsigned8

- Zur Veränderung des Objekts Passwort im Service-Passcode-Objekt 0x2900, 0x01 eingeben (Unsigned32). Das Passwort lautet 0x3039 (12345_{dez}.)
- Knotenadresse in Objekt 0x2101 festlegen: Wert von 0x00...0x7F (0...127_{dez}) angeben.

HINWEIS

Die Knotennummer 0 ist reserviert und darf von keinem Knoten verwendet werden.

- Spannungsreset oder Reset Node durchführen, um die Änderungen in das Gerät zu laden. Alle anderen Einstellungen bleiben erhalten.
- 9.3.3 Objekt 0x2102: CANBus-Terminierung (Abschlusswiderstand ein- und ausschalten)

Über das Objekt kann ein 120-Ω-Abschlusswiderstand zur Busterminierung ein- und ausgeschaltet werden.

0x2102	VAR	CAN bus	Unsigned8	RW	M
		Termination			

- 1: Terminierung an
- 0: Terminierung aus
- Save all bus parameters (0x2105) ausführen, um die Änderungen zu speichern.
- Spannungsreset durchführen, um die Änderungen in das Gerät zu laden.

9.3.4 Objekt 0x2104: Nmt Autostart

Über dieses Objekt wird der Startmodus des Gebers beim Einschalten festgelegt.

0x2104	VAR	Nmt Autostart	Unsigned8	RW	M	
	Objekt	Sul	o-Index		Daten	
	0x2104	0x0): Pre-operational	
				1	: Operational	

Herstellerspezifische Parameter einstellen

9.3.5 Objekt 0x2105: PDO Trigger Threshold (Auslöseschwelle bestimmen)

In einem PDO können bis zu vier Applikationsobjekte (Position, Geschwindigkeit...) übertragen werden. Die maximale Datenlänge beträgt 64 Bit.

0x2105	VAR	PDO Trigger	Unsigned8	RW	M
		Threshold			

HINWEIS

Die PDO-Funktion "Senden bei Winkeländerung" (Übertragungsart = 254_{dez}) muss aktiviert sein. Stellen Sie die gewünschten PDOs wie folgt ein: Objekt: 0x1800 und folgende, Subindex: 0x02, Data: 0xFE (Manufacturer).

► Auslöseschwelle für die Winkeländerung wie folgt eingeben:

Objekt	Sub-Index	Daten (unsigned8)
0x2105	0x00	0255 _{dez}

Beispiel: Wird der Wert auf 10_{dez} eingestellt, muss sich der Positionswert um mindestens 10 Digits ändern, damit der PDO automatisch übertragen wird.

9.3.6 Objekt 0x2106: Filter Configuration (Filtertypen auswählen)

Zur Filterung der Messwerte stehen ein einstellbarer Tiefpassfilter und ein einstellbarer dynamischer Filter zur Verfügung.

0x2106	VAR	Filter	Unsigned8	RW	M
		Configuration			

Im Stillstand (Bewegungserkennung) wird der Filter mit niedriger Grenzfrequenz (hohes Group-Delay) betrieben, so dass eine geringes Signalrauschen bei hoher Auflösung erreicht wird.

Der dynamische Digitalfilter arbeitet zustands- und geschwindigkeitsabhängig. Die Filterkonstante ist im Objekt 0x2106, Subindex 0x02 einstellbar. Wird der Positionsgeber bewegt, wird auf eine hohe Grenzfrequenz umgeschaltet (geringes Group Delay).

► Filter wie folgt einstellen:

Sub-Index	Daten
0x01	0: Filter aus
	1: Tiefpass-Filter ein
	2: dynamischer IIR-Filter ein
0x02	1255 _{dez} (Default: 20)
	0x01

HINWEIS

Wird der Wert der Filterkonstante größer 50 gewählt, dauert es mehrere Sekunden, bis sich der aktuelle Messwert eingependelt hat.

9.3.7 Objekt 0x2110: Customer Memory (Anwender-Speicherbereich festlegen) Über das Objekt wird der Speicherbereich für den Anwender festgelegt.

0x2110	VAR	Customer	Unsigned32	RW	M
		Memory			

Objekt	Sub-Index	Daten
0x2110	0x010x04	Zahlenwerte im Bereich Unsigned32

Die hinterlegten Daten haben keinen Einfluss auf die Funktion des Geräts (z. B. Einbaudatum: $2014 = 11111011110_{bin}$)

- 9.4 Standard-Geräte-Parameter einstellen
- 9.4.1 Objekt 0x6000: Operating parameters (Betriebsparameter)

Über das Objekt können die folgenden Betriebsparameter eingestellt werden:

- Codefolge umkehren
- Diagnoseanforderung
- Skalierungsfunktion

0x6000	VAR	Operating	Unsigned16	RW	M
		parameters			

Dateninhalt (Default-Werte sind fett dargestellt):

Bit	Wert	Bedeutung
0	0x00	Codefolge aufsteigend bei Drehung im Uhrzeigersinn (CW)
	0x01	Codefolge aufsteigend bei Drehung entgegen dem Uhrzeigersinn (CCW)
1		nicht benutzt
2	0x00	Skalierungsfunktion ein
	0x01	Skalierungsfunktion aus
312		nicht benutzt
13	0x00	Geschwindigkeitsformat Umdrehungen pro Minute (rpm)
1415		nicht benutzt

HINWEIS

Die Skalierungsfunktion ist nur bei Device_Type 0 und 1 nutzbar und muss zusätzlich über Objekt 0x6001 und Objekt 0x6002 eingestellt werden.

9.4.2 Objekt 0x6001: MUR – Measuring Units per Revolution (Mess-Schritte pro Umdrehung) Über das Objekt kann die Auflösung pro Umdrehung eingestellt werden.

0x6001	VAR	Measuring units	Unsigned32	RW	M	
		per revolution				

Das Gerät berechnet den entsprechenden Skalierungsfaktor automatisch, wenn die Skalierungsfunktion in Objekt 0x6000 eingestellt wurde.

- Wertebereich: 1...maximale physikalische Auflösung (full range)
- Default-Einstellung: 36000

HINWEIS

Die maximale physikalische Auflösung ist werksseitig im Objekt 0x6501 hinterlegt (read only). In Objekt 0x6000 Bit 2: Skalierungsfunktion einschalten.

9.4.3 Objekt 0x6002: TMR – Total Measuring Range (Gesamtanzahl der ausgegebenen Mess-Schritte)

Über das Objekt kann der Messbereich festgelegt werden.

0x6002 VAR Total Measuring Unsigned32 RW M
Range

- Wertebereich: 1...maximale physikalische Auflösung (full range)
- Default-Einstellung: 36000

HINWEIS

Die maximale physikalische Auflösung ist werksseitig im Objekt 0x6501 hinterlegt (read only). In Objekt 0x6000 Bit 2: Skalierungsfunktion einschalten.

Wird das Gerät im Endlosbetrieb (Singleturn) benutzt, gilt TMR = MUR/n, n = 1, 2, 3...

- MUR: Objekt 0x6001
- TMR: Objekt 0x6002

Andernfalls tritt bei jedem physikalischen Nulldurchgang im Ausgangscode ein Sprung auf (bei Singleturn nach jeder Umdrehung).

Beispiel 1:

Einstellung Objekt 0x6001: MUR = 3600 (Wertebereich: 1...maximale physikalische Aufösung)

Einstellung Objekt 0x6002: TMR = 360 (Wertebereich: TMR = MUR/n, n = 1, 2, 3...)

Ausgabe: Eine Umdrehung wird aufgeteilt in $10 \times 0...360$.

Beispiel 2:

Einstellung Objekt 0x6001: MUR = 3600

Einstellung Objekt 0x6002: TMR = 3600

Ausgabe: Eine Umdrehung wird aufgeteilt in 0...3600.

Beispiel 3 – Sprung im Ausgangscode:

Einstellung Objekt 0x6001: MUR = 3600

Einstellung Objekt 0x6002: TMR = 3000

Ausgabe: Eine Umdrehung wird aufgeteilt in 0...3000 und 0...600.

9.4.4 Objekt 0x6003: Preset-Wert (Nullpunkt-Anpassung)

Über das Objekt kann der Positionswert des Geräts wird auf einen Preset-Wert eingestellt werden. Dadurch kann z. B. die Nullposition des Geräts mit dem Maschinennullpunkt abgeglichen werden. Der Offset-Wert ergibt sich aus dem Preset-Wert abzüglich des Positionsmesswerts.

0x6003 VAR	Preset value	Unsigned32	RW	O/M	
------------	--------------	------------	----	-----	--

- Wertebereich: 1...327680
- Default-Einstellung: 0

Bei der Eingabe des Preset-Werts wird automatisch geprüft, ob der Punkt innerhalb der aktiven Skalierung oder des Gesamtmessbereichs liegt, ansonsten wird die Eingabe abgewiesen. Der Wert der Verschiebung (Offset-Wert) wird berechnet und zusätzlich im Objekt 0x6509, 0x00 abgelegt.

Beispiel 1:

Aktueller Messwert: 33

- Preset-Wert: Wert 0 in Objekt 0x6003 schreiben.
- Ergebnis-Offset: Der Messwert ändert sich von 33 auf 0. Der Nullpunkt ist um -33 verschoben worden.

Beispiel 2:

3

Aktueller Messwert: 33

- Preset-Wert: Wert 50 in Objekt 0x6003 schreiben.
- Ergebnis-Offset: Der Messwert ändert sich von 33 auf 50. Der Nullpunkt ist um +17 verschoben worden.

9.4.5 Objekt 0x6004: Position value (aktueller Positionswert)

Das Gerät gibt den aktuellen (eventuell mit Skalierungsfaktor verrechneten) Positionswert aus.

0x6004	VAR	Position value	Unsigned32	RO	М
	Dateninhalt:				
	Byte		Wert		
	0		2 ⁷ 2	0	
	1		2 ¹⁵ 2	28	
	2		2 ²³ 2	2 ¹⁶	

- Wertebereich: 0...maximale physikalische Auflösung
- Default-Einstellung: aktuelle Position

9.4.6 Objekt 0x600C: Position raw value (unskalierter Messwert)

Das Gerät gibt den aktuellen Positionswert in maximaler physikalischer Auflösung aus (keine Skalierung).

 $2^{31}...2^{24}$

0x600C	VAR	Position raw value	Unsigned32	RO	O/M

Wertebereich: 0...327680 (maximale physikalische Auflösung)

9.4.7 Objekt 0x6200: Cycle Timer (Zykluszeit der Messwertausgabe)

HINWEIS

Zykluszeiten unter 100 ms führen zu Messwertabweichungen.

Das Objekt definiert die Zykluszeit, die mit der aktuellen Positon über PDO1 (siehe Objekt 0x1800) ausgegeben wird. Die vom Timer gesteuerte Ausgabe wird aktiv, sobald eine Zykluszeit > 0 eingetragen wird. Bei einer Zykluszeit von 0 wird kein Messwert ausgegeben.

0x6200 VAR Cyclic timer Unsigned16 RW M/O

Über das Objekt wird die Kompatibilität zu älteren Profilversionen sichergestellt. Anstelle des Objektes 0x6200 sollte der Event-Timer-Sub-Index (0x05) im aktuellen Transmit-PDO verwendet werden.

- Wertebereich: 0...0xFFFF (65535_{dez}) ergibt die Zykluszeit in Millisekunden.
- Default-Wert: 0x64 (100_{dez})

9.4.8 Objekt 0x6400: Work area state register (aktueller Status der Grenzwerte)

Das Objekt enthält den aktuellen Status der Position in Abhängigkeit der programmierten Grenzwerte. Je nach Position der beiden Endwerte werden die Flags gesetzt oder zurückgesetzt. Befinden sich die Messwerte innerhalb des Sollbereichs, haben Bit 0...7 den Wert 0.

0x6400	VAR	Area state	Unsigned8	RO	0
		Register			

Sub-Index	Bit	Bedeutung
0x01 (Work area state	0	1: Positionswert außerhalb des Sollbereichs
register channel 1,	1	1: Positionswert > High_Limit_1
unsigned8)	2	1: Positionswert < Low_Limit_1
	37	nicht benutzt
0x01 (Work area state register channel 2, unsigned1)	0	1: Positionswert außerhalb des Sollbereichs
	1	1: Positionswert > High_Limit_2
	2	1: Positionswert < Low_Limit_2
	37	nicht benutzt

- Data: 0x05 = Positionswert kleiner Low Limit
- Data: 0x00 = Positionswert innerhalb des Sollbereichs
- Data: 0x03 = Positionswert größer High Limit
- ► Um die Ausgangssignale korrekt zu aktivieren, Endwerte in den Objekten 0x6401 und 0x6402 überprüfen.

Die Grenzwerte werden im Objekt 0x1002 gemappt und können darüber als PDO gemappt werden.

9.4.9 Objekte 0x6401 und 0x6402: Working Area Limits (Grenzwerte einstellen)

Über die Objekte kann der Arbeitsbereich des Geräts eingestellt werden. Innerhalb und außerhalb des eingestellten Arbeitsbereichs kann der Status über Flag-Bytes (Objekt 0x6400) gemeldet werden. Diese Bereichsmarker können auch als Software-Endschalter verwendet werden.

0x6401/0x6402	VAR	Working Area	Integer32	RW	0
		Limits H/L			

Objekt 0x6401: Working Area LOW Limit (2 Werte)

Objekt 0x6402: Working Area HIGH Limit (2 Werte)

- Wertebereiche: Ri360P1-DSU35-CNX4-2H1650: 0... 327680_{dez} (full range)
- Default-Einstellung Working Area Low Limit: 0_{dez}
- Default-Einstellung Working Area High Limit: 0_{dez}

Beispiel 1: Messbereich auf 3600 festlegen

Über die Objekte 0x6401 und 0x6402 soll der Messbereich für beide Kanäle auf 3600 festgelegt werden. Der Arbeitsbereich muss dazu auf alle Messwerte zwischen 0 und 3600 eingestellt werden.

► Kanäle angeben, für die der Messbereich eingestellt werden soll:

Objekt	Sub-Index	Wert
0x6400	0x01 (Kanal 1)	0x00
0x6400	0x02 (Kanal 2)	0x00

Untere Grenzwerte für den Messbereich festlegen:

Objekt	Sub-Index	Wert
0x6401	0x01 (Low Limit 1)	0x00
0x6401	0x02 (Low Limit 2)	0x00

▶ Obere Grenzwerte für den Messbereich festlegen:

Objekt	Sub-Index	Wert
0x6402	0x01 (High Limit 1)	3600 _{dez}
0x6402	0x02 (High Limit 2)	3600 _{dez}

Beispiel 2: Kanalspezifische Messwerte einstellen

Über die Objekte 0x6401 und 0x6402 soll der Messbereich für Kanal 1 auf 0...900 (0°...90°) festgelegt werden. Der Messbereich für Kanal 2 soll im Bereich von 2700...3600 (270°...360°) liegen. Der aktuelle Messwert des Geräts beträgt 1800 (180°).

► Kanäle angeben, für die der Messbereich eingestellt werden soll:

Objekt	Sub-Index	Wert
0x6400	0x01 (Kanal 1)	0x03 (Werte > High Limit)
0x6400	0x02 (Kanal 2)	0x05 (Werte < Low Limit)

▶ Untere Grenzwerte für den Messbereich festlegen:

Objekt	Sub-Index	Wert
0x6401	0x01 (Low Limit 1)	900 _{dez}
0x6401	0x02 (Low Limit 2)	1800 _{dez}

▶ Obere Grenzwerte für den Messbereich festlegen:

Objekt	Sub-Index	Wert
0x6402	0x01 (High Limit 1)	3600 _{dez}
0x6402	0x02 (High Limit 2)	3600 _{dez}

9.4.10 Objekt 0x6500: Operating Status (Betriebszustand)

Über das Objekt kann der Betriebsstatus aus dem Objekt 0x6000 ausgelesen werden.

Oxosou VAR Operating status offsigned to RO M

9.4.11 Objekt 0x6501: Single Turn Resolution (Auflösung bei einer Umdrehung)

Über das Objekt kann die im Objekt 0x6000 festgelegte Auflösung ausgelesen werden.

0x6501	VAR	Single Turn	Unsigned32	RO	M
		Resolution			

9.4.12 Objekt 0x6502: Number of Distinguishable Revolutions (Anzahl der unterscheidbaren Umdrehungen)

Über das Objekt kann die Anzahl der möglichen Multiturn-Umdrehungen ausgelesen werden.

0x6502	VAR	Number of	Unsigned16	RO	M
		Distinguishable			
		Revolutions			

9.4.13 Objekt 0x6503: Alarms

Das Objekt zeigt zusätzlich zu den Notfall-Nachrichten (emergency messages) Fehlermeldungen an. Das Fehlerbit wird auf 1 gesetzt, solange der Fehler anliegt. Wenn ein Alarm auftritt, wird gleichzeitig eine Notfall-Nachricht (0x80 + Knotennummer) mit dem Fehlercode 0x1000 (Generic Error) gesendet.

0x6503	VAR	Alarma	Unsigned16	PO	M/O
UXOSUS	VAK	Alarms	unsigned to	KU	IVI/U

Dateninhalt:

Bit	Wert	Bedeutung
014		reserviert
15	1	keine Schwingkreiskopplung, keine Positionsmessung möglich

9.4.14 Objekt 0x6504: Supported Alarms

Über das Objekt wird angezeigt, welche Alarmmeldungen vom Gerät unterstützt werden (siehe Objekt 0x6503).

0x6504	VAR	Supported Alams	Unsigned16	RO	M/O
		Alailis			

Dateninhalt:

Bit	Wert	Bedeutung
014		reserviert
15	1	Prüfung der Schwingkreiskopplung wird unterstützt

9.4.15 Objekt 0x6505: Warnings

Über das Objekt werden Warnmeldungen angezeigt, wenn Toleranzen interner Geberparameter überschritten sind. Bei einer Warnmeldung kann der Messwert gültig sein. Das Bit für Warnmeldungen wird auf 1 gesetzt, solange die Toleranzüberschreitung anliegt.

UXOOUO V <i>F</i>	AR Warnings	Unsigned16 R	O M/O
-------------------	-------------	--------------	-------

Dateninhalt:

Bit	Wert	Bedeutung
05		reserviert
6	1	zulässige Drehzahl überschritten
714		reserviert
15	1	Schwingkreiskopplung schwach, Messwert fehlerfrei

9.4.16 Objekt 0x6506: Supported Warnings

Über das Objekt wird angezeigt, welche Warnmeldungen vom Gerät unterstützt werden (siehe Objekt 0x6505).

0x6506	VAR		Unsigned16	RO	M/O
		Warnings			

Dateninhalt:

Bit	Wert	Bedeutung
05		reserviert
6	1	Prüfung der Drehzahl wird unterstützt
714		reserviert
15	1	Prüfung der Schwingkreiskopplung wird unterstützt

9.4.17 Objekt 0x6507: Profil- und Software-Version

In den ersten 16 Bit ist die Versionsnummer des Geräteprofils abgelegt. Die zweiten 16 Bit enthalten die Nummer der Software-Version des Geräts.

0x6507	VAR	Profil- und Soft-	Unsigned32	RO	M/O
		ware-Version			

Software-Version

Beispiel: 1.2.3.4

Profil-Version (CiA DS-406-Profil)

Dateninhalt:

Software-Version		DS406-Version	
Byte 3	Byte 2	Byte 1	Byte 0
2 ³¹ 2 ²⁴	2 ²³ 2 ¹⁶	2 ¹⁵ 2 ⁸	2 ⁷ 2 ⁰

Beispiel:

- CiA DS406-Version: $3.2 = 3_{dez} 2_{dez} = 0x03_0x02$
- Software-Version: 1.0.0.1= 10_{dez}01_{dez}= 0x0A_0x01

Byte 3	Byte 2	Byte 1	Byte 0
0x0A	0x01	0x03	0x02

9.4.18 Objekt 0x6509: Offset Value (Offset-Wert)

Ein über Objekt 0x6003 eingegebener Preset-Wert wird intern in einen Offset-Wert umgerechnet (Offset = Preset - Position). Das Objekt 0x6509 zeigt den errechneten Offset-Wert an.

0x6509	VAR	Offset-Wert	Signed32	RO	M/O

9.4.19 Objekt 0x650A: Module Identification (Herstellerabgleich)

Das Objekt zeigt die folgenden herstellerspezifischen Daten an:

- Offset-Wert
- minimale Positionswerte
- maximale Positionswerte

0x650A	VAR	Modul-	Signed32	RO	M/O
		Identifikation			

Dateninhalt:

Objekt	Sub-Index	Bedeutung
0x650A	0x00	Anzahl der Einträge
0x650A	0x01	Offset-Wert
0x650A	0x02	minimaler Positionswert
0x650A	0x02	maximaler Positionswert

9.4.20 Objekt 0x650B: Seriennummer

Das Objekt zeigt die Seriennummer des Geräts an.

0x650B VAR	Seriennummer Un	nsigned32 l	RO	М
------------	-----------------	-------------	----	---

9.4.21 LSS-Dienste DS 305 V2.0

Über CiA DSP 305 CANopen Layer Setting Service und Protokoll (LSS) können folgende Parameter über das Netzwerk gelesen und geändert werden:

- Knotenadresse
- Übertragungsrate
- LSS-Adresse

Folgende LSS-Dienste können eingestellt werden:

- Node-ID eines Sensors von 3 auf 5 ändern.
- Übertragungsrate auf 125 kBit einstellen.
- Einstellungen speichern.

Eine exemplarische Einstellung über die LSS-Dienste findet sich in der nachfolgenden Tabelle:

Schritt		Objekt	Anzahl Bytes	Befehl
Vorbereiten	NMT Stop Mode $(03 = Node 3)$	0x0000	2	02 03
	LSS Switch Mode Global ON	0x7E5	8	04 01 00 00 00 00 00 00
Auswählen	LSS Request Configure Node ID (05 = Node 5)	0x7E5	8	11 05 00 00 00 00 00 00
	LSS Request Config Bit Timing Parameters (04 = 125 kBit)	0x7E5	8	13 00 04 00 00 00 00 00
Speichern	LSS Request Store Configuration	0x7E5	8	17 00 00 00 00 00 00 00
	LSS Switch Mode Global OFF	0x7E5	8	04 00 00 00 00 00 00 00

LSS-Dienste – Baudrate einstellen

Die Baudrate lässt sich über die LSS-Dienste wie folgt einstellen:

Baudrate	Objekt	Befehl
LSS Request Config Bit Timing Parameters (08 = 10 kBit)	0x7E5	13 00 08 00 00 00 00 00
LSS Request Config Bit Timing Parameters (07 = 20 kBit)	0x7E5	13 00 07 00 00 00 00 00
LSS Request Config Bit Timing Parameters (06 = 50 kBit)	0x7E5	13 00 06 00 00 00 00 00
LSS Request Config Bit Timing Parameters (05 = 100 kBit)	0x7E5	13 00 05 00 00 00 00 00
LSS Request Config Bit Timing Parameters (04 = 125 kBit)	0x7E5	13 00 04 00 00 00 00 00
LSS Request Config Bit Timing Parameters (03 = 250 kBit)	0x7E5	13 00 03 00 00 00 00 00
LSS Request Config Bit Timing Parameters (02 = 500 kBit)	0x7E5	13 00 02 00 00 00 00 00
LSS Request Config Bit Timing Parameters (01 = 800 kBit)	0x7E5	13 00 01 00 00 00 00 00
LSS Request Config Bit Timing Parameters (00 = 1000 kBit)	0x7E5	13 00 00 00 00 00 00 00

LSS-Dienste

LSS-Hardware -Anforderungen (LSS Address): Alle LSS-Slaves müssen einen gültigen Objekteintrag im Objektverzeichnis für das Identity-Object 0x1018 vorweisen, um eine selektive Konfiguration des Knotens vornehmen zu können. Das Objekt besteht aus folgenden Sub-Indizes:

- Vendor-ID (numerical number)
- Product-Code (numerical number)
- Revision-Number (major an minor revision as numerical number)
- Serial-Number (numerical number)
- LSS-Master CAN-ID 2021
- LSS-Slave CAN-ID 2020

9.4.22 Netzwerkmanagement

Das Gerät unterstützt das im Profil für "minimum capabiltity devices" definierte, vereinfachte Netzwerkmanagement (minimum boot up).

Das Zustandsdiagramm nach DS 301 zeigt die unterschiedlichen Knotenzustände und die entsprechenden Netzwerkbefehle. Der Netzwerk-Master steuert die Befehle über NMT-Dienste. Der Knotenzustand wird auch über die LEDs angezeigt.

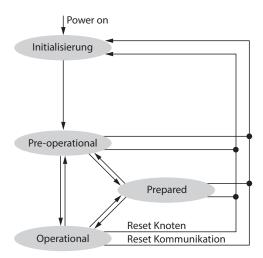


Abb. 9: Zustandsdiagramm nach DS 301

Inititalisierung

Nach dem Einschalten der Versorgungsspannung oder nach einem Reset befindet sich der Knoten im Zustand Initialisierung. Nach dem Durchlauf der Reset- oder Initialisierungsroutinen wechselt der Knoten automatisch in den Zustand Pre-operational.

Pre-operational

Im Zustand Pre-operational lassen sich CAN-Knoten über SDO-Nachrichten oder mit NMT-Befehlen unter dem Standard-Identifier ansprechen. Die Geräte- oder Kommunikationsparameter können programmiert werden.

Operational

Der Knoten ist aktiv. Über die PDOs werden Prozesswerte ausgegeben. Die NMT-Befehle können ausgewertet werden.

Prepared oder Stopped

Der Knoten ist nicht aktiv. SDO- und PDO-Kommunikation sind nicht möglich. Der Knoten kann über NMT-Befehle in die Zustände Operational und Pre-operational gesetzt werden.

10 Störungen beseitigen

Die Stärke der Schwingkreiskopplung wird über eine LED angezeigt. Eventuelle Störungen werden über die LED signalisiert.

Sollte das Gerät nicht wie erwartet funktionieren, überprüfen Sie zunächst, ob Umgebungsstörungen vorliegen. Sind keine umgebungsbedingten Störungen vorhanden, überprüfen Sie die Anschlüsse des Geräts auf Fehler.

Ist kein Fehler vorhanden, liegt eine Gerätestörung vor. In diesem Fall nehmen Sie das Gerät außer Betrieb und ersetzen Sie es durch ein neues Gerät des gleichen Typs.

11 Instand halten

Der ordnungsgemäße Zustand der Verbindungen und Kabel muss regelmäßig überprüft werden.

Die Geräte sind wartungsfrei, bei Bedarf trocken reinigen.

12 Reparieren

Das Gerät ist nicht zur Reparatur durch den Benutzer vorgesehen. Sollte das Gerät defekt sein, nehmen Sie es außer Betrieb. Bei Rücksendung an Turck beachten Sie unsere Rücknahmebedingungen.

12.1 Geräte zurücksenden

Rücksendungen an Turck können nur entgegengenommen werden, wenn dem Gerät eine Dekontaminationserklärung beiliegt. Die Erklärung steht unter

http://www.turck.de/de/produkt-retoure-6079.php

zur Verfügung und muss vollständig ausgefüllt, wetter- und transportsicher an der Außenseite der Verpackung angebracht sein.

13 Entsorgen

Die Geräte müssen fachgerecht entsorgt werden und gehören nicht in den normalen Hausmüll.

14 Technische Daten

Technische Daten	
Messprinzip	induktiv
Messbereich (AB)	0360°
Nennabstand	1 mm
Wiederholgenauigkeit	≤ 0,025 % v. E.
Linearitätsabweichung	≤ 1 % v. E.
Temperaturdrift	≤ ± 0.02 % / K
Umgebungstemperatur	-25 +70 °C
Betriebsspannung	10 30 VDC
Restwelligkeit	≤ 10 % Uss
Bemessungsisolationsspannung	≤ 0,5 kV
Ausgangsart	Absolut-Singleturn
Auflösung Singleturn	16 Bit
Schnittstelle	CANopen, Profil DS406, LSS DS 305
Node-ID	1127
Baudrate	10/20/50/125/250/500/1000 Kbit/s
Abtastrate	800 Hz
Stromaufnahme	< 60 mA
Abmessungen	71 × 60 × 35,4 mm
Gehäusewerkstoff	Kunststoff, PP-GF30
Elektrischer Anschluss	Steckverbinder, M12 × 1
Vibrationsfestigkeit	55 Hz (1 mm)
Schockfestigkeit (EN 60068-2-27)	30 g
Schutzart	IP67
MTTF	138 Jahre nach SN 29500 (Ed. 99) 40 °C

14.1 Werkseinstellungen

Einstellung	
Node-ID	0x03
Baudrate	125 kHz
Interner Abschlusswiderstand	aus
TPDO1-Ereigniszeit	100 ms
TPDO1	aktiv
TPDO	asynchroner Modus

15 Turck-Niederlassungen – Kontaktdaten

Deutschland Hans Turck GmbH & Co. KG

Witzlebenstraße 7, 45472 Mülheim an der Ruhr

www.turck.de

Australien Turck Australia Pty Ltd

Building 4, 19-25 Duerdin Street, Notting Hill, 3168 Victoria

www.turck.com.au

Belgien TURCK MULTIPROX

Lion d'Orweg 12, B-9300 Aalst

www.multiprox.be

Brasilien Turck do Brasil Automação Ltda.

Rua Anjo Custódio Nr. 42, Jardim Anália Franco, CEP 03358-040 São Paulo

www.turck.com.br

China Turck (Tianjin) Sensor Co. Ltd.

18,4th Xinghuazhi Road, Xiqing Economic Development Area, 300381

Tianjin

www.turck.com.cn

Frankreich TURCK BANNER S.A.S.

11 rue de Courtalin Bat C, Magny Le Hongre, F-77703 MARNE LA VALLEE

Cedex 4

www.turckbanner.fr

Großbritannien TURCK BANNER LIMITED

Blenheim House, Hurricane Way, GB-SS11 8YT Wickford, Essex

www.turckbanner.co.uk

Indien TURCK India Automation Pvt. Ltd.

401-403 Aurum Avenue, Survey. No 109 /4, Near Cummins Complex,

Baner-Balewadi Link Rd., 411045 Pune - Maharashtra

www.turck.co.in

Italien TURCK BANNER S.R.L.

Via San Domenico 5, IT-20008 Bareggio (MI)

www.turckbanner.it

Japan TURCK Japan Corporation

ISM Akihabara 1F, 1-24-2, Taito, Taito-ku, 110-0016 Tokyo

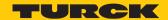
www.turck.jp

Kanada Turck Canada Inc.

140 Duffield Drive, CDN-Markham, Ontario L6G 1B5

www.turck.ca

Korea Turck Korea Co, Ltd.


B-509 Gwangmyeong Technopark, 60 Haan-ro, Gwangmyeong-si,

14322 Gyeonggi-Do www.turck.kr

Malaysia Turck Banner Malaysia Sdn Bhd

Unit A-23A-08, Tower A, Pinnacle Petaling Jaya, Jalan Utara C,

46200 Petaling Jaya Selangor www.turckbanner.my

Mexiko Turck Comercial, S. de RL de CV

Blvd. Campestre No. 100, Parque Industrial SERVER, C.P. 25350 Arteaga,

Coahuila

www.turck.com.mx

Niederlande Turck B. V.

Ruiterlaan 7, NL-8019 BN Zwolle

www.turck.nl

Österreich Turck GmbH

Graumanngasse 7/A5-1, A-1150 Wien

www.turck.at

Polen TURCK sp.z.o.o.

Wrocławska 115, PL-45-836 Opole

www.turck.pl

Rumänien Turck Automation Romania SRL

Str. Siriului nr. 6-8, Sector 1, RO-014354 Bucuresti

www.turck.ro

Russland TURCK RUS OOO

2-nd Pryadilnaya Street, 1, 105037 Moscow

www.turck.ru

Schweden Turck Sweden Office

Fabriksstråket 9, 433 76 Jonsered

www.turck.se

Singapur TURCK BANNER Singapore Pte. Ltd.

25 International Business Park, #04-75/77 (West Wing) German Centre,

609916 Singapore www.turckbanner.sg

Südafrika Turck Banner (Pty) Ltd

Boeing Road East, Bedfordview, ZA-2007 Johannesburg

www.turckbanner.co.za

Tschechien TURCK s.r.o.

Na Brne 2065, CZ-500 06 Hradec Králové

www.turck.cz

Türkei Turck Otomasyon Ticaret Limited Sirketi

Inönü mah. Kayisdagi c., Yesil Konak Evleri No: 178, A Blok D:4,

34755 Kadiköy/ Istanbul www.turck.com.tr

Ungarn TURCK Hungary kft.

Árpád fejedelem útja 26-28., Óbuda Gate, 2. em., H-1023 Budapest

www.turck.hu

USA Turck Inc.

3000 Campus Drive, USA-MN 55441 Minneapolis

www.turck.us

TURCK

Over 30 subsidiaries and 60 representations worldwide!

www.turck.com