
Your Global Automation Partner

Operating Instructions

TBEN-L5-4RFID-8DXP-WIN
Compact RFID and
I/O Module

2 Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

﻿Table of Contents

3 2018/01

TB
EN

-L
5-

4R
FI

D
-8

D
XP

-W
IN

1	 About these Instructions	 7

1.1	 Target Groups	 7
1.2	 Explanation of Symbols	 7
1.3	 Additional Documents	 7
1.4	 Feedback on these Instructions	 8

2	 Notes on the Product	 9

2.1	 Product Identification	 9
2.2	 Scope of Delivery	 9
2.3	 Legal Requirements	 9
2.4	 Manufacturer and Service	 9

3	 For Your Safety	 10

3.1	 Intended Use	 10
3.2	 General Safety Instructions	 10

4	 Product Description	 11

4.1	 Device Overview	 11
4.1.1	 Display Elements 	 11
4.2	 Properties and Characteristics	 11
4.3	 Functional Principle	 12
4.4	 Functions and Operating Modes	 12

5	 Mounting	 13

5.1	 Grounding the Device	 14
5.1.1	 Grounding and Shielding Concept	 14
5.1.2	 Grounding the Module (FE)	 15

6	 Connecting	 16

6.1	 Connecting the Modules to the Ethernet	 16
6.2	 Connecting the Power Supply	 17
6.3	 Connecting the RFID Read/Write Heads	 18
6.4	 Connecting Digital Sensors and Actuators	 19

7	 Commissioning	 20

7.1	 Setting the IP Address	 20
7.1.1	 Setting the IP Address via Switches on the Device	 20
7.1.2	 Setting the IP Address via the Turck Service Tool	 22
7.2	 Getting Started	 25
7.2.1	 Prerequisites	 25
7.2.2	 Creating Applications	 25
7.3	 Drivers	 26
7.3.1	 Ethernet	 26
7.3.2	 NAND Flash	 26
7.3.3	 USB Host	 26
7.3.4	 USB OTG	 26
7.3.5	 UART	 27
7.3.6	 GPIO	 27
7.3.7	 SPI	 33

Table of Contents

4 Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

﻿

7.3.8	 I2C	 36
7.3.9	 RTC	 37
7.3.10	 Using the Application	 37
7.3.11	 Debugging the Application	 38
7.3.12	 Using a Network Socket in C#	 38
7.3.13	 Using the TBOX API Library	 40
7.3.14	 Procedure with a C# Application	 42
7.4	 Specific Settings / Implementations	 43
7.4.1	 Autostart Application	 43
7.4.2	 Image Version Readout	 43
7.4.3	 Addressing Mode Readout	 43

8	 Operation	 44

8.1	 LED Indicators	 44

9	 Troubleshooting	 45

10	 Maintenance	 45

10.1	 Carrying out a Firmware Update	 45

11	 Repairs	 55

11.1	 Returning Devices	 55

12	 Disposal	 55

13	 Technical Data	 56

5 2018/01

TB
EN

-L
5-

4R
FI

D
-8

D
XP

-W
IN

6 Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

﻿

7 2018/01

TB
EN

-L
5-

4R
FI

D
-8

D
XP

-W
IN

1	 About these Instructions
These operating instructions describe the structure, functions and the use of the product and
will help you to operate the product as intended. Read these instructions carefully before using
the product. This is to avoid possible damage to persons, property or the device. Retain the in-
structions for future use during the service life of the product. If the product is passed on, pass
on these instructions as well.

1.1	 Target Groups

These instructions are aimed at qualified personnel and must be carefully read by anyone
mounting, commissioning, operating, maintaining, dismantling or disposing of the device.

The system integrator must be familiar with implementing applications under Windows and
must be capable of commissioning the device for implementation on the Windows operating
system without any additional support. Knowledge of integrating RFID read/write head proto-
cols is also required.

1.2	 Explanation of Symbols

The following symbols are used in these instructions:

	 DANGER
DANGER indicates an imminently hazardous situation with a high risk of death or seri-
ous injury if it is not prevented.

	 WARNING
WARNING indicates a potentially hazardous situation with a medium risk of death or
serious injury if it is not prevented.

	 CAUTION
CAUTION indicates a situation that may result in damage to property if it is not
prevented.

	 NOTE
NOTE indicates tips, recommendations and important information. The notes will
make work easier, contain information on specific action steps and help prevent more
work due to incorrect processes.

➤	 CALL TO ACTION
This symbol identifies action steps that the user has to perform.

➥	 ACTION RESULT
This symbol identifies relevant results of actions and action sequences.

1.3	 Additional Documents

The following additional documents are available online at www.turck.com:
■■ Configuration manual
■■ Operating instructions for the read/write heads

8 Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

About these Instructions

1.4	 Feedback on these Instructions

We are committed to always keeping these instructions as informative and as clear as possible.
Should you have any suggestions for a better design or if any information is missing from the
instructions, please send your suggestions to techdoc@turck.com.

9 2018/01

TB
EN

-L
5-

4R
FI

D
-8

D
XP

-W
IN

2	 Notes on the Product
2.1	 Product Identification

These instructions apply for the following compact RFID interfaces:
■■ TBEN-L5-4RFID-8DXP-WIN

2.2	 Scope of Delivery

Included in the scope of delivery:
■■ Compact RFID interface
■■ Closure caps for M12 connectors
■■ Quick start guide

2.3	 Legal Requirements

The device falls under the following EU directives:
■■ 2014/30/EU (electromagnetic compatibility)

2.4	 Manufacturer and Service

Turck supports you with your projects, from initial analysis to the commissioning of your ap-
plication. The Turck product database contains software tools for programming, configuration
or commissioning, data sheets and CAD files in numerous export formats. You can access the
product database at the following address: www.turck.de/products
Should you have any further questions, please contact the sales and service team in Germany
under the following telephone numbers:
Sales:		 	 +49 208 4952-380
Technology: 	 +49 208 4952-390
Internet: 			 www.turck.com/support

Outside Germany, please contact your local Turck representative.

Hans Turck GmbH & Co. KG
Witzlebenstraße 7
45472 Mülheim an der Ruhr
Germany

10 Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

For Your Safety

3	 For Your Safety
The product is designed according to state-of-the-art technology. However, residual risks still
exist. Observe the following warnings and safety notices to prevent damage to persons and
property. Turck accepts no liability for damage caused by failure to observe these warning and
safety notices.

3.1	 Intended Use

The devices are only intended for use in industrial applications.
The block module TBEN-L5-4RFID-8DXP-WIN is an RFID interface for use in the Turck RFID
system. The Turck RFID system is used for contactless exchange of data between a data medium
and a read/write head in order to identify objects. The interfaces communicate with third-party
systems such as ERP systems via TCP/IP. The device functions can be programmed via the Win-
dows Embedded Compact 2013 operating system using .Net, C++ or C#. In addition, middle-
ware functions can also be integrated on the device.
The devices must only be used as described in these instructions. Any other usage shall be con-
sidered improper and Turck shall not be held liable for any resulting damage.

3.2	 General Safety Instructions

■■ The device may only be assembled, installed, operated and maintained by professionally-
trained personnel.

■■ The device may only be used in accordance with applicable national and international regula-
tions, standards and laws.

■■ The device only meets the EMC requirements for industrial areas and is not suitable for use in
residential areas.

11 2018/01

TB
EN

-L
5-

4R
FI

D
-8

D
XP

-W
IN

4	 Product Description
The devices are executed in a fully encapsulated plastic housing with protection class IP67/
IP69K. Four RFID channels are available for connecting read/write heads. You can also connect
sensors and actuators via eight digital I/O channels which you can freely configure as inputs
and outputs. The connections for read/write heads and for digital I/Os are executed as M12 con-
nectors. One M12 connector is available for the connection to the Ethernet.

4.1	 Device Overview

Fig. 1:	 Dimensions

4.1.1	 Display Elements

The devices have configurable multi-color LEDs.

4.2	 Properties and Characteristics

■■ Communication via TCP/IP
■■ Freely programmable compact module based on Windows Embedded Compact 2013
■■ Programming language: .Net, C++, C#
■■ API available on request
■■ 4 channels with M12 connection for RFID
■■ 8 digital channels, configurable as PNP inputs and/or 2 A outputs
■■ Integrated Ethernet switch allows line topology
■■ Transmission rate: 10 Mbps/100 Mbps
■■ Fully encapsulated module electronics
■■ Protection classes IP65/IP67/IP69K
■■ LEDs for status display

218
230.5

C4C5C6C7

6.3

38.8

60.4

C0C1C2C3

2430.2

X2

X1

P2

P1

12 Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

Product Description

4.3	 Functional Principle

The RFID interfaces connect the RFID system to other systems which communicate via TCP/IP
(e.g. ERP systems). The interfaces have one Ethernet interface and multiple RFID interfaces.
The RFID system is coupled with a third-party system, such as an ERP system, via the TCP/IP
interface. The read/write heads are connected to the interfaces via the RFID interfaces. In addi-
tion, the interfaces can process signals from sensors and actuators via eight configurable digital
channels.

4.4	 Functions and Operating Modes

HF and UHF read/write heads can be connected to the RFID channels. It is also possible for HF
and UHF read/write heads on one device to operate in parallel. The interface can perform con-
trol functions autonomously.
The device functions can be programmed via the Windows Embedded Compact 2013 operat-
ing system using .Net, C++ or C#. In addition, middleware functions can also be integrated on
the device.

4.4.1	 Functions in the Turck Service Tool

The device supports the following functions of the Turck Service Tool:
■■ Changing the IP address
■■ Reset to factory settings
■■ Carrying out a voltage reset
■■ Wink command
■■ Checking the firmware status

13 2018/01

TB
EN

-L
5-

4R
FI

D
-8

D
XP

-W
IN

5	 Mounting
The devices must be attached to a level, pre-drilled and grounded mounting surface.

➤➤ Attach the module to the mounting surface with two M6 screws. The maximum tightening
torque for the screws is 1.5 Nm.

Fig. 2:	 Attaching the device to the mounting plate

218 [5.58]

M6 (2x)
max. 1.5 Nm

14 Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

Mounting

5.1	 Grounding the Device

5.1.1	 Grounding and Shielding Concept

The grounding and shielding concept of the TBEN-S modules allows the fieldbus and I/O parts
to be grounded separately.

Fig. 3:	 Replacement wiring diagram, shielding concept

Fig. 4:	 Grounding components

The grounding clip (1) on the M12 connectors for the fieldbus connection (P1, P2) connects the
shield of the fieldbus lines.
The grounding ring (2) is attached below the grounding clip and connects the functional
ground of the 7/8" connector (pin 3) for the power supply with the functional ground of the
M12 connector (pin 5) for connecting the read/write heads, sensors, and actuators.
The grounding screw (3) connects the device with the system's reference potential.

1 nF

2,2 MΩ

X1

C1

C2

C3

C4

P1

X2

C5

C6

C7

C8

P2

4 x 15 nF

1

2
3

15 2018/01

TB
EN

-L
5-

4R
FI

D
-8

D
XP

-W
IN

5.1.2	 Grounding the Module (FE)

The grounding clip and the metal ring are connected to each other. A mounting screw through
the bottom mounting hole in the module connects the shielding of the fieldbus lines to the
functional ground of the power supply and the connected devices and to the reference poten-
tial of the system.
If a common reference potential is not required, remove the grounding clip to disconnect the
fieldbus shield or attach the module with a plastic screw.

Removing the Grounding Clip

➤➤ Use a flat standard screwdriver to lever the grounding clip upwards and remove it.

Fig. 5:	 Removing the grounding clip

Mounting the Grounding Clip

➤➤ Insert the grounding clip between the fieldbus connectors (using a screwdriver if necessary)
so that it makes contact with the metal housing of the connector.

➥➥ The shield of the fieldbus lines lies flush to the grounding clip.

Fig. 6:	 Mounting the grounding clip

16 Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

Connecting

6	 Connecting
6.1	 Connecting the Modules to the Ethernet

For the connection to a TCP/IP system, the device has an integrated autocrossing switch with
two 4-pin M12 Ethernet connectors. The maximum tightening torque is 0.6 Nm.

Fig. 7:	 M12 Ethernet connector for connection to a TCP/IP system

➤➤ Connect the device to a TCP/IP system according to the pin assignment shown below.

Fig. 8:	 Pin assignment for Ethernet connections

v

4

1 3

2

P1, P2

1 = TX +
2 = RX +
3 = TX –
4 = RX –

�ange = FE

17 2018/01

TB
EN

-L
5-

4R
FI

D
-8

D
XP

-W
IN

6.2	 Connecting the Power Supply

For the connection to the power supply, the device has two 5-pin 7/8" connectors. V1 and V2
are galvanically isolated from one another. The maximum tightening torque is 0.8 Nm.

Fig. 9:	 7/8" connector for the connection to the power supply

➤➤ Connect the device to the power supply according to the pin assignment shown below.

Pin assignment

1 BK = GND V2
2 BU = GND V1
3 GNYE = FE
4 BN = 24 VDC V1
5 WH = 24 VDC V2

3
4

5

2

1

w v
3

4

5

2

1

X1 X2

X1 Power feed

X2 Continuation of the power to the next participant

V1 Power supply 1 (incl. supply to the electronics)

V2 Power supply 2

Fig. 10:	 Pin assignment for the power supply connections

	 NOTE
The system voltage (V1) and the load voltage (V2) are fed in and monitored separately.
If the permitted voltage is not reached, the slots are switched off according to the sup-
ply concept for the module type. If V2 is not reached, the PWR LED changes from green
to red. If V1 is not reached, the PWR LED goes out.

18 Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

Connecting

6.3	 Connecting the RFID Read/Write Heads

The device has four 5-pin M12 connectors for connecting RFID read/write heads. The maximum
tightening torque is 0.8 Nm.

Fig. 11:	 M12 connector for connecting read/write heads

➤➤ Connect the read/write heads to the device according to the pin assignment shown below.

Pin assignment Pin

4

1 3

2

5

v
1 = Vaux1
2 = Data A
3 = GND
4 = Data B
5 = FE/Shield

1 VAUX1

2 TX/RX-

3 GND (V1)

4 TX/RX+

5 FE

Fig. 12:	 RS485 — pin assignment for read/write head connections

Pin assignment Pin

�

� �

�

�

�

������ ���
������ ������
������ �����
����
� ������
�����
	���

1 VAUX1

2 Data

3 GND (V1)

4 Data

5 FE

Fig. 13:	 Connection lines .../S2500 — pin assignment for read/write head connections

Pin assignment Pin

�

� �

�

�

�

������ ���
������ ������
������ �
���
������ ������
�����
	���

1 VAUX1

2 Data

3 GND (V1)

4 Data

5 FE

Fig. 14:	 Connection lines .../S2501 — pin assignment for read/write head connections

Pin assignment Pin

4

1 3

2

5

v
1 = RD (+)
2 = BU (Data)
3 = BK (GND)
4 = WH (Data)
5 = shield

1 VAUX1

2 Data

3 GND (V1)

4 Data

5 FE

Fig. 15:	 Connection lines .../S2503 — pin assignment for read/write head connections

19 2018/01

TB
EN

-L
5-

4R
FI

D
-8

D
XP

-W
IN

6.4	 Connecting Digital Sensors and Actuators

The device has four 5-pin M12 connectors for connecting digital sensors and actuators. The
maximum tightening torque is 0.8 Nm.

Fig. 16:	 M12 connector for connecting digital sensors and actuators

➤➤ Connect the sensors and actuators to the device according to the pin assignment shown
below.

Pin assignment

4

1 3

2

5

v
 1 = Vaux2
 2 = Signal Out
 3 = GND V2
 4 = Signal Out
 5 = FE

C4...C7

5 FE 4 BK

1 BN +

3 BU –

3 BU –

2 WH

vC4...C7

Sensor
or
Actuator

Sensor
or
Actuator

Fig. 17:	 Pin assignment for connecting digital sensors and actuators

20 Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

Commissioning

7	 Commissioning
7.1	 Setting the IP Address

The IP address can be set via 2 decimal rotary coding switches and DIP switches on the device
or via the Turck Service Tool.

7.1.1	 Setting the IP Address via Switches on the Device

The IP address can be set via 2 decimal rotary coding switches and the “Mode” DIP switch on the
device. The switches are located under a cover, along with the USB ports and the SET button.

Fig. 18:	 Switches for setting the IP address

➤➤ Open the cover over the switches.
➤➤ Set the rotary coding switches to the desired position in accordance with the table below.
➤➤ Set the “Mode” DIP switch to the desired position in accordance with the table below.
➤➤ Reset the voltage.
➤➤ ATTENTION! If the cover over the rotary coding switches is open, protection class IP67 or
IP69K is not guaranteed. The device may be damaged by the ingress of foreign objects or
liquids. Tightly close the cover over the switches.

5
4 3 2

1
0

9876

5
4 3 2

1
0

9876

2 13

ON
SR

V

USB Host

Set

M
od

ex 10

x 1

21 2018/01

TB
EN

-L
5-

4R
FI

D
-8

D
XP

-W
IN

Addressing Options

The IP address for the interfaces can be set in various ways. The following addressing options
can be selected via the switches on the device. Changes to the settings are activated when the
voltage is reset.

Setting option "MODE" DIP switch Rotary coding
switch

Description

Default address 0 00 IP address: 192.168.1.100
Subnet mask: 255.255.255.0
Gateway: 192.168.1.1

Rotary mode 0 01…99 In rotary mode, the last byte of the IP address can be set
manually on the gateway. The other network settings
are permanently stored in the gateway memory and
cannot be changed in rotary mode. Addresses from
1…99 can be set.

DHCP mode 1 40 In DHCP mode, the complete IP address is automati-
cally assigned by a DHCP server in the network. The
subnet mask allocated by the DHCP server and the
default gateway address are permanently stored in the
gateway memory. DHCP supports 3 types of IP address
allocation:

–– Automatic address assignment: The DHCP server as-
signs a permanent IP address to the client.
–– Dynamic address assignment: The IP address as-
signed by the server is always only reserved for a
specific period. Once this period has elapsed, or if
it is explicitly released by a client, the IP address is
reassigned.
–– Manual address assignment: A network administrator
allocates an IP address to the client. In this case, DHCP
is only used to transfer the allocated IP address to the
client.

PGM mode 1 50 In PGM mode, the complete IP address is assigned man-
ually via the Turck Service Tool. In PGM mode, the set IP
address and the subnet mask are stored in the gateway
memory. All network settings (IP address, subnet mask,
default gateway) are assumed by the module's internal
EEPROM.

F_Reset 1 90 This mode resets all device settings to the default
values and deletes all data in the device's internal flash
memory. The following values are reset or deleted:

–– IP address and subnet mask
–– Parameter

Restore 1 00 IP address: 192.168.1.100
Network mask: 255.255.255.0
Gateway: 192.168.1.1

22 Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

Commissioning

7.1.2	 Setting the IP Address via the Turck Service Tool

The device is factory set to IP address 192.168.1.100. The IP address must be set via the Turck
Service Tool. The Turck Service Tool is available to download free of charge from
www.turck.com.

➤➤ Launch the Turck Service Tool.
➤➤ Click “Search” or press F5.

Fig. 19:	 Turck Service Tool – homescreen

23 2018/01

TB
EN

-L
5-

4R
FI

D
-8

D
XP

-W
IN

➥➥ The Turck Service Tool displays the connected devices.

Fig. 20:	 Turck Service Tool – found devices

➤➤ Select the device.
➤➤ Click “Change” or press F2.

Fig. 21:	 Turck Service Tool – select the device to be addressed.

24 Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

Commissioning

➤➤ Change the IP address and if necessary the network mask and gateway.
➤➤ Accept the changes by clicking “Set in device”.

Fig. 22:	 Turck Service Tool – changing the device configuration

25 2018/01

TB
EN

-L
5-

4R
FI

D
-8

D
XP

-W
IN

7.2	 Getting Started

7.2.1	 Prerequisites

■■ Windows operating system (min. Windows 7)
■■ Visual Studio 2012/2013/2015
(https://www.visualstudio.com/de-de/products/visual-studio-express-vs.aspx)

■■ Application Builder (https://www.microsoft.com/en-us/download/details.aspx?id=38819)
■■ SDK (e.g. Turck_AM335x_RFID_SDKx.msi)

7.2.2	 Creating Applications

Creating Applications in C/C++

➤➤ Make sure that the SDK is installed in the system (e.g. Turck_AM335x_RFID_SDKx.msi).
➤➤ Start Visual Studio.
➤➤ Select "New Project…".
➤➤ In the left-hand window area, under "Templates  Visual C++ -> Windows Embedded Com-
pact", select "AM335x_Turck_RFID_SDKx".

➤➤ In the central window area, select "Win32 Console Application".
➤➤ Enter a name in the lower area.
➤➤ Click "OK". Visual Studio starts in the Application Builder view with an automatically gener-
ated, simple console application.

➤➤ Add "#include "windows.h"".
➤➤ Add the following lines to the "wmain" function:

printf(“Hello World\n”);
Sleep(5000);

➤➤ Press F7 to compile the application.

Creating Applications in C#

➤➤ Make sure that the SDK is installed in the system (e.g. Turck_AM335x_RFID_SDKx.msi).
➤➤ Start Visual Studio.
➤➤ Select "New Project…".
➤➤ In the left-hand window area, under "Templates  Other Languages -> Visual C++ -> Win-
dows Embedded Compact", select "AM335x_Turck_RFID_SDKx".

➤➤ In the central window area, select "Console Application".
➤➤ Enter a name in the lower area.
➤➤ Click "OK". Visual Studio starts in the Application Builder view with an automatically gener-
ated, simple console application.

➤➤ At the start of the "main cs" file, add "using System.Threading;" and "using System.
Diagnostics;".

➤➤ Add the following lines in "Main Method":

Debug.WriteLine(“Hello World”);
Thread.Sleep(5000);

➤➤ Press F7 to compile the application.

26 Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

Commissioning

7.3	 Drivers

7.3.1	 Ethernet

The Ethernet driver supports the Ethernet controller AM335x CPSW3G in switching mode.

The external ports of the Ethernet controller are mapped to the X_P1 and X_P2 plugs.
The internal port of the Ethernet switch is available to the system as Ethernet device CPSW3G1.

The FTP server and the Telnet server are activated as default (with no authentication).

For details about WinSock, see
https://msdn.microsoft.com/EN-US/library/ee494651%28v=VS.80,d=hv.2%29.aspx.

7.3.2	 NAND Flash

The NAND flash driver supports the AM335x GPMC controller and the inserted NAND flash card.
The NAND flash driver is loaded automatically at the start and maps the FAT partition to the
directory "/Mounted_Volume" transparently as standard.

The device directory is stored in the NAND flash file system permanently as standard.

7.3.3	 USB Host

The USB host supports the Ethernet controller AM335x USB1 in host mode.
The host is available on plug X25.

If the device is inserted and supported by the system, USB device drivers are loaded automati-
cally. Human interface devices (MMIs) and USB mass storage are supported as standard.

7.3.4	 USB OTG

In device mode, the USB OTG driver supports the Ethernet controller AM335x USB0. The USB
OTG is available on plug X18.

Per default, the USB OTG device driver is configured to USB serial mode.

27 2018/01

TB
EN

-L
5-

4R
FI

D
-8

D
XP

-W
IN

7.3.5	 UART

The UART driver supports the UART1, UART2, UART3, and UART4 devices of the AM335x. The
driver only supports RX/TX. Signals for a flow control are not available.
The UARTs are achieved as COM1: - COM4: devices that use Win32 Serial Port API. For details, see
https://msdn.microsoft.com/EN-US/library/ee488234%28v=VS.80,d=hv.2%29.aspx.

In order to correspond to the TBOX channels, the processor UARTs are mapped to the COM
ports as follows:
■■ UART1 COM3:
■■ UART2  COM4:
■■ UART3  COM1:
■■ UART4  COM2:

By changing the value of the key
"HKEY_LOCAL_MACHINE\Drivers\BuiltIn\UARTX\RxFifoTriggerLevel" (possible values are 1-63),
you can influence the receive FIFO of the UART.

7.3.6	 GPIO

The GPIO driver supports the AM335x GPIOs as well as the PCA9506 GPIO expander and the
XMC LED GPIOs.

The GPIO driver is available as a GIO1: device. It is available via the driver functions of the
stream interface. For details, see
https://msdn.microsoft.com/EN-US/library/ee488234%28v=VS.80,d=hv.2%29.aspx.

The GPIOs must be identified via their GPIO ID. These are defined in the
gpio_defines.h file which can be found in the SDK. The following GPIOs are supported by the
BSP:

AM335x GPIO GPIO ID GPIO define

GPIO0_7 7 GPIO_7

GPIO0_12 12 GPIO_12

GPIO0_13 13 GPIO_13

GPIO0_19 19 GPIO_19

GPIO0_23 23 GPIO_23

GPIO1_15 47 GPIO_47

GPIO1_31 63 GPIO_63

GPIO2_22 86 GPIO_86

GPIO2_23 87 GPIO_87

GPIO2_24 88 GPIO_88

GPIO2_25 89 GPIO_89

GPIO3_14 110 GPIO_110

GPIO3_15 111 GPIO_111

GPIO3_16 112 GPIO_112

GPIO3_17 113 GPIO_113

GPIO3_18 114 GPIO_114

GPIO3_20 116 GPIO_116

GPIO3_21 117 GPIO_117

28 Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

Commissioning

XMC GPIO GPIO ID GPIO define

P0.13 208 XGPIO_0

P0.12 209 XGPIO_1

P1.1 210 XGPIO_2

P1.0 211 XGPIO_3

P0.5 212 XGPIO_4

P0.4 213 XGPIO_5

P0.11 214 XGPIO_6

P0.10 215 XGPIO_7

P1.6 216 XGPIO_8

PCA GPIO GPIO ID GPIO define

PCA0_0[0] 128 EGPIO_0

… … …

PCA0_4[7] 167 EGPIO_39

PCA1_0[0] 168 EGPIO_40

… … …

PCA1_4[7] 207 EGPIO_79

The driver supports the following IOControl codes (defined in gpio_ioctls.h):

IOCTL_GPIO_SETBIT

Sets the corresponding GPIO to Level 1

Parameter

IpInBuffer Pointer to DWORD which contains the GPIO ID to
be set

IOCTL_GPIO_CLRBIT

Sets the corresponding GPIO to Level 0

Parameter

IpInBuffer Pointer to DWORD which contains the GPIO ID to
be set

IOCTL_GPIO_GETBIT

Reads from the level of the corresponding GPIO

Parameter

pInBuffer Pointer to DWORD which contains the GPIO ID to
be read

lpOutBuffer Pointer to DWORD which receives the current level

29 2018/01

TB
EN

-L
5-

4R
FI

D
-8

D
XP

-W
IN

IOCTL_GPIO_SETMODE

Configures the mode of the corresponding GPIO

Parameter

pInBuffer Pointer to an array of two DWORDs which contains
the GPIO ID (array element 0) and the mode to be
set (array element 1)

The following modes are supported (defined in gpio_defines.h):
■■ GPIO_DIR_OUTPUT		 : configures the GPIO as an output
■■ GPIO_DIR_INPUT		 : configures the GPIO as an input
■■ GPIO_INT_LOW_HIGH	 : activation of the interrupt with a rising edge
■■ GPIO_INT_HIGH_LOW	 : activation of the interrupt with a falling edge
■■ GPIO_INT_LOW		 : activation of the low-level interrupt
■■ GPIO_INT_HIGH		 : activation of the high-level interrupt
■■ GPIO_DEBOUNCE_ENABLE	 : activation of the debounce

The modes GPIO_INT_LOW_HIGH, GPIO_INT_HIGH_LOW, GPIO_INT_LOW, GPIO_INT_HIGH,
and GPIO_DEBOUNCE_ENABLE are not supported by the PCA (EGPIO_0 – EGPIO_79) and XMC
GPIOs (XGPIO_0 – XGPIO_8).

IOCTL_GPIO_GETMODE

Returns the current mode of the corresponding GPIO

Parameter

lpInBuffer Pointer to DWORD which contains the GPIO ID

lpOutBuffer Pointer to DWORD which receives the current
mode

IOCTL_GPIO_CONFIGURE_PERIODIC_UPDATE

Sets the corresponding GPIO in toggle mode with 1 Hz or 2 Hz.

Parameter

lpInBuffer Pointer to a structure IOCTL_GPIO_PERIODIC_INFO
(defined in gpio_ioctls.h) which contains the GPIO
ID and the periodic mode to be set:

typedef struct 	{
UINT	uGpioID;
UINT	dwPeriMode;
} IOCTL_GPIO_PERIODIC_INFO;

The following modes are supported (defined in gpio_defines.h):
■■ GPIO_PERIODIC_DISABLE	 : deactivates the periodic switching (toggling) of the GPIO
■■ GPIO_PERIODIC_1HZ	 : activation of the periodic switching of the GPIO with 1 Hz
■■ GPIO_PERIODIC_2HZ	 : activation of the periodic switching of the GPIO with 2Hz

This IOCONTROL function is not supported by XGPIO_8 GPIO.

30 Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

Commissioning

IOCTL_GPIO_CONFIGURE_RXTX_UPDATE

Configures the corresponding GPIO for RX/TX signals

Parameter

lpInBuffer Pointer to DWORD which contains the GPIO ID to
be configured

The RX/TX signaling can only be deactivated by activating another mode via
IOCTL_GPIO_CONFIGURE_PERIODIC_UPDATE, IOCTL_GPIO_SETBIT, or IOCTL_GPIO_CLRBIT.

This IOCONTROL is supported by GPIOs XGPIO_0 to XGPIO_8.

IOCTL_GPIO_CONFIGURE_AUTO_RECOVERY

Configures the automatic recovery of the GPIO

Parameter

lpInBuffer Pointer to a structure IOCTL_OC_INFO (defined in
gpio_ioctls.h) which contains the GPIO ID for acti-
vating the automatic recovery, the excess current
detection of the GPIO, and the mode (automatic or
manual recovery):

typedef struct 	{
UINT	uGpioID;
UINT	uOCGpioID;
BYTE	bOCLevel;
BYTE	bMode;

For the parameter bOCLevel (defined in gpio_defines.h), the following conditions of the trigger
level are supported:
■■ GPIO_AUTOREC_OC_LOWLEV: the excess current condition of uGpioID is triggered by a low-
level interrupt at uOCGpioID

■■ GPIO_AUTOREC_OC_HIGHLEV: the excess current condition of uGpioID is triggered by a high-
level interrupt at uOCGpioID

■■ GPIO_AUTOREC_OC_SAMELEV: the excess current condition of uGpioID is triggered when
uOCGpioID is on the same level

■■ GPIO_AUTOREC_OC_DIFFLEV: the excess current condition of uGpioID is triggered when
uOCGpioID is on the additional level

For the parameter bMode, the following modes (defined in gpio_defines.h) are supported:
■■ GPIO_AUTOREC_OC_DISABLED: excess current detection deactivated
■■ GPIO_AUTOREC_OC_SHUTDOWN: the excess current condition is handled with a shutdown
(manual recovery)

■■ GPIO_AUTOREC_OC_AUTOREC: the excess current condition is handled with a shutdown and
after a safe period, with an automatic recovery

31 2018/01

TB
EN

-L
5-

4R
FI

D
-8

D
XP

-W
IN

IOCTL_GPIO_GETIRQ

Returns the IRQ of the corresponding GPIO

Parameter

lpInBuffer Pointer to DWORD which contains the GPIO ID

lpOutBuffer Pointer to DWORD which receives the IRQ number

This IOCTL function is not supported by the PCA (EGPIO_0 – EGPIO_79) and XMC GPIOs (XG-
PIO_0 – XGPIO_8).

IOCTL_GPIO_SET_DEBOUNCE_TIME

Sets the debounce time of the GPIO (bank)

Parameter

lpInBuffer Pointer to a structure IOCTL_GPIO_SET_DE-
BOUNCE_TIME_IN (defined in gpio_ioctls.h) which
contains the GPIO ID and the debounce time to
be set:

typedef struct 	{
UINT	gpioId;
UINT	debounceTime;
} IOCTL_GPIO_SET_DEBOUNCE_TIME_IN;

The debounce time is calculated as follows:
Debounce time = (DEBOUNCETIME + 1) × 31 μs. The debounce time is valid globally for all
GPIOs of the same bank.

This IOCTL function is not supported by the PCA (EGPIO_0 – EGPIO_79) and XMC GPIOs (XG-
PIO_0 – XGPIO_8).

IOCTL_GPIO_GET_DEBOUNCE_TIME

Returns the debounce time of the GPIO (bank)

Parameter

lpInBuffer Pointer to DWORD which contains the GPIO ID

lpOutBuffer Pointer to DWORD which receives the debounce
time

This IOCTL function is not supported by the PCA (EGPIO_0 – EGPIO_79) and XMC GPIOs (XG-
PIO_0 – XGPIO_8).

32 Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

Commissioning

IOCTL_GPIO_INIT_INTERRUPT

Initializes the interrupt for the GPIO

Parameter

lpInBuffer Pointer to a structure IOCTL_GPIO_INIT_INTER-
RUPT_INFO (defined in gpio_ioctls.h):

typedef struct 	{
UINT		 uGpioID;
DWORD		 dwSysIntrID;
HANDLE	 hEvent;
} IOCTL_GPIO_INIT_INTERRUPT_INFO;

uGpioID must be set to the GPIO ID and hEvent to an event handle. The SysIntr used is returned
in the element dwSysIntrID.

This IOCTL function is not supported by the PCA (EGPIO_0 – EGPIO_79) and XMC GPIOs (XG-
PIO_0 – XGPIO_8).

IOCTL_GPIO_ACK_INTERRUPT

Acknowledges a GPIO interrupt

Parameter

lpInBuffer Pointer to a structure IOCTL_GPIO_INTERRUPT_
INFO (defined in gpio_ioctls.h):

typedef struct {
UINT		 uGpioID;
DWORD		 dwSysIntrID;
} IOCTL_GPIO_INTERRUPT_INFO;

This IOCTL function is not supported by the PCA (EGPIO_0 – EGPIO_79) and XMC GPIOs (XG-
PIO_0 – XGPIO_8).

IOCTL_GPIO_DISABLE_INTERRUPT

Deactivates the interrupt of a GPIO

Parameter

lpInBuffer Pointer to a structure
IOCTL_GPIO_INTERRUPT_INFO

This IOCTL function is not supported by the PCA (EGPIO_0 – EGPIO_79) and XMC GPIOs (XG-
PIO_0 – XGPIO_8).

33 2018/01

TB
EN

-L
5-

4R
FI

D
-8

D
XP

-W
IN

7.3.7	 SPI

The SPI driver supports the AM335x MCSPI0 interface. The SPI0 interface is available as an SPI1:
device.

The driver supports the following functions (defined in sdk_spi.h):

HANDLE SPIOpen(LPCTSTR pSpiName)

Opens the driver for later use

Parameter

pSpiName String with the device name ("SPI1:")

Return value

Handle on driver

VOID SPIClose(HANDLE hContext)

Ends the driver after use

Parameter

hContext Handle returned via SPIOpen()

BOOL SPILockController(HANDLE hContext, DWORD dwTimeout)

Locks the access to the driver for the current thread

Parameter

hContext Handle returned by SPIOpen()

dwTimeout Timeout for activation of the lock

Return value

TRUE Successful

FALSE Not successful

BOOL SPIUnLockController(HANDLE hContext)

Unlocks the access to the driver.
Locks the access to the driver for the current thread

Parameter

hContext Handle returned by SPIOpen()

Return value

TRUE Successful

FALSE Not successful

34 Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

Commissioning

BOOL SPIConfigure(HANDLE hContext, DWORD address, DWORD config)

Configures the SPI device for further actions

Parameter

hContext Handle returned by SPIOpen()

address Chipselect number (only CS0 is supported)

config DWORD which contains the desired configuration.
The configuration must take place in accordance
with the description of the register MCSPI_
CH0CONF in the manual of the AM335x (Technical
Reference Manual).

Return value

TRUE Successful

FALSE Not successful

BOOL SPIEnableChannel(HANDLE hContext)

Activates the channel configured by the address parameter SPIConfigure() and therefore also
the corresponding chipselect

Parameter

hContext Handle returned by SPIOpen()

Return value

TRUE Successful

FALSE Not successful

BOOL SPIDisableChannel(HANDLE hContext)

Deactivates the channel previous activated by SPIEnableChannel()

Parameter

hContext Handle returned by SPIOpen()

Return value

TRUE Successful

FALSE Not successful

BOOL SPISetSlaveMode(HANDLE hContext)

Configures the SPI controller for slave mode

Parameter

hContext Handle returned by SPIOpen()

Return value

TRUE Successful

FALSE Not successful

35 2018/01

TB
EN

-L
5-

4R
FI

D
-8

D
XP

-W
IN

DWORD SPIRead(HANDLE hContext, DWORD size, VOID *pBuffer)

Reads from the SPI bus

Parameter

hContext Handle returned by SPIOpen()

size Number of bytes to be read

pBuffer Pointer to receivebuffer

Return value

Number of bytes actually read

DWORD SPIWrite(HANDLE hContext, DWORD size, VOID *pBuffer)

Writes to the SPI bus

Parameter

hContext Handle returned by SPIOpen()

size Number of bytes to be written

pBuffer Pointer to sendbuffer

Return value

Number of bytes actually written

DWORD SPIWriteRead(HANDLE hContext, DWORD size, VOID *pOutBuffer, VOID *pInBuffer)

Reads/writes simultaneously from/to the SPI bus

Parameter

hContext Handle returned by SPIOpen()

size Number of bytes to be read/written

pOutBuffer Pointer to sendbuffer

pInBuffer Pointer to receivebuffer

Return value

Number of bytes actually read/written

DWORD SPIAsyncWriteRead(HANDLE hContext, DWORD size, VOID *pOutBuffer, VOID
*pInBuffer)

Reads/writes simultaneously from/to the SPI bus via DMA

Parameter

hContext Handle returned by SPIOpen()

size Number of bytes to be read/written

pOutBuffer Pointer to sendbuffer

pInBuffer Not used, set to NULL

Return value

Value of the size parameter

36 Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

Commissioning

DWORD SPIWaitForAsyncWriteReadComplet(HANDLE hContext, DWORD size, VOID
*pOutBuffer)

Waiting for completion of the DMA transfer

Parameter

hContext Handle returned by SPIOpen()

size Number of bytes to be written

pOutBuffer Pointer to receivebuffer

Return value

Value of the size parameter

7.3.8	 I2C

The I2C proxy driver (available in user mode) supports the AM335x-I2C0 interface. The I2C0
interface is available as an I2C1: device.

The I2C proxy driver is available via the file API (CreateFile(), ReadFile(), WriteFile(),
SetFilePointer()).
To select the base subaddress used in the subsequent ReadFile()- WriteFile() calls, SetFilePoint-
er() is used. For the selection of the address and the baud rate of the I2C device, the following
IOControl codes are available (defined in i2cproxy.h):

IOCTL_I2C_SET_SLAVE_ADDRESS

Sets the slave address of the I2C device to be addressed

Parameter

lpInBuffer Pointer to DWORD which contains the slave
address

IOCTL_I2C_SET_SUBADDRESS_MODE

Sets the subaddress mode

Parameter

lpInBuffer Pointer to DWORD which contains the desired sub-
address mode. The following modes are available
(defined in sdk_i2c.h):

–– I2C_SUBADDRESS_MODE_0: no device
subaddresses
–– I2C_SUBADDRESS_MODE_8: 1-byte
subaddresses
–– I2C_SUBADDRESS_MODE_16: 2-byte
subaddresses
–– I2C_SUBADDRESS_MODE_24: 3-byte
subaddresses
–– I2C_SUBADDRESS_MODE_32: 4-byte
subaddresses

37 2018/01

TB
EN

-L
5-

4R
FI

D
-8

D
XP

-W
IN

IOCTL_I2C_SET_BAUD_INDEX

Sets the baud rate of the I2C

Parameter

lpInBuffer –– Pointer to DWORD which contains the desired
baud rate. The following baud rates are available
(defined in sdk_i2c.h):
–– SLOWSPEED_MODE: 100 KHz
–– FULLSPEED_MODE: 400 KHz
–– HIGHSPEED_MODE_1P16: 1.6 MHz
–– HIGHSPEED_MODE_2P4: 2.4 MHz
–– HIGHSPEED_MODE_3P2: 3.2 MHz

7.3.9	 RTC

The OAL supports the onboard RTC. The RTC is used automatically by the system (OAL). There-
fore, the time is read out and set via, for example, the functions GetSystemTime() and SetSys-
temTime() or via console functions for the date and time. The RTC is synchronized at system
start (read) and when the value is changed (write).

7.3.10	 Using the Application

To ensure that the device monitors the Application Builder deploy/debug requirements, com-
ponents on the device have to be activated manually once the device has been started. This can
be done via Telnet, for example:

➤➤ Connect the device via Telnet (default address IP 192.168.1.1).
➤➤ Run "start conmanclient3 & cmaccept3" in the command line of the device.

Once the device has been prepared for the connection with Application Builder, the device can
be used and run on the device by pressing F5 (or via "Debug  Start Debugging").

Application Builder should switch to the debug view, transfer the application to the device and
then run it. When the example application referred to above is run, the string "Hello World"
should be visible in the output window (debug) of Application Builder.

38 Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

Commissioning

7.3.11	 Debugging the Application

To insert a breakpoint in a specific line of the source code, click the vertical gray bar in front of
the line. The breakpoint is identified with a red dot.

Fig. 23:	 Debugging the application

The next time the application is used and when it is run on the target device, it stops at the
preselected breakpoint(s). This is indicated by a yellow arrow on top of the breakpoint.

A remote debugging via Visual Studio is very similar to the local debugging of an application,
including the individual steps, callstack display (call list), memory display, etc.

7.3.12	 Using a Network Socket in C#

You can implement a network communication in C# via the socket class. The following example
code can be used to create and open a socket for a server at 192.168.1.1 on Port 80. For more
information about the communication via the socket, see https://msdn.microsoft.com/en-us/
library/system.net.sockets.socket_members(v=vs.90).

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;
using System.Diagnostics;

using System.Net;
using System.Net.Sockets;

namespace TurckWinSock
{
 class Program
 {
 static void Main(string[] args)
 {
 Debug.WriteLine(“Hello World”);

 //Create an endpoint with the server IP and Port 80
 IPAddress ip = new IPAddress(new byte[] {192, 168, 4,
80});
 IPEndPoint IpEnd = new IPEndPoint(ip, 80);

 //create a socket object
 Socket TestSocket = new Socket(IpEnd.AddressFamily,
SocketType.Stream, ProtocolType.Tcp);

39 2018/01

TB
EN

-L
5-

4R
FI

D
-8

D
XP

-W
IN

 try
 {
 //Connect the socket to the server
 TestSocket.Connect(IpEnd);

 //Check the connection
 if (TestSocket.Connected)
 {
 Debug.WriteLine("socket connected");
 }
 else
 {
 Debug.WriteLine("socket connection failed");
 }

 //Do something with the socket
 Thread.Sleep(5000);

 //Close the socket
 TestSocket.Shutdown(SocketShutdown.Both);
 TestSocket.Close();
 }
 catch (Exception e)
 {
 Debug.WriteLine(“exception while connecting
socket”);
 }
 }
 }
}

40 Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

Commissioning

7.3.13	 Using the TBOX API Library

An API library (TBOX API) is available for extracting functions of the DXPs and the COM ports.
An overview and description of the functions of the API library are available in the header file
TBOX_API.h.

Procedure with a C/C++ Application

To use the API library in a C/C++ application, integrate the header file TBOX_API.h and create a
static link between TBOX_API_LIB.lib and the application.

Copy TBOX_API.h and TBOX_API_LIB.lib to your application directory and insert the library to
the linker as an additional dependency:

➤➤ Select "PROJECT  Project Properties" (Alt + F7).
➤➤ In the left-hand window area, select "Configuration Properties  Linker  Input".
➤➤ In the right-hand window area, click the "Additional Dependencies" dropdown list and select
"<Edit…>".

Fig. 24:	 Property pages

41 2018/01

TB
EN

-L
5-

4R
FI

D
-8

D
XP

-W
IN

➤➤ Enter "TBOX_API_LIB.lib" in the editing field and confirm.

Fig. 25:	 Additional dependencies

➤➤ At the start of the main source file, integrate the header file TBOX_API.h via "#include
"TBOX_API.h";".

➥➥ The application can use the TBOX API. Before using further API functions, "TBOX_Init();" must
first be called. This resets all settings to the standard values and puts the hardware in a de-
fined state.

Example 1: Have the green LED app flash:

TBOX_SYS_LED_GreenSet(LED_APP, LED_2HZ);

The setting LED_TxD_RxD_SIGNALING is supported only for LEDS assigned to a COM port.

Example 2: Import the value of the rotary switch:

DWORD dwVal = TBOX_SYS_SWITCH_Get(0);
printf("Rotary Switches Value: %d\n", dwVal);

Example 3: Configure the DXP as an input and read its current value:

TBOX_DXP_Init(8, FALSE, FALSE);
DWORD dwVal = TBOX_DXP_Get(8);
printf("DXP 8 Level: %d\n", dwVal2);

DXP0 to DXP7 are not used on this platform because they are occupied by the COM ports.

42 Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

Commissioning

Example 4: Read all DXP inputs immediately:
dwVal = TBOX_DXP_Get(-1);
for(unsigned int i=8; i < 16; i++)
	 printf("DXP %d Level: %d\n", i, (dwVal & (1 << i)) >> i);

The values of all DXPs are read out if "-1" is used as the DxpNo parameter. The return value is
available via a bit field whose bits correspond to the number of the DXP level (e.g. bit0 for DXP
0, bit1 for DXP1, etc.).

Example 5: Configure a COM with the settings RS485 mode, Swap Lines, No Bias and No
Termination. Also activate RX and TX signals for the corresponding LEDs and switch on the
power supply VAUX for the port:

TBOX_COM_HardwareInit(TBOX_COM1,
 0,
 TBOX_COM_RS485_MODE,
 TBOX_COM_SWAP_AB_MODE,
 TBOX_COM_BIAS_OFF_MODE,
 TBOX_COM_TERM_OFF_MODE);

TBOX_SYS_LED_GreenSet(LED_COM1_TX, LED_TxD_RxD_SIGNALING);
TBOX_SYS_LED_GreenSet(LED_COM1_RX, LED_TxD_RxD_SIGNALING);

TBOX_SYS_VAUX_Set(TBOX_COM1, TBOX_COM_POWER_24V_MODE);

The baud setting is ignored after the COM port has been set (standard value is 115200 baud).
Only the RS485 mode is supported.

7.3.14	 Procedure with a C# Application

To use the API in C# applications, the API is also available as a DLL (TBOX_API_DLL.dll). The DLL
is not part of the OS standard image and must therefore be copied to the device.
Before a function from the DLL can be used, the DLL must be imported to your C# application.
Example:

[DllImport("TBOX_API_DLL.dll")]
public extern static int TBOX_Init();

[DllImport("TBOX_API_DLL.dll")]
public extern static void TBOX_SYS_LED_GreenSet(int LedNo, int
State);

After the import, the DLL can be called up within the C# application. Example:

 TBOX_Init();

 TBOX_SYS_LED_GreenSet(4, 0xCCCC);

43 2018/01

TB
EN

-L
5-

4R
FI

D
-8

D
XP

-W
IN

7.4	 Specific Settings / Implementations

7.4.1	 Autostart Application

The default registry contains a reference to a specific application in the flash storage to auto-
start. Therefore it is possible to let your own application autostart on boot by placing it into “\
Mounted_Volume\” and naming it “autostart.exe”.

7.4.2	 Image Version Readout

To read out the current WEC image version, include “bsp_ioctls.h” from the SDK and use the fol-
lowing IOControl Code with KernelIoControl: IOCTL_HAL_GET_BSP_VERSION
Parameter lpOutBuffer: pointer to a IOCTL_HAL_GET_BSP_VERSION_OUT struct.

IOCTL_HAL_GET_BSP_VERSION_OUT is defined as follows:

typedef struct {
 	DWORD		 dwVersionMajor;
 	DWORD 	 dwVersionMinor;
DWORD		 dwVersionQFES;
 	DWORD 	 dwVersionIncremental;
} IOCTL_HAL_GET_BSP_VERSION_OUT;

7.4.3	 Addressing Mode Readout

In order to read out the addressing mode determined at boottime according to the pushbut-
ton, dip- and rotary-switches, the following IOControl Code (defined in “bsp_ioctls.h”) can be
used with KernelIoControl: IOCTL_HAL_GET_ADDRMODE
Parameter lpOutBuffer: pointer to DWORD receiving the addressing mode.
The Ethernet IP Settings are automatically modified at WEC startup according to the detected
mode.
The addressing modes are defined on p. 21.

44 Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

Operation

8	 Operation
8.1	 LED Indicators

The devices have freely programmable multi-color LEDs for displaying information about:
■■ Power supply
■■ Collective and bus faults
■■ Status
■■ Diagnostics

LED PWR Meaning

Off No power or undervoltage at V1

Lights up in green Power at V1 ok

Lights up in red No power or undervoltage at V2

LED BUS Meaning

Flashing red Wink command active

COM LEDs (RFID channels)

TXD LED RXD LED Meaning

Flashes green Off Data being sent

Off Flashes green Data being received

Flashing red Flashing red Short circuit in the power supply

Illuminated in red Memory overflow

Illuminated red/green Illuminated red/green Incorrect configuration

DXP LEDs (digital channels, LEDs 8…15)

Green LED Red LED Meaning

Off Off No I/O signal present

Illuminated Off I/O signal present

Off Illuminated Overload at output

Flashing Flashing Overload of the auxiliary supply

45 2018/01

TB
EN

-L
5-

4R
FI

D
-8

D
XP

-W
IN

9	 Troubleshooting
If the device does not work as expected, first check whether ambient interference is present. If
there is no ambient interference, check the device connections for faults.
If there are no faults, there is a device malfunction. In this case, decommission the device and
replace it with a new device of the same type.

10	 Maintenance
Perform regular checks to ensure that the connections and cables are always in good condition.
The devices are maintenance-free. If necessary, clean in a dry state.

10.1	 Carrying out a Firmware Update

The firmware for the device can be updated using the PuTTY and WinSCP tools.

	 CAUTION
Interruption of the power supply during the firmware update
Device damage due to faulty firmware update

➤➤ Do not interrupt the power supply to the device during the firmware update.
➤➤ Do not reset the power supply during the firmware update.

Example: Updating Firmware

The example uses the following settings:
■■ The device is connected to the power supply via the X1 connection.
■■ The device is connected to the Ethernet via the ETH2 connection.
■■ The rotary coding switches on the device are in position 00 (default). The device’s IP address
depends on the firmware status:

Firmware status IP address

Version 2.1.0.0 or earlier 192.168.1.1

Version 2.1.1.0 or later 192.168.1.100

■■ The device is connected to the host PC.
■■ The PuTTY and WinSCP software tools have been installed.

46 Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

Maintenance

➤➤ Open PuTTY.
➤➤ Enter the following settings in PuTTY:

ūū Host name: IP address of the device
ūū Port: 23

➤➤ Optional: Assign a name for the current session (here: TBEN-Lx-WINCE). The session can be
loaded via “Load” for later repetitions.

➤➤ With saved sessions: Select TBEN-Lx-WINCE and confirm with “Load”.
➤➤ Click “Open”.

	 NOTE
If a connection cannot be established, check the IP address of the host PC.

Fig. 26:	 PuTTY configuration

47 2018/01

TB
EN

-L
5-

4R
FI

D
-8

D
XP

-W
IN

➤➤ Try to open the directory of the device with cd \windows.

Fig. 27:	 Directory \windows in PuTTY

48 Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

Maintenance

Files can be exchanged between the host PC and the device via WinSCP.
➤➤ Start WinSCP.
➤➤ Log onto the device in WinSCP.
➤➤ Activate the “Anonymous” checkbox.

Fig. 28:	 Logging on in WinSCP

49 2018/01

TB
EN

-L
5-

4R
FI

D
-8

D
XP

-W
IN

➤➤ In WinSCP, select the folders on the host PC and on the device between which you want to
exchange files.

Fig. 29:	 WinSCP – selecting folders

50 Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

Maintenance

➤➤ Click “Upload” to transfer the files to the device.

Fig. 30:	 Transferring files to the device

51 2018/01

TB
EN

-L
5-

4R
FI

D
-8

D
XP

-W
IN

➤➤ Update the view in PuTTY.

Fig. 31:	 PuTTY – updated view

52 Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

Maintenance

➤➤ Start the firmware update: Enter OS_NK.bat and confirm with ENTER.

	 NOTE
Instead of OS_NK.bat, the firmware update can also be started using the commands
xldrnand.bat and eboot.bat.

Fig. 32:	 Starting the firmware update

53 2018/01

TB
EN

-L
5-

4R
FI

D
-8

D
XP

-W
IN

The update in progress is shown with “update NK…”.

Fig. 33:	 Firmware update in progress

54 Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

Maintenance

The firmware update is complete when the “done” message appears.

Fig. 34:	 Firmware update complete

➤➤ Complete the firmware update: Reset the device’s voltage.

55 2018/01

TB
EN

-L
5-

4R
FI

D
-8

D
XP

-W
IN

Checking the Firmware Status

From version 2.1.0.0, the firmware status can be displayed via the Turck Service Tool.
➤➤ Launch the Turck Service Tool.
➤➤ Click “Search”.
➥➥ The device is displayed. The firmware status is listed under “Version”.

Fig. 35:	 TBEN-L5-4RFID-8DXP in the Turck Service Tool

11	 Repairs
The device is not intended for repair by the user. If the device is faulty, please take it out of op-
eration. If you are returning the device to Turck, please note our return terms and conditions.

11.1	 Returning Devices

If a device has to be returned, bear in mind that only devices with a decontamination declara-
tion will be accepted. This is available at
http://www.turck.de/en/retoure-service-6079.php
and must be filled in completely and affixed to the outside of the packaging such that it is
secure and cannot be impaired by adverse weather.

12	 Disposal
The device must be properly disposed of, not in general household waste.

56 Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

Technical Data

13	 Technical Data
Technical data

Supply

Power supply 24 VDC

Admissible range 18…30 VDC

Total current V1 max. 8 A, V2 max. 9 A at 70 °C per module

RFID supply 2 A per channel at 70 °C

Sensor/actuator supply 2 A per slot at 70 °C

Potential separation V1 and V2 voltage groups galvanically isolated

Dielectric strength Up to 500 VDC V1 and V2 over Ethernet

Power loss Typically ≤ 5 W

System description

Processor Cortex A8 800 MHz

Memory 256 MB Flash ROM; 512 MB DDR3 RAM

Real-time clock Yes

Operating system Windows Embedded Compact 2013

System data

Transmission rate Ethernet 10 Mbps/100 Mbps

Connectivity 2 × M12, 4-pin, D-coded

RFID

Number of channels 4

Connectivity M12, 5-pin

Supply 2 A per channel at 70 °C, short-circuit proof

Digital inputs

Number of channels 8

Connectivity M12, 5-pin

Input type PNP

Type of input diagnostics Channel diagnostics

Switching threshold EN 61131-2 Type 3, PNP

Low-level signal voltage < 5 V

High-level signal voltage > 11 V

Low-level signal current < 1.5 mA

High-level signal current > 2 mA

Potential separation Galvanic isolation to P1/P2

Dielectric strength Up to 500 VDC (V1 and V1 over Ethernet)

Cable length Max. 50 m

57 2018/01

TB
EN

-L
5-

4R
FI

D
-8

D
XP

-W
IN

Technical data

Digital outputs

Number of channels 8

Connectivity — outputs M12, 5-pin

Output type PNP

Type of output diagnostics Channel diagnostics

Output voltage 24 VDC from potential group

Output current per channel 2.0 A, short-circuit proof, max. 4.0 A per port

Simultaneity factor 0.56

Load type Resistive, inductive, lamp load

Short-circuit protection Yes

Potential separation Galvanic isolation to P1/P2

Dielectric strength Up to 500 VDC (V1 and V1 over Ethernet)

Standard/directive conformity

Vibration test Acc. to EN 60068-2-6

Acceleration Up to 20 g

Shock test Acc. to EN 60068-2-27

Drop and topple Acc. to IEC 60068-2-31/IEC 60068-2-32

Electromagnetic compatibility Acc. to EN 61131-2

Approvals and certificates CE

UL conditions cULus LISTED 21 W2, Encl.Type 1 IND.CONT.EQ.

General information

Dimensions (W x L x H) 60.4 × 230.4 × 39 mm

Operating temperature -40 °C to +70 °C

Storage temperature -40 °C to +70 °C

Operating altitude Max. 5000 m

Protection class IP65/IP67/IP69K

MTTF

Housing material PA6-GF30

Housing color Black

Window material Lexan

Screw material 303 stainless steel

Halogen-free Yes

Mounting 2 mounting holes, Ø 6.3 mm

D500062 | 2018/01

D500062

Over 30 subsidiaries and over
60 representations worldwide!

www.turck.com

	About these Instructions
	Target Groups
	Explanation of Symbols
	Additional Documents
	Feedback on these Instructions

	Notes on the Product
	Product Identification
	Scope of Delivery
	Legal Requirements
	Manufacturer and Service

	For Your Safety
	Intended Use
	General Safety Instructions

	Product Description
	Device Overview
	Display Elements

	Properties and Characteristics
	Functional Principle
	Functions and Operating Modes

	Mounting
	Grounding the Device
	Grounding and Shielding Concept
	Grounding the Module (FE)

	Connecting
	Connecting the Modules to the Ethernet
	Connecting the Power Supply
	Connecting the RFID Read/Write Heads
	Connecting Digital Sensors and Actuators

	Commissioning
	Setting the IP Address
	Setting the IP Address via Switches on the Device
	Setting the IP Address via the Turck Service Tool

	Getting Started
	Prerequisites
	Creating Applications

	Drivers
	Ethernet
	NAND Flash
	USB Host
	USB OTG
	UART
	GPIO
	SPI
	I2C
	RTC
	Using the Application
	Debugging the Application
	Using a Network Socket in C#
	Using the TBOX API Library
	Procedure with a C# Application

	Specific Settings / Implementations
	Autostart Application
	Image Version Readout
	Addressing Mode Readout

	Operation
	LED Indicators

	Troubleshooting
	Maintenance
	Carrying out a Firmware Update

	Repairs
	Returning Devices

	Disposal
	Technical Data

