

TBEN-S2-2RFID-4DXP Kompaktes RFID-Interface

Betriebsanleitung

Inhaltsverzeichnis

1	Uber dies	e Anieitung	/
	1.1	Zielgruppen	7
	1.2	Symbolerläuterung	7
	1.3	Weitere Unterlagen	7
	1.4	Namenskonvention	7
	1.5	Feedback zu dieser Anleitung	8
2	Hinweise	zum Produkt	9
	2.1	Produktidentifizierung	9
	2.2	Lieferumfang	9
	2.3	Turck-Service	9
3	Zu Ihrer Sicherheit		
	3.1	Bestimmungsgemäße Verwendung	10
	3.2	Allgemeine Sicherheitshinweise	. 10
	3.3	Hinweise zum Ex-Schutz	10
	3.4	Auflagen durch die Ex-Zulassung bei Ex-Einsatz	11
4	Produktb	eschreibung	. 12
	4.1	Geräteübersicht	12
	4.1.1	Anzeigeelemente	. 12
	4.2	Eigenschaften und Merkmale	12
	4.3	Funktionsprinzip	13
	4.4	Funktionen und Betriebsarten	13
	4.4.1	Multiprotokoll-Technologie	
	4.4.2	Datenübertragung an die SPS	
	4.4.3 4.4.4	RFID-Kanäle – BetriebsartenRFID-Befehle	
	4.4.4 4.4.5	Schleifenzähler-Funktion	
	4.4.6	Universelle digitale Kanäle – Funktionen	
	4.4.7	Turck Field Logic Controller-Funktion (FLC ARGEE)	
	4.5	Technisches Zubehör	. 18
5	Montiere	n	. 19
	5.1	Gerät in Zone 2 und Zone 22 montieren	19
	5.2	Geräte im Verbund montieren	20
	5.3	Auf Montageplatte befestigen	21
	5.4	Auf Hutschiene (TS35) montieren	21
	5.5	Gerät im Freien montieren	. 22
	5.6	Gerät erden	. 22
	5.6.1	Erdungs- und Schirmungskonzept	. 22
	5.6.2	Gerät erden (FE)	. 23
6	Anschließ	3en	24
	6.1	Gerät in Zone 2 und Zone 22 anschließen	
	6.2	Gerät an Ethernet anschließen	
	6.2.1	QuickConnect- und Fast-Start-Up-Applikationen	
	6.3	Versorgungsspannung anschließen	
	6.4	RFID-Schreib-Lese-Geräte anschließen	27

	6.4.1	Schreib-Lese-Köpfe für den HF-Busmodus anschließen	28
	6.5	Digitale Sensoren und Aktuatoren anschließen	31
7	In Betrie	b nehmen	32
	7.1	IP-Adresse einstellen	32
	7.1.1	Adressierungsmethode im Webserver prüfen und ändern	
	7.2	Gerät an einen Modbus-Master anbinden mit CODESYS	
	7.2.1	Gerät mit der Steuerung verbinden	
	7.2.1	Modbus-Slave umbenennen	
	7.2.2	Netzwerk-Schnittstellen einrichten	
	7.2.3 7.2.4	Modbus TCP-Slave – IP-Adresse einrichten	
	7.2.5	Modbus-Kanäle (Register) definieren	
	7.2.6	Gerät online mit der Steuerung verbinden	
	7.2.7	Prozessdaten auslesen	
	7.2.7	Modbus TCP – Mapping	
	7.3 7.3.1	Gerät an einen EtherNet/IP-Scanner anbinden mit RS Logix	
	, ,,,,,	EDS-Datei installieren	
	7.3.2	Gerät mit der Steuerung verbinden	
	7.3.3	Gerät online mit der Steuerung verbinden	
	7.3.4 7.3.5	Prozessdaten auslesen	
		EtherNet/IP – Mapping	
	7.3.6	QuickConnect (QC) aktivieren	
	7.4	Gerät an einen PROFINET-Master anbinden mit TIA-Portal	
	7.4.1	GSDML-Datei installieren	
	7.4.2	Gerät mit der Steuerung verbinden	
	7.4.3	PROFINET-Gerätenamen zuweisen	
	7.4.4	IP-Adresse im TIA-Portal einstellen	
	7.4.5	Gerät online mit der Steuerung verbinden	
	7.4.6	Modulparameter einstellen	
	7.4.7	PROFINET – Mapping	
8	Einstelle	n	
	8.1	RFID-Kanäle – Parameterdaten	
	8.1.1	Bedeutung der Parameter-Bits	
	8.1.2	HF-Anwendungen – Datenträger-Typ auswählen	
	8.1.3	HF-Anwendungen – Überbrückungszeit (Bypass-Zeit) einstellen	
	8.1.4	HF-Anwendungen – HF-Busmodus einstellen	
	8.1.5	UHF-Anwendungen – Continuous Presence Sensing Mode einstellen	
	8.1.6	UHF-Anwendungen – Reader-Einstellungen übertragen	94
	8.2	RFID-Kanäle – Prozess-Eingangsdaten	95
	8.2.1	Bedeutung der Status-Bits	98
	8.2.2	Datenträger im Erfassungsbereich (TP) – Bit nutzen oder Befehl vorspannen	99
	8.3	RFID-Kanäle – Prozess-Ausgangsdaten	100
	8.3.1	Bedeutung der Befehls-Bits	
	8.4	Digitale Kanäle – Parameterdaten	
	8.4.1	Bedeutung der Parameter-Bits	
	8.5	Digitale Kanäle – Erweiterte Parameter einstellen (EXT LEAN)	
	8.5.1	Bedeutung der Parameter-Bits	
	8.6	Digitale Kanäle – Prozess-Eingangsdaten	
	8.6.1	Bedeutung der Status-Bits	106
	8.7	Digitale Kanäle – Prozess-Ausgangsdaten	106
	8.7.1	Bedeutung der Befehls-Bits	
	0.7.1	beacatarig act beterns bits imminimum.	

8.8.1	Befehl: Leerlauf	109
8.8.2	Befehl: Inventory	
8.8.3	Befehl: Lesen	
8.8.4	Befehl: Schreiben	
8.8.5	Befehl: EPC-Länge ändern und neuen EPC schreiben (UHF)	
8.8.6	Befehl: Schreiben mit Validierung	
8.8.7	Befehl: Continuous Mode	
8.8.8	Befehl: Puffer auslesen (Cont. Mode)	
8.8.9	Befehl: Continuous (Presence Sensing) Mode beenden	
8.8.10	Befehl: Puffer löschen (Cont. Mode)	
8.8.11	Befehl: UHF Continuous Presence Sensing Mode	
8.8.12	Befehl: HF-Schreib-Lese-Kopf ausschalten	
8.8.13	Befehl: Schreib-Lese-Kopf-Identifikation	
8.8.14	Befehl: Fehler/Status UHF-Schreib-Lese-Kopf lesen	
8.8.15	Befehl: Datenträger-Info	
8.8.16	Direkter Schreib-Lese-Kopf-Befehl	
8.8.17	Befehl: HF-Schreib-Lese-Kopf-Adresse abfragen	
8.8.18	Befehl: HF-Schreib-Lese-Kopf-Adresse setzen	
8.8.19	Befehl: HF-Schreib-Lese-Kopf-Tuning	
8.8.20	Befehl: AFI von HF-Datenträger lesen	
8.8.21	Befehl: AFI auf HF-Datenträger schreiben	
8.8.22	Befehl: AFI in HF-Datenträger sperren	
8.8.23	Befehl: DSFID von HF-Datenträger lesen	
8.8.24	Befehl: DSFID auf HF-Datenträger schreiben	
8.8.25	Befehl: DSFID in HF-Datenträger sperren	
8.8.26	Befehl: Schreib-Lese-Kopf-Passwort setzen	152
8.8.27	Befehl: Schreib-Lese-Kopf-Passwort zurücksetzen	153
8.8.28	Befehl: Datenträger-Passwort setzen	154
8.8.29	Befehl: Datenträger-Schutz setzen	156
8.8.30	Befehl: Schutzstatus HF-Datenträger abfragen	160
8.8.31	Befehl: Permanente Sperre setzen (Lock)	163
8.8.32	Befehl: Datenträger unwiderruflich deaktivieren (Kill)	165
8.8.33	Befehl: Einstellungen UHF-Schreib-Lese-Kopf wiederherstellen	
8.8.34	Befehl: Backup der Einstellungen des UHF-Schreib-Lese-Kopfs	
8.8.35	Befehl: Reset	169
8.9	RFID-Interfaces über den Webserver einstellen	170
8.9.1	Webserver öffnen	170
8.9.2	Einstellungen im Webserver bearbeiten	171
8.10	RFID-Interfaces über den DTM testen und parametrieren	181
8.10.1	Gerät mit dem PC verbinden	
8.10.2	Parameterdaten mit dem DTM bearbeiten – Online-Parametrierung	
8.10.3	Prozess-Eingangsdaten mit dem DTM auslesen – Messwert	
8.10.4	Prozess-Ausgangsdaten mit dem DTM ändern – Simulation	
8.10.5	Diagnosen mit dem DTM auswerten	
8.10.6	Beispiel: Lesebefehl mit dem DTM ausführen	
8.11	RFID-Interfaces mit der Software RFID PC Demo für Modbus TCP einstelle	
8.11.1	Verbindung herstellen	
8.11.2	Einstellungen bearbeiten	
8.11.3	Aktionen und Daten protokollieren	
	•	
8.12 8.12.1	UHF-Reader einstellen UHF-Reader über den DTM einstellen	
8.12.1	UHF-Reader über den Webserver einstellen	
8 12 3	IHF-Reader über den Webserver testen	203 205

)	Betreiben		. 207
	9.1	Befehl ausführen und Daten abrufen	
	9.1.1	Typische Zeiten für die Befehlsverarbeitung durch eine Steuerung	
	9.2	Fragmentierung nutzen	
	9.2.1	Beispiel: Fragmentierung im Webserver nutzen – Lesen	
	9.2.2	Beispiel: Fragmentierung im Webserver nutzen – Schreiben	
	9.3	Befehle mit Schleifenzähler-Funktion nutzen	
	9.4	HF-Anwendungen – Continuous Mode nutzen	
	9.5	HF-Busmodus nutzen	
	9.5.1	Befehle im HF-Busmodus ausführen	
	9.5.2	Busfähige Schreib-Lese-Köpfe austauschen	
	9.5.3	HF-Continuous-Busmodus – Datenabfrage und Geschwindigkeit	
	9.6	HF-Anwendungen – HF-Continuous-Busmodus nutzen	
	9.7	Möglichkeiten zur Befehlsausführung im HF-Busmodus	
	9.8	NEXT-Modus nutzen	
	9.8.1	Beispiel: NEXT-Modus für einen Lesebefehl nutzen	
	9.9	UHF-Passwortfunktion nutzen	
	9.9.1	Access-Passwort setzen	
	9.9.2	Kill-Passwort setzen	
	9.10	HF-Passwortfunktion nutzen	
	9.11	CODESYS-Funktionsbausteine nutzen	
	9.12	Funktionsbausteine für Siemens TIA-Portal nutzen	. 239
	9.13	Inventory-Befehl und Continuous (Presence Sensing) Mode nutzen	
	9.14	LED-Anzeigen	. 244
	9.15	Software-Diagnosemeldungen	. 246
	9.15.1	Diagnosemeldungen – Gateway-Funktionen	. 246
	9.15.2	Diagnosemeldungen – RFID-Kanäle	
	9.15.3	Diagnosemeldungen – digitale Kanäle	
	9.15.4	Diagnosemeldungen – Modulstatus	
	9.16	Beispiel: Diagnosen über die Steuerungssoftware aktivieren	
	9.17	Fehlercodes auslesen	. 251
	9.18	Erweiterte Diagnosen nutzen – RFID-Kanäle	. 256
	9.18.1	Erweiterte Diagnosen nutzen – Zeitmessung für die Inbetriebnahme einer Applikation	258
	9.19	HF-Anwendungen - Firmware-Update angeschlossener	
		HF-Schreib-Lese-Köpfe über den Webserver	. 261
	9.19.1	Firmware-Update vorbereiten	
	9.19.2	Webserver öffnen	. 261
	9.19.3	Firmware-Update durchführen	. 262
10	Störunge	n beseitigen	. 267
	10.1	Parametrierfehler beheben	. 267
l 1	Instand h	alten	. 268
	11.1	Firmware-Update durchführen	
12		n	
_	12.1	Geräte zurücksenden	
12			
	_	1	
14	Technisch	ne Daten	. 276

15	Anhang: A	Ablaufdiagramme zur Funktionsweise des Geräts	279
	15.1 15.1.1	Ablaufdiagramm: Befehlsverarbeitung Handling der Befehlsausführung mit Busy und Error -	279
		Beispielcode in CODESYS	. 280
	15.2	Ablaufdiagramm: Schnelle Befehlsverarbeitung mit Schleifenzähler	281
	15.3	Ablaufdiagramm: Befehlsverarbeitung mit Fragmentierung	282
	15.4	Ablaufdiagramm: Continuous Mode mit Unterbrechung vor dem Auslesen Daten	
	15.5	Ablaufdiagramm: Continuous Mode ohne Unterbrechung vor dem Auslese von Daten	
	15.6	Ablaufdiagramm: Datenträger mit Passwort programmieren	285
16	Anhang: 2	Zulassungen und Kennzeichnungen	286
17	7 Turck-Niederlassungen – Kontaktdaten 28		

Über diese Anleitung

Die Anleitung beschreibt den Aufbau, die Funktionen und den Einsatz des Produkts und hilft Ihnen, das Produkt bestimmungsgemäß zu betreiben. Lesen Sie die Anleitung vor dem Gebrauch des Produkts aufmerksam durch. So vermeiden Sie mögliche Personen-, Sach- und Geräteschäden. Bewahren Sie die Anleitung auf, solange das Produkt genutzt wird. Falls Sie das Produkt weitergeben, geben Sie auch diese Anleitung mit.

1.1 Zielgruppen

Die vorliegende Anleitung richtet sich an fachlich geschultes Personal und muss von jeder Person sorgfältig gelesen werden, die das Gerät montiert, in Betrieb nimmt, betreibt, instand hält, demontiert oder entsorgt.

Bei Einsatz des Gerätes in Ex-Kreisen muss der Anwender zusätzlich über Kenntnisse im Explosionsschutz (IEC/EN 60079-14 etc.) verfügen.

1.2 Symbolerläuterung

In dieser Anleitung werden folgende Symbole verwendet:

GEFAHR

GEFAHR kennzeichnet eine gefährliche Situation mit hohem Risiko, die zum Tod oder zu schweren Verletzungen führt, wenn sie nicht vermieden wird.

WARNUNG

WARNUNG kennzeichnet eine gefährliche Situation mit mittlerem Risiko, die zum Tod oder zu schweren Verletzungen führen kann, wenn sie nicht vermieden wird.

VORSICHT

VORSICHT kennzeichnet eine gefährliche Situation mit mittlerem Risiko, die zu mittelschweren oder leichten Verletzungen führen kann, wenn sie nicht vermieden wird.

ACHTUNG

ACHTUNG kennzeichnet eine Situation, die zu Sachschäden führen kann, wenn sie nicht vermieden wird.

HINWEIS

Unter HINWEIS finden Sie Tipps, Empfehlungen und nützliche Informationen zu speziellen Handlungsschritten und Sachverhalten. Die Hinweise erleichtern Ihnen die Arbeit und helfen Ihnen, Mehrarbeit zu vermeiden.

HANDLUNGSAUFFORDERUNG

Dieses Zeichen kennzeichnet Handlungsschritte, die der Anwender ausführen muss.

 \Rightarrow

HANDLUNGSRESULTAT

Dieses Zeichen kennzeichnet relevante Handlungsresultate.

1.3 Weitere Unterlagen

Ergänzend zu diesem Dokument finden Sie im Internet unter www.turck.com folgende Unterlagen:

- Datenblatt
- Konformitätserklärungen (aktuelle Version)
- Zulassungen

1.4 Namenskonvention

Schreib-Lese-Geräte werden im HF-Bereich als "Schreib-Lese-Köpfe" und im UHF-Bereich als "Reader" bezeichnet. Geläufige Synonyme für "Datenträger" sind "Tag", "Transponder" und "mobiler Datenspeicher".

1.5 Feedback zu dieser Anleitung

Wir sind bestrebt, diese Anleitung ständig so informativ und übersichtlich wie möglich zu gestalten. Haben Sie Anregungen für eine bessere Gestaltung oder fehlen Ihnen Angaben in der Anleitung, schicken Sie Ihre Vorschläge an techdoc@turck.com.

2 Hinweise zum Produkt

2.1 Produktidentifizierung

Diese Anleitung gilt für die folgenden kompakten RFID-Interfaces:

■ TBEN-S2-2RFID-4DXP

2.2 Lieferumfang

Im Lieferumfang sind enthalten:

- Kompaktes RFID-Interface
- Verschlusskappen für M12-Buchsen
- Kurzbetriebsanleitung

2.3 Turck-Service

Turck unterstützt Sie bei Ihren Projekten von der ersten Analyse bis zur Inbetriebnahme Ihrer Applikation. In der Turck-Produktdatenbank unter www.turck.com finden Sie Software-Tools für Programmierung, Konfiguration oder Inbetriebnahme, Datenblätter und CAD-Dateien in vielen Exportformaten.

Die Kontaktdaten der Turck-Niederlassungen weltweit finden Sie auf S. [▶ 287].

3 Zu Ihrer Sicherheit

Das Produkt ist nach dem Stand der Technik konzipiert. Dennoch gibt es Restgefahren. Um Personen- und Sachschäden zu vermeiden, müssen Sie die Sicherheits- und Warnhinweise beachten. Für Schäden durch Nichtbeachtung von Sicherheits- und Warnhinweisen übernimmt Turck keine Haftung.

3.1 Bestimmungsgemäße Verwendung

Das Blockmodul TBEN-S2-2RFID-4DXP ist ein RFID-Interface zum Einsatz im Turck BL ident-System. Das Gerät wird zwischen Steuerung und Schreib-Lese-Gerät angeschlossen und überträgt Befehle von der Steuerung an die Schreib-Lese-Geräte. Gelesene Daten werden über das Gerät an die Steuerung weitergegeben.

Das Gerät unterstützt HF-Schreib-Lese-Köpfe ab Firmware-Stand Vx.90 und UHF-Reader ab Firmware-Stand FW 1.45.

An das Gerät können im Normalbetrieb bis zu zwei BL ident-Schreib-Lese-Geräte angeschlossen werden. Im Busmodus ist der Anschluss von bis zu 32 busfähigen HF-Schreib-Lese-Köpfen pro Kanal möglich. Zusätzlich stehen vier universelle digitale Kanäle zur Verfügung. Die Multiprotokoll-Interfaces können an die Ethernet-Feldbussysteme PROFINET, Modbus TCP und EtherNet/IP angeschlossen werden.

Durch die Schutzart IP65, IP67 bzw. IP69K ist eine Installation direkt im Feld möglich. Geräte mit Ex-Kennzeichnung sind für den Betrieb im Ex-Bereich in Zone 2 und Zone 22 geeignet.

Das Gerät darf nur wie in dieser Anleitung beschrieben verwendet werden. Jede andere Verwendung gilt als nicht bestimmungsgemäß. Für daraus resultierende Schäden übernimmt Turck keine Haftung.

3.2 Allgemeine Sicherheitshinweise

- Nur fachlich geschultes Personal darf das Gerät montieren, installieren, betreiben, parametrieren und instand halten.
- Das Gerät nur in Übereinstimmung mit den geltenden nationalen und internationalen Bestimmungen, Normen und Gesetzen einsetzen.
- Das Gerät erfüllt die EMV-Anforderungen für den industriellen Bereich. Bei Einsatz in Wohnbereichen Maßnahmen treffen, um Funkstörungen zu vermeiden.
- Default-Passwort des integrierten Webservers nach dem ersten Login ändern. Turck empfiehlt, ein sicheres Passwort zu verwenden.

3.3 Hinweise zum Ex-Schutz

- Bei Einsatz des Gerätes in Ex-Kreisen muss der Anwender über Kenntnisse im Explosionsschutz (IEC/EN 60079-14 etc.) verfügen.
- Nationale und internationale Vorschriften für den Explosionsschutz beachten.
- Das Gerät nur innerhalb der zulässigen Betriebs- und Umgebungsbedingungen (siehe Zulassungsdaten und Auflagen durch die Ex-Zulassungen) einsetzen.

3.4 Auflagen durch die Ex-Zulassung bei Ex-Einsatz

- Stromkreise nur trennen und verbinden, wenn keine Spannung anliegt.
- Metallische Schutzabdeckung an Potenzialausgleich im Ex-Bereich anschließen.
- Schlagfestigkeit nach EN IEC 60079-0 gewährleisten alternative Maßnahmen:
 - Gerät in Schutzgehäuse TB-SG-S montieren (ID 100014866).
 - Gerät in einem Schlagschutz bietenden Bereich montieren (z. B. in Roboterarm) und Warnhinweis anbringen: "GEFAHR: Stromkreise nicht unter Spannung verbinden oder trennen."
- Gerät nicht in Bereichen mit kritischem Einfluss von UV-Licht installieren.
- Gefahren durch elektrostatische Aufladung vermeiden.
- Nicht verwendete Steckverbinder mit geeigneten Verschraub- oder Blindkappen verschließen, um die Schutzart IP65, IP67 bzw. IP69K zu gewährleisten. Das Anzugsdrehmoment für die Verschraubkappen beträgt 0,5 Nm.

4 Produktbeschreibung

Die Geräte sind in einem vollvergossenen Kunststoffgehäuse in Schutzart IP65/IP67/IP69K ausgeführt. Zum Anschluss von Schreib-Lese-Geräten stehen zwei RFID-Kanäle zur Verfügung. Zusätzlich lassen sich Sensoren und Aktuatoren über vier universelle digitale I/O-Kanäle anschließen. Die Anschlüsse für Schreib-Lese-Geräte und für digitale I/Os sind als M12-Buchsen ausgeführt. Zum Anschluss an den Feldbus steht eine M8-Buchse zur Verfügung.

4.1 Geräteübersicht

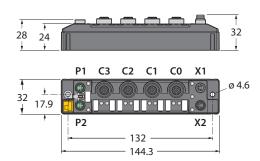


Abb. 1: Abmessungen

4.1.1 Anzeigeelemente

Das Gerät verfügt über folgende LED-Anzeigen:

- Versorgungsspannung
- Sammel- und Busfehler
- Status
- Diagnose

4.2 Eigenschaften und Merkmale

- PROFINET-Device, EtherNet/IP-Device oder Modbus-TCP-Slave
- PROFINET-S2-Systemredundanz
- Integrierter Ethernet-Switch
- Unterstützt 10 Mbps/100 Mbps
- Glasfaserverstärktes Gehäuse
- Schock- und schwingungsgeprüft
- Vollvergossene Modulelektronik
- Schutzart IP65/IP67/IP69K
- Integration an SPS-Systeme ohne speziellen Funktionsbaustein
- Bis zu 128 Byte Nutzdaten pro Schreib-/Lesezyklus je Kanal sowie Nutzung von Fragmenten mit jeweils 16 kB FIFO-Speicher
- Daten-Interface zur komfortablen Nutzung der RFID-Funktionalität
- HF-Continuous-Busmodus mit bis zu 32 HF-Schreib-Lese-Köpfen pro Kanal
- Zwei Kanäle mit M12-Anschluss für RFID
- Mischbetrieb von HF-Schreib-Lese-Köpfen und UHF-Readern
- Vier universelle digitale Kanäle als PNP-Eingänge oder -Ausgänge 0,5 A
- Integrierter Webserver
- LED-Anzeigen und Diagnosen
- FLC/ARGEE-programmierbar

4.3 Funktionsprinzip

Die Interfaces sind mit einer Multiprotokoll-Feldbusschnittstelle für Modbus TCP, EtherNet/IP und PROFINET ausgestattet. Über die Feldbusschnittstelle wird das RFID-System an ein (vorhandenes) Feldbussystem als EtherNet/IP-Device, Modbus TCP-Slave oder PROFINET-Device angekoppelt. Die Interfaces verfügen über eine Feldbusschnittstelle und feldbusunabhängige I/O-Elektronik mit RFID-Schnittstelle. Im laufenden Betrieb werden die Prozessdaten zwischen Feldbus- und RFID-System ausgetauscht und zusätzlich Diagnose-Informationen für die Steuerung generiert. Über die RFID-Schnittstellen werden die Schreib-Lese-Geräte an die Interfaces angeschlossen. Zusätzlich können die Interfaces Signale von bis zu vier Sensoren und Aktuatoren über vier universelle digitale Kanäle verarbeiten.

4.4 Funktionen und Betriebsarten

Die kompakten RFID-Interfaces übertragen Daten zwischen der RFID-Ebene (Schreib-Lese-Gerät und Datenträger) und der Steuerungsebene. An die RFID-Kanäle können HF-Schreib-Lese-Köpfe und UHF-Reader angeschlossen werden. Auch der parallele Betrieb von HF-Schreib-Lese-Köpfen und UHF-Readern an einem Gerät ist möglich.

Mit dem Gerät können verschiedene Befehle wie Inventory (Singletag- und Multitag-Anwendungen), Lesen, Schreiben und Passwortschutz ausgeführt werden. Für die Optimierung der Geschwindigkeit, zum Selbsttriggern des Systems sowie für Backup und Wiederherstellung stehen zusätzliche Funktionen zur Verfügung. Pro Schreib- oder Lesezyklus können je Kanal 128 Bytes an die Steuerung übertragen werden. Zur Übertragung von mehr als 128 Bytes müssen die Daten fragmentiert werden.

An die universellen digitalen Kanäle können Sensoren und Aktuatoren angeschlossen werden. Insgesamt lassen sich bis zu vier 3-Draht-PNP-Sensoren bzw. vier PNP-DC-Aktuatoren anschließen. Der maximale Ausgangsstrom pro Kanal beträgt 0,5 A.

4.4.1 Multiprotokoll-Technologie

Das Gerät ist in den folgenden drei Ethernet-Protokollen einsetzbar:

- Modbus TCP
- EtherNet/IP
- PROFINET

Das erforderliche Ethernet-Protokoll wird automatisch erkannt oder manuell ausgewählt.

Automatische Protokollerkennung

Durch die automatische Protokollerkennung kann das Multiprotokoll-Gerät ohne Eingriff des Anwenders (d. h. ohne Umprogrammierung) an allen drei genannten Ethernet-Systemen betrieben werden.

Während der Hochlaufphase (Snooping-Phase) des Systems erkennt das Modul, welches Ethernet-Protokoll einen Verbindungsaufbau anfordert, und stellt sich auf das entsprechende Protokoll ein. Danach kann mit den anderen Protokollen nur lesend auf das Gerät zugegriffen werden.

Manuelle Protokollauswahl

Der Anwender kann das Protokoll auch manuell auswählen. In diesem Fall wird die Snooping-Phase übersprungen und das Gerät ist fest auf das gewählte Protokoll eingestellt. Mit den anderen Protokollen kann nur lesend auf das Gerät zugegriffen werden.

Protokollabhängige Funktionen

Das Gerät unterstützt die folgenden Ethernet-Protokoll-spezifischen Funktionen:

PROFINE

- FSU (Fast Start-Up, priorisierter Hochlauf)
- Topologieerkennung
- Adresszuweisung mit LLDP
- MRP (Media Redundancy Protokoll)

EtherNet/IP

- QC (QuickConnect)
- Device Level Ring (DLR)

4.4.2 Datenübertragung an die SPS

Pro Schreib- oder Lesezyklus können je Kanal 128 Bytes übertragen werden. Zur Übertragung von mehr als 128 Bytes müssen die Daten fragmentiert werden. Die Menge der pro Zyklus übertragenen Schreib- oder Lesedaten ist für die verschiedenen Ethernet-Protokolle wie folgt einstellbar:

PROFINET	EtherNet/IP	Modbus TCP
 8 Bytes 16 Bytes (Default-Einstellung) 32 Bytes 64 Bytes 128 Bytes 	 16 Bytes 64 Bytes 128 Bytes (Default-Einstellung) 	 128 Bytes (fest eingestellt) Einstellbare Größe der Fragmente: 8 Bytes 16 Bytes (Default-Einstellung) 32 Bytes 64 Bytes 128 Bytes

4.4.3 RFID-Kanäle – Betriebsarten

Für die RFID-Kanäle sind fünf verschiedene Daten-Interfaces auswählbar:

- HF Kompakt
- HF Erweitert
- HF-Busmodus
- UHF Kompakt
- UHF Erweitert

Je nach ausgewähltem Daten-Interface stehen dem Anwender unterschiedliche Funktionen zur Verfügung.

Betriebsart HF Kompakt

Die Betriebsart **HF Kompakt** eignet sich für die Übertragung kleinerer Datenmengen bis zu 128 Byte (z. B. UID) in Singletag-Anwendungen.

Betriebsart HF Erweitert

In der Betriebsart **HF Erweitert** sind alle Funktionen der Betriebsart **HF Kompakt** enthalten. Zusätzlich können durch Fragmentierung Datenmengen von mehr als der pro Schreib- oder Lesezyklus eingestellen Datengröße (Beispiel: 128 Byte) übertragen werden. Die Betriebsart ist für Singletag-Anwendungen und Multitag-Anwendungen geeignet.

HINWEIS

Im Multitag-Modus werden nicht alle Befehle unterstützt.

Der Anwender kann über einen Befehls-Time-out festlegen, für welchen Zeitraum ein Befehl ausgeführt wird.

In der Betriebsart **HF Erweitert** lässt sich der Continuous Mode zum wiederholten Ausführen eines Inventory-, Datenträger-Info-, Lese- oder Schreibbefehls nutzen. Im Continuous Mode führt der Schreib-Lese-Kopf die Befehle selbstständig aus. Dabei werden verschiedene Daten im internen Speicher des Interface hinterlegt. Der Speicher fungiert als FIFO-Speicher.

Betriebsart HF-Busmodus

Im HF-Busmodus können bis zu 32 busfähige Schreib-Lese-Köpfe pro RFID-Kanal an das RFID-Modul angeschlossen werden. Je nach Anzahl und Stromverbrauch der angeschlossenen Schreib-Lese-Köpfe ist eine zusätzliche Spannungsversorgung erforderlich. Um den Bedarf einer zusätzlichen Spannungsversorgung zu ermitteln, muss eine Leistungsberechnung der angeschlossenen Schreib-Lese-Köpfe durchgeführt werden. Für die Leistungsberechnung der Schreib-Lese-Köpfe steht unter www.turck.com/hf-busmodus ein Hilfstool zur Verfügung.

Jeder angeschlossene Schreib-Lese-Kopf liefert im HF-Busmodus ein **Tag Present**. Der HF-Busmodus ist für statische Applikationen und langsame dynamische Applikationen geeignet, weil ein Befehl standardmäßig nur durch jeweils einen Schreib-Lese-Kopf bearbeitet werden kann.

Im HF-Continuous-Busmodus wird ein Befehl an allen Schreib-Lese-Köpfen in einer Bus-Topologie gleichzeitig ausgeführt. Die erfassten Daten werden im Ringspeicher des Moduls abgelegt.

Abb. 2: Aufbau HF-Busmodus

Die folgenden Schreib-Lese-Köpfe sind für den HF-Busmodus geeignet:

- TN-M18-H1147/C53
- TB-M18-H1147/C53
- TN-M30-H1147/C53
- TB-M30-H1147/C53
- TN-CK40-H1147/C53
- TB-Q08-0.15-RS4.47T/C53
- TN-Q14-0.15-RS4.47T/C53
- TN-Q80-H1147/C53
- TN-R42TC-EX/C53
- TN-R42TC-EX/C65
- TNLR-Q80-H1147/C53
- TNSLR-Q42TWD-H1147/C53
- TNSLR-Q80WD-H1147/C53

Der HF-Busmodus unterstützt HF-Schreib-Lese-Köpfe ab Firmware-Stand Vx.90.

Im Continuous Bus Mode werden HF-Schreib-Lese-Köpfe ab Firmware-Stand Vx.93 unterstützt.

Für den Continuous Bus Mode ist auf dem TBEN-S-Modul die Firmware-Version V3.6.1.0 oder höher erforderlich.

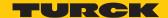
Betriebsart UHF Kompakt

In der Betriebsart **UHF Kompakt** lassen sich bis zu 128 Byte Daten in Singletag-Anwendungen übertragen (z. B. EPC).

Betriebsart UHF Erweitert

In der Betriebsart **UHF Erweitert** sind alle Funktionen der Betriebsart **UHF Kompakt** enthalten. Zusätzlich lassen sich Datenmengen von mehr als 128 Bytes übertragen. Die Betriebsart ist für Singletag-Anwendungen und Multitag-Anwendungen geeignet. Der Anwender kann über einen Befehls-Time-out festlegen, für welchen Zeitraum ein Befehl ausgeführt wird.

In der Betriebsart **UHF Erweitert** lässt sich der Presence Sensing Mode zum wiederholten Ausführen eines Inventory-, Lese- oder Schreibbefehls nutzen. Im Presence Sensing Mode werden die UHF-Reader automatisch ein- oder ausgeschaltet und führen die Befehle selbstständig aus. Dabei werden die gelesenen Daten im internen Speicher des Interface hinterlegt. Der Speicher fungiert dabei als FIFO-Speicher.


4.4.4 RFID-Befehle

Mit dem Gerät lassen sich die folgenden Befehle und Funktionen ausführen. Eine vollständige Beschreibung der Befehle finden Sie im Abschnitt "Einstellen".

- Leerlauf
- Inventory
- Lesen
- Schreiben
- EPC-Länge ändern und neuen EPC schreiben (UHF)
- Schreiben mit Validierung
- Continuous Mode
- Puffer auslesen (Cont. Mode)
- Continuous (Presence Sensing) Mode beenden
- UHF Continuous Presence Sensing Mode
- HF-Schreib-Lese-Kopf ausschalten
- Schreib-Lese-Kopf-Identifikation
- Fehler/Status UHF-Schreib-Lese-Kopf lesen
- Datenträger-Info
- Direkter Schreib-Lese-Kopf-Befehl
- HF-Schreib-Lese-Kopf-Adresse abfragen
- HF-Schreib-Lese-Kopf-Adresse setzen
- HF-Schreib-Lese-Kopf-Tuning
- Schreib-Lese-Kopf-Passwort setzen
- Schreib-Lese-Kopf-Passwort zurücksetzen
- Datenträger-Passwort setzen
- Datenträger-Schutz setzen
- Schutzstatus HF-Datenträger abfragen
- Permanente Sperre setzen (Lock)
- Datenträger unwiderruflich deaktivieren (Kill)
- Einstellungen UHF-Schreib-Lese-Kopf wiederherstellen
- Backup der Einstellung des UHF-Schreib-Lese-Kopfs
- Reset
- AFI von HF-Datenträger lesen
- DSFID von HF-Datenträger lesen
- AFI auf HF-Datenträger schreiben
- DSFID auf HF-Datenträger schreiben
- AFI in HF-Datenträger sperren
- DSFID in HF-Datenträger sperren
- Puffer löschen (Cont. Mode)

4.4.5 Schleifenzähler-Funktion

Zur schnellen Befehlsverarbeitung steht die Schleifenzähler-Funktion zur Verfügung. Mit der Schleifenzähler-Funktion sind nur zwei SPS-Zyklen erforderlich, um einen Befehl wiederholt auszuführen (Ablaufdiagramm siehe [> 281]). Dabei wird der Schleifenzähler erhöht, um einen Befehl wiederholt auszuführen. Bei der herkömmlichen Befehlsbearbeitung werden mindestens vier SPS-Zyklen benötigt. Um einen Befehl wiederholt auszuführen, muss bei der herkömmlichen Befehlsbearbeitung ein Befehl zurückgesetzt und anschließend neu gesetzt werden. Für die Schleifenzähler-Funktion stehen spezielle Befehle zur Verfügung. Wurde der Befehl erfolgreich ausgeführt, wird in den Response-Daten der Befehlscode ausgegeben.

4.4.6 Universelle digitale Kanäle – Funktionen

Das Gerät besitzt vier universelle digitale Kanäle, die konfigurationslos als Eingänge oder Ausgänge verwendet werden können. Insgesamt lassen sich bis zu vier 3-Draht-PNP-Sensoren bzw. vier PNP-DC-Aktuatoren anschließen. Der maximale Ausgangsstrom pro Kanal beträgt 0,5 A.

4.4.7 Turck Field Logic Controller-Funktion (FLC ARGEE)

Das Gerät unterstützt die Logikverarbeitung durch die Turck-"Field Logic Controller (FLC ARGEE)"-Funktion. Damit kann das Gerät kleine bis mittlere Steuerungsaufgaben zur Entlastung der zentralen Steuerung übernehmen. Die FLCs lassen sich in der Engineering-Umgebung ARGEE programmieren.

Ab Firmware-Version 3.6.0.0 unterstützt das Gerät die Engineering-Umgebung ARGEE 3.

Die ARGEE-Programmiersoftware steht unter www.turck.com zum kostenfreien Download zur Verfügung.

Das Zip-Archiv "SW_ARGEE_Environment_Vx.x.zip" enthält neben der Software auch die Dokumentation zur Programmierumgebung.

4.5 Technisches Zubehör

Optional erhältliches Zubehör für Montage, Anschluss und Parametrierung finden Sie in der Turck-Produktdatenbank unter www.turck.com. Das Zubehör ist nicht im Lieferumfang enthalten.

5 Montieren

Das Gerät kann auf einer Hutschiene gemäß EN 60715 (TS35) montiert oder auf eine Montageplatte aufgeschraubt werden. Sowohl Verbundmontage als auch Einzelmontage sind möglich.

5.1 Gerät in Zone 2 und Zone 22 montieren

In Zone 2 und Zone 22 können die Geräte in Verbindung mit dem Schutzgehäuse-Set TB-SG-S (ID 100014866) eingesetzt werden. Eine Verbundmontage ist in Zone 2 und Zone 22 nicht möglich.

GEFAHR

Explosionsfähige Atmosphäre
Explosion durch zündfähige Funken
Bei Einsatz in Zone 2 und Zone 22:

- ▶ Gerät nur montieren, wenn keine explosionsfähige Atmosphäre vorliegt.
- ► Auflagen durch die Ex-Zulassung beachten.
- ► Gehäuse aufschrauben. Torx-T8-Schraubendreher verwenden.
- Gerät auf die Grundplatte des Schutzgehäuses setzen und beides zusammen auf der Montageplatte befestigen, s. TBEN-S-Module auf Montageplatte befestigen.
- ► Gerät anschließen, s. [≥ 24].
- ► Gehäusedeckel gemäß der folgenden Abbildung montieren und verschrauben. Das Anzugsdrehmoment für die Torx-T8-Schraube beträgt 0,5 Nm.

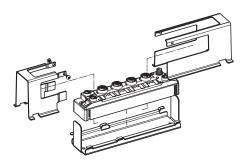


Abb. 3: Gerät in Schlagschutzgehäuse TB-SG-S montieren

5.2 Geräte im Verbund montieren

Mit den Verbindern TBNN-S0... können Modulgruppen zur Verbundmontage der Geräte gebildet werden.

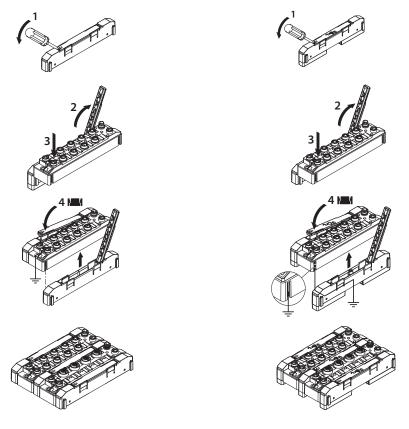


Abb. 4: Modulgruppen für die Montage auf Montageplatte bilden

Abb. 5: Modulgruppen für die Montage auf Hutschiene (TS35) bilden

- ▶ Verschlussklappe mit einem flachen Werkzeug (z. B. Schraubendreher) entriegeln (1).
- ► Verschlussklappe vollständig öffnen (2).
- ► TBEN-S-Modul und Verbinder so verbinden, dass die Feder des Verbinders in die Nut des TBEN-S-Moduls greift (3).
- ► Verschlussklappe herunterklappen und schließen, bis die Verschlussklappe hörbar einrastet (4).
- ► Schritte 1 bis 4 wiederholen, bis die Modulgruppe vollständig ist.

5.3 Auf Montageplatte befestigen

Die Geräte lassen sich über zwei M4-Schrauben auf einer vorgebohrten Montageplatte befestigen. Das maximale Anzugsdrehmoment für die M4-Schrauben beträgt 1,0 Nm.

▶ Modul oder Modulverbund gemäß folgender Abbildung befestigen.

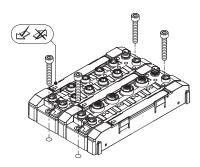


Abb. 6: Gerät auf Montageplatte befestigen

5.4 Auf Hutschiene (TS35) montieren

Mit den Verbindern TBNN-S0-DRS können die Geräte einzeln oder im Verbund auf eine Hutschiene (TS35) montiert werden.

ACHTUNG

Fehlerhafte Montage

Fehlfunktion durch fehlende Erdung

- Verbinder so ausrichten, dass der Pfeil auf der Verschlussklappe in Richtung der M8-Ethernet-Buchsen zeigt.
- ▶ Erdungskontakt des Verbinders mit dem Erdungskontakt des Moduls verbinden.
- Verbinder rechts und links des Moduls montieren.
- Modul oder Modulverbund so auf der Hutschiene platzieren, dass die Aussparungen des Verbinders die Hutschiene umschließen (1).
- ▶ Drehbolzen des Verbinders mit einem Schraubendreher schließen (2).
- ▶ Optional: Gerät erden.

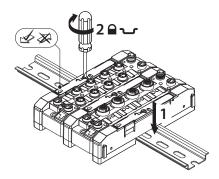
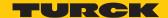



Abb. 7: Modulverbund auf Hutschiene montieren

HINWEIS

Um die Stabilität auf der Hutschiene zu erhöhen, können rechts und links des Moduls oder des Modulverbunds Endwinkel montiert werden.

5.5 Gerät im Freien montieren

Das Gerät ist UV-beständig gemäß DIN EN ISO 4892-2. Direkte Sonneneinstrahlung kann zu Materialabrieb und Farbveränderungen führen. Die mechanischen und elektrischen Eigenschaften des Geräts werden nicht beeinträchtigt.

▶ Um Materialabrieb und Farbveränderungen zu vermeiden: Gerät z. B. durch die Verwendung von Schutzblechen vor direkter Sonneneinstrahlung schützen.

5.6 Gerät erden

5.6.1 Erdungs- und Schirmungskonzept

Feldbus- und I/O-Teil der TBEN-S-Module können getrennt geerdet werden.

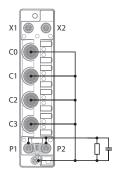


Abb. 8: Ersatzschaltbild, Schirmungskonzept

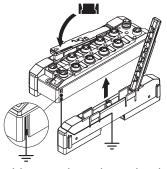


Abb. 9: Erdungsspange (1), Erdungsring (2) und Metallschraube (3)

Abb. 10: Erdungskontakt

Abb. 11: Erdung der Verbinder TBNN-S0-DRS

Die Erdungsspange (1) an den M8-Steckverbindern für den Feldbusanschluss (P1, P2) verbindet den Schirm der Feldbusleitungen.

Der Erdungsring (2) führt die Schirmung am Flansch der M8-Steckverbinder für den Feldbusanschluss über ein RC-Glied aus.

Bei der Montage auf eine Montageplatte mit den Verbindern TBNN-S0-STD wird das Modul durch eine Metallschraube (3) im unteren Montageloch automatisch mit dem Bezugspotenzial der Anlage verbunden. Die Verbinder des Typs TBNN-S0-DRS zur Montage der TBEN-S-Module auf einer Hutschiene (TS 35) verbinden den Erdungskontakt (4) der Module mit Hutschiene und damit mit FE.

5.6.2 Gerät erden (FE)

Erdungsspange und Erdungsring sind miteinander verbunden.

▶ Wenn ein gemeinsames Bezugspotenzial von I/O-Ebene und Feldbusebene nicht erwünscht ist: Erdungsspange zur Entkopplung des Feldbusschirms entfernen.

Gerät erden – Montage auf Hutschiene

- ▶ Bei Montage auf einer Hutschiene mit den Verbindern TBNN-S0-DRS die beigelegte Metallschraube am unteren Montageloch des TBEN-S-Moduls befestigen.
- Die Schirmung des Feldbusanschlusses und der M8-Flansch der I/O-Ebene sind über die Hutschiene mit dem Bezugspotenzial der Anlage verbunden.

Gerät erden – Montage auf Montageplatte

- ▶ Bei Montage auf einer Montageplatte das Gerät mit einer M4-Metallschraube befestigen.
- Die Schirmung des Feldbusanschlusses und der M8-Flansch der I/O-Ebene sind über die M4-Metallschraube mit dem Bezugspotenzial der Anlage verbunden.

Erdungsspange entfernen

 Erdungsspange mit einem flachen Schlitz-Schraubendreher nach vorne schieben und entfernen.

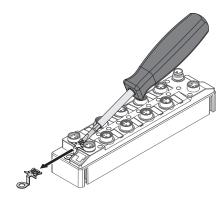


Abb. 12: Erdungsspange entfernen

Erdungsspange montieren

- ► Erdungsspange ggf. mithilfe eines Schraubendrehers zwischen den Feldbus-Steckverbindern so wieder einsetzen, dass Kontakt zum Metallgehäuse der Steckverbinder besteht.
- Der Schirm der Feldbusleitungen liegt auf der Erdungsspange auf.

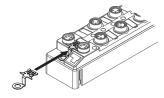


Abb. 13: Erdungsspange montieren

6 Anschließen

ACHTUNG

Eindringen von Flüssigkeiten oder Fremdkörpern durch undichte Anschlüsse Verlust der Schutzart IP65/IP67/IP69K, Geräteschäden möglich

- ▶ M8-Steckverbinder mit einem Anzugsdrehmoment von 0,4 Nm anziehen.
- ► M12-Steckverbinder mit einem Anzugsdrehmoment von 0,6 Nm anziehen.
- ▶ Nur Zubehör verwenden, das die Schutzart gewährleistet.
- ► Nicht verwendete Steckverbinder mit geeigneten Verschraub- oder Blindkappen verschließen. Das Anzugsdrehmoment für die Verschraubkappen beträgt 0,5 Nm.

6.1 Gerät in Zone 2 und Zone 22 anschließen

GEFAHR

Explosionsfähige Atmosphäre
Explosion durch zündfähige Funken
Bei Einsatz in Zone 2 und Zone 22:

- ▶ Stromkreise nur trennen und verbinden, wenn keine Spannung anliegt.
- ▶ Nur Anschlussleitungen verwenden, die für den Einsatz im explosionsgefährdeten Bereich geeignet sind.
- ▶ Alle Steckverbinder verwenden oder mit geeigneten Verschraub- oder Blindkappen verschließen. Das Anzugsdrehmoment für die Verschraubkappen beträgt 0,5 Nm.
- ► Auflagen durch die Ex-Zulassung beachten.

6.2 Gerät an Ethernet anschließen

Zum Anschluss an Ethernet verfügt das Gerät über einen Autocrossing-Switch mit zwei 4-poligen M8-Ethernet-Steckverbindern.

ACHTUNG

Vertauschen von Ethernet- und Versorgungsleitungen

Zerstörung der Modulelektronik

- ▶ Beim Anschließen der Ethernet- und Versorgungsleitungen auf die Verwendung der korrekten M8-Steckverbinder achten:
 - Ethernet: P1 und P2
 - Versorgungsspannung: X1 und X2

Abb. 14: M8-Ethernet-Steckverbinder zum Anschluss an den Feldbus

- Gerät gemäß Pinbelegung an den Feldbus anschließen.
- Nicht verwendete Steckverbinder mit geeigneten Verschraub- oder Blindkappen verschließen. Das Anzugsdrehmoment für die Verschraubkappen beträgt 0,5 Nm.

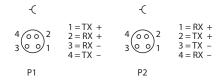


Abb. 15: Ethernet-Anschlüsse – Pinbelegung P1 und P2

6.2.1 QuickConnect- und Fast-Start-Up-Applikationen

- In QuickConnect- und Fast-Start-Up-Applikationen keine Crossover-Leitungen nutzen.
- Ankommende Ethernet-Leitungen an P1 anschließen.
- ▶ Abgehende Ethernet-Leitungen an P2 anschließen.

6.3 Versorgungsspannung anschließen

Zum Anschluss an die Versorgungsspannung verfügt das Gerät über zwei 4-polige M8-Steckverbinder. V1 und V2 sind galvanisch voneinander getrennt.

ACHTUNG

Vertauschen von Ethernet- und Versorgungsleitungen

Zerstörung der Modulelektronik

- ▶ Beim Anschließen der Ethernet- und Versorgungsleitungen auf die Verwendung der korrekten M8-Steckverbinder achten:
 - Ethernet: P1 und P2
 - Versorgungsspannung: X1 und X2

Abb. 16: M8-Steckverbinder zum Anschluss an die Versorgungsspannung

- ▶ Gerät gemäß unten stehender Pinbelegung an die Versorgungsspannung anschließen.
- Nicht verwendete Steckverbinder mit geeigneten Verschraub- oder Blindkappen verschließen. Das Anzugsdrehmoment für die Verschraubkappen beträgt 0,5 Nm.

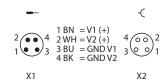


Abb. 17: Pinbelegung Versorgungsspannungs-Anschlüsse

Anschluss	Bedeutung
X1	Einspeisen der Spannung
X2	Weiterführen der Spannung zum nächsten Teilnehmer
V1	Versorgungsspannung 1 (inkl. Elektronikversorgung)
V2	Versorgungsspannung 2

HINWEIS

Die Systemspannung (V1) und die Lastspannung (V2) werden separat eingespeist und überwacht. Bei einer Unterschreitung der zulässigen Spannung werden die Steckplätze gemäß Versorgungskonzept des Modultyps abgeschaltet. Bei einer Unterschreitung von V2 wechselt die LED PWR von Grün auf Rot. Bei einer Unterschreitung von V1 erlischt die LED.

6.4 RFID-Schreib-Lese-Geräte anschließen

Zum Anschluss von RFID-Schreib-Lese-Geräten verfügt das Gerät über zwei 5-polige M12-Steckverbinder.

Abb. 18: M12-Steckverbinder zum Anschluss von Schreib-Lese-Geräten

- Schreib-Lese-Geräte gemäß unten stehender Pinbelegung an das Gerät anschließen.
- Nicht verwendete Steckverbinder mit geeigneten Verschraub- oder Blindkappen verschließen. Das Anzugsdrehmoment für die Verschraubkappen beträgt 0,5 Nm.

```
1 = V<sub>aux</sub>1
2 = Data B
1 0 0 3 3 = GND V1
4 = Data A
5 = FE/Shield
```

Abb. 19: RS485 – Pinbelegung Anschlüsse für Schreib-Lese-Gerät

```
-(
2 1 = BN (+)
2 = BK (Data)
3 3 = BU (GND)
4 = WH (Data)
5 = shield
```

Abb. 20: Verbindungsleitungen .../S2500 - Pinbelegung Anschlüsse für Schreib-Lese-Gerät

```
-(
2 1 = BN (+)
2 = WH (Data)
3 3 = BU (GND)
5 4 4 = BK (Data)
5 = shield
```

Abb. 21: Verbindungsleitungen .../S2501 – Pinbelegung Anschlüsse für Schreib-Lese-Gerät

```
2 1 = RD (+)
2 = BU (Data)
1 0 0 0 3 3 = BK (GND)
4 = WH (Data)
5 = shield
```

Abb. 22: Verbindungsleitungen .../S2503 – Pinbelegung Anschlüsse für Schreib-Lese-Gerät

6.4.1 Schreib-Lese-Köpfe für den HF-Busmodus anschließen

Im HF-Busmodus können bis zu 32 busfähige Schreib-Lese-Köpfe pro RFID-Kanal an das Gerät angeschlossen werden. Ob für die angeschlossenen Schreib-Lese-Köpfe eine zusätzliche Spannungsversorgung erforderlich ist, muss der Anwender im Rahmen einer Leistungsbetrachtung klären (siehe Angaben im Datenblatt oder Hilfstool unter www.turck.com/hf-busmodus).

Die maximale Gesamtlänge des Busses beträgt 50 m.

Schreib-Lese-Köpfe für den HF-Busmodus im Nicht-Ex-Bereich anschließen

Für den Busmodus im Nicht-Ex-Bereich sind die folgenden Geräte erforderlich:

- Verteilerbaustein VT2-FKM5-FKM5-FSM5 (ID 6930573) zum Anschluss mehrerer Schreib-Lese-Köpfe an einen RFID-Kanal
- Abschlusswiderstand RSE57-TR2/RFID (ID 6934908)
- Optional: Verteilerbaustein VB2-FKM5-FSM5.205-FSM5.305/S2550 (ID 6936821) zum Einspeisen einer zusätzlichen Versorgungsspannung
- RFID-Verbindungsleitungen (z. B. RK4.5T-0.3-RS4.5T/S2503)
- ► Schreib-Lese-Köpfe gemäß unten stehender Abbildung anschließen. Die max. Länge der Stichleitung beträgt 2 m.
- Leistung der Spannungsversorgung insbesondere im Einschaltmoment (siehe Datenblatt) sowie die maximale Strombelastbarkeit der Leitungen (4 A) berücksichtigen.
- ➤ Spannungsabfall auf der Leitung berücksichtigen. Gegebenenfalls zusätzliche Versorgungsspannung zwischen den Schreib-Lese-Köpfen über Verteilerbaustein VB2-FKM5-FSM5.205-FSM5.305/S2550 einspeisen.
- Nach dem letzten Schreib-Lese-Kopf einen Abschlusswiderstand anschließen (z. B. RSE57-TR2/RFID).

Abb. 23: Aufbau HF-Busmodus

Schreib-Lese-Köpfe für den HF-Busmodus im Ex-Bereich anschließen

HINWEIS

Informationen zu den maximalen Leitungslängen im Ex-Bereich entnehmen Sie den Datenblättern der angeschlossenen Schreib-Lese-Köpfe.

Für den Busmodus im Ex-Bereich sind die folgenden Geräte erforderlich:

- Schreib-Lese-Kopf TN-R42TC-EX/C53 (ID 100020167)
- Schreib-Lese-Kopf TN-R42TC-EX/C65 (ID 100028462) mit integriertem Abschlusswiderstand
- RFID-Verbindungsleitungen .../S2500
- Bei Einsatz in Zone 2/22:
 - Verteilerbaustein VT2-FKM5-FKM5-FSM5 (ID 6930573) zum Anschluss mehrerer Schreib-Lese-Köpfe an einen RFID-Port
 - Sicherheitsclip SC-M12/3GD (ID 6900390)
 - Optional: Verteilerbaustein VB2-FKM5-FSM5.205-FSM5.305/S2550 (ID 6936821) zum Einspeisen einer zusätzlichen Versorgungsspannung
- Bei Einsatz in Zone 1/21:
 - Ex-e-Klemmenkasten

GEFAHR

Explosionsfähige Atmosphäre
Explosion durch zündfähige Funken

Bei Einsatz in Zone 2/22:

- Schreib-Lese-Köpfe nur anschließen, wenn keine explosionsfähige Atmosphäre vorliegt oder wenn das Gerät im spannungslosen Zustand ist.
- ► M12-Steckverbinder mit Sicherheitsclip SC-M12/3GD gegen unbeabsichtigtes Entfernen während des Betriebs schützen.
- ► M12-Steckverbinder gegen mechanische Beschädigung schützen.

GEFAHR

Explosionsfähige Atmosphäre

Explosion durch zündfähige Funken

- ▶ Bei Einsatz in Zone 1/21 Betriebsanleitung der angeschlossenen Geräte beachten.
- ▶ Bei Einsatz in Zone 2/22: Schreib-Lese-Köpfe über Verteilerbausteine VT2-FKM5-FKM5-FSM5 gemäß unten stehender Abbildung anschließen (max. Anzugsdrehmoment siehe Datenblatt der verwendeten Leitung). Die max. Länge der Stichleitung beträgt 2 m.
- ▶ Bei Einsatz in Zone 1/21: Schreib-Lese-Köpfe über Klemmenkästen gemäß unten stehender Abbildung anschließen. Die max. Länge der Stichleitung beträgt 2 m.
- Leistung der Spannungsversorgung insbesondere im Einschaltmoment (siehe Datenblatt) sowie die maximale Strombelastbarkeit der Leitungen (4 A) berücksichtigen.
- ▶ Spannungsabfall auf der Leitung berücksichtigen. Bei Einsatz in Zone 2/22 gegebenenfalls zusätzliche Versorgungsspannung zwischen den Schreib-Lese-Köpfen über Verteilerbaustein VB2-FKM5-FSM5.205-FSM5.305/S2550 einspeisen. Ohne zusätzliche Versorgungsspannung lassen sich max. 20 Schreib-Lese-Köpfe anschließen.
- Schreib-Lese-Kopf TN-R42TC-EX/C65 mit integriertem Abschlusswiderstand als letztes Gerät verwenden. Keinen separaten Abschlusswiderstand anschließen.

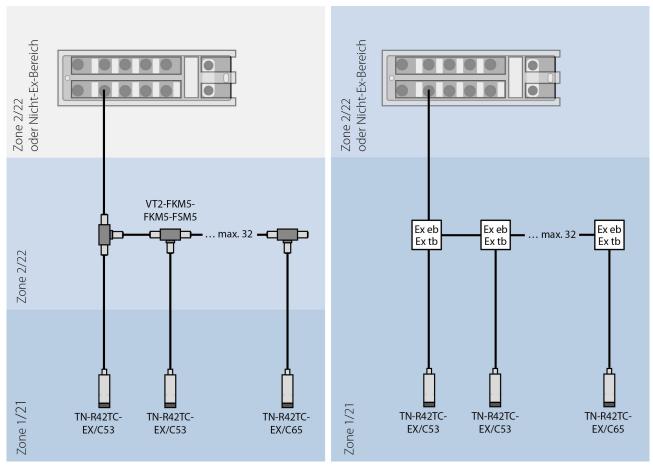
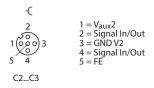


Abb. 24: Systemaufbau

6.5 Digitale Sensoren und Aktuatoren anschließen


Zum Anschluss von digitalen Sensoren und Aktuatoren verfügt das Gerät über zwei 5-polige M12-Steckverbinder. An die DXP-Anschlüsse können Sensoren und Aktuatoren in folgenden Kombinationen angeschlossen werden:

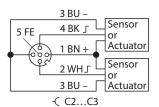

- 2 digitale Eingänge
- 2 digitale Ausgänge
- 1 digitaler Eingang und 1 digitaler Ausgang

Abb. 25: M12-Steckverbinder zum Anschluss von digitalen Sensoren und Aktuatoren

- Sensoren und Aktuatoren gemäß unten stehender Pinbelegung an das Gerät anschließen.
- Nicht verwendete Steckverbinder mit geeigneten Verschraub- oder Blindkappen verschließen. Das Anzugsdrehmoment für die Verschraubkappen beträgt 0,5 Nm.

Aktuatoren - Pinbelegung

Abb. 26: Anschlüsse für digitale Sensoren und Abb. 27: Anschlüsse für digitale Sensoren und Aktuatoren - Anschlussbild

Die Kanäle sind den Steckplätzen wie folgt zugeordnet:

Kanal	Steckplatz	Pin
DXP (Ch4)	C2	4
DXP (Ch5)	C2	2
DXP (Ch6)	C3	4
DXP (Ch7)	C3	2

7 In Betrieb nehmen

Nach Anschluss der Leitungen und durch Aufschalten der Versorgungsspannung geht das Gerät automatisch in Betrieb.

Angeschlossene HF-Schreib-Lese-Köpfe sind automatisch eingeschaltet. Angeschlossene UHF-Reader sind automatisch ausgeschaltet und aktivieren sich automatisch bei der Ausführung eines Befehls (außer Leerlauf).

In der Default-Konfiguration ist der Leerlauf-Befehl (0x0000) aktiv. Wenn ein HF-Schreib-Lese-Kopf angeschlossen ist und sich ein Datenträger im Erfassungsbereich befindet, wird das Bit **Datenträger vorhanden** gesetzt und der UID in den Eingangsdaten ausgegeben.

▶ Um weitere Befehle ausführen zu können, IP-Adresse des Geräts einstellen.

Wenn ein UHF-Reader angeschlossen ist, muss das Gerät eingestellt werden:

- ► IP-Adresse einstellen.
- Befehl an UHF-Reader senden.

7.1 IP-Adresse einstellen

Im Lieferzustand besitzt das Gerät die IP-Adresse 192.168.1.254. Ein PROFINET-Gerätename ist noch nicht vergeben. Die IP-Adresse kann über das Turck Service Tool, den DTM, den Webserver, einen DHCP-Server oder PROFINET DCP eingestellt werden. Im folgenden Beispiel wird die IP-Adresse über das Turck Service Tool eingestellt. Das Turck Service Tool steht unter www.turck.com kostenlos zum Download zur Verfügung.

- ▶ Gerät über die Ethernet-Schnittstelle mit einem PC verbinden.
- ► Turck Service Tool öffnen.
- ▶ Suchen klicken oder [F5] drücken.

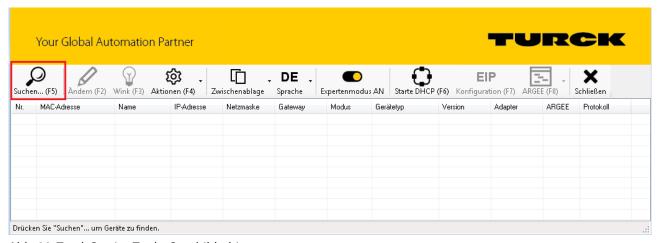


Abb. 28: Turck Service Tool – Startbildschirm

Das Turck Service Tool zeigt die angeschlossenenen Geräte an.

Your Global Automation Partner 颔 X DE Suchen... (F5) Ändern (F2) Wink (F3) Aktionen (F4) Zwischenablage Sprache Expertenmodus AUS Schließen Modus Gerätetyp Version Adapter 00:07:46:0C:CB:6A 0.0.0.0 0.0.0.0 0.0.0.0 PGM_DHCP TBEN-S2-2RFID-4DXP 0.1.13.7 192.168.1.60 DCP, Turck 00:07:46:25:00:9D 169.254.53.16 255.255.0.0 0.0.0.0 TX507-P3CV01 2.7.1.0 192.168.1.60 00:13:3B:9B:9A:7F 192.168.1.60 255.255.255.0 0.0.0.0 SIMATIC-PC 192.168.1.60 DCP

Abb. 29: Turck Service Tool - Gefundene Geräte

- ► Gewünschtes Gerät anklicken.
- ▶ Ändern klicken oder [F2] drücken.

HINWEIS

Virtuelle Netzwerk-Adapter können beim Zugriff auf die gefundenen Geräte zu Kommunikationsproblemen führen.

▶ Virtuelle Netzwerk-Adapter deaktivieren.

Abb. 30: Turck Service Tool – zu adressierendes Gerät auswählen

HINWEIS

Ein Klick auf die IP-Adresse des Geräts öffnet den Webserver.

- ▶ IP-Adresse sowie ggf. Netzwerkmaske und Gateway ändern.
- ▶ Änderungen mit einem Klick auf Im Gerät setzen übernehmen.

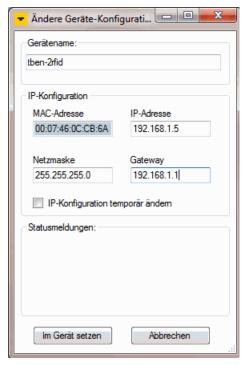


Abb. 31: Turck Service Tool – Geräte-Konfiguration ändern

7.1.1 Adressierungsmethode im Webserver prüfen und ändern

Über den Webserver kann die Adressierungsmethode per DHCP oder PGM angezeigt und eingestellt werden.

► Eingestellte Adressierungsmethode anzeigen: Parameter → Addressing method Standardmäßig ist die Adressierung per DHCP eingestellt.

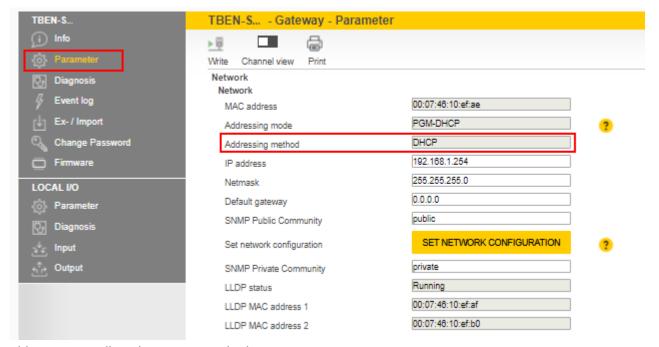


Abb. 32: Eingestellte Adressierungsmethode anzeigen

Statische IP-Adresse über PGM vergeben

Wenn der DHCP-Modus aktiv ist, kann folgendermaßen eine statische IP-Adresse vergeben werden:

- ▶ IP-Adresse im Feld **IP address** eingeben.
- ► **Set network configuration** ausführen.
- ⇒ Die IP-Adresse ist vergeben.

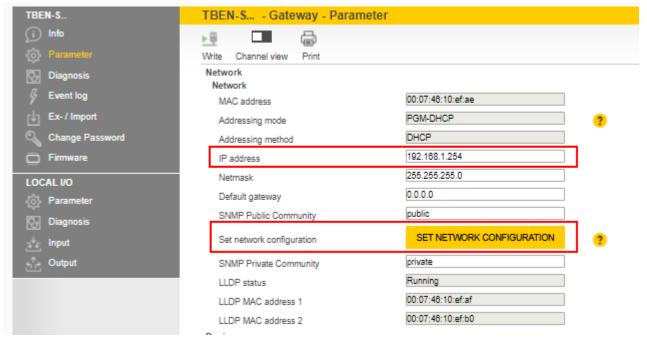


Abb. 33: Statische IP-Adresse vergeben

IP-Adresse über DHCP automatisch vergeben

Wenn der Static-Modus aktiv ist, kann folgendermaßen in den DHCP-Modus gewechselt werden:

- ▶ Unter Parameter auf Network reset and reboot oder Factory reset and reboot klicken.
- ▶ Den folgenden Dialog bestätigen.
- ⇒ Der Reset wird ausgeführt und der DHCP-Modus ist aktiviert.

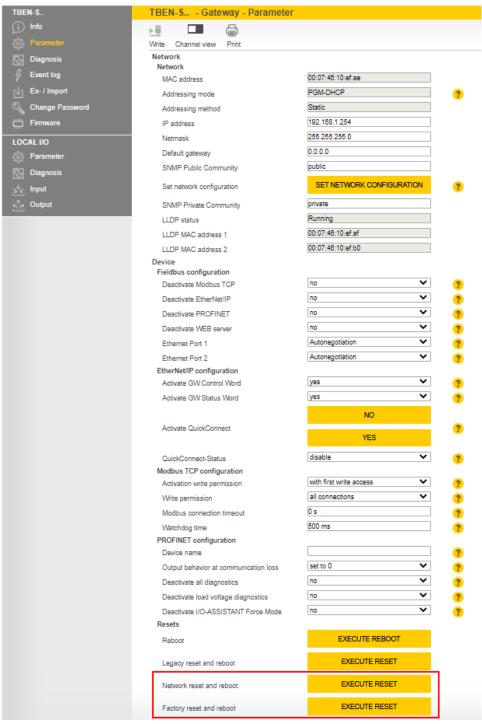


Abb. 34: DHCP-Modus aktivieren

7.2 Gerät an einen Modbus-Master anbinden mit CODESYS

Verwendete Hardware

In diesem Beispiel werden die folgenden Hardware-Komponenten verwendet:

- HF-Schreib-Lese-Kopf TN-Q80-H1147
- Turck-HMI TX507-P3CV01 (Modbus-Master)
- Blockmodul TBEN-S2-2RFID-4DXP (IP-Adresse: 192.168.1.61)

Verwendete Software

In diesem Beispiel wird die folgende Software verwendet:

■ CODESYS 3.5.8.1 (kostenfrei als Download erhältlich unter www.turck.com)

Voraussetzungen

- Die Programmiersoftware ist geöffnet.
- Ein neues Projekt ist angelegt.
- Die Steuerung wurde dem Projekt hinzugefügt.

7.2.1 Gerät mit der Steuerung verbinden

Um das Gerät mit der Steuerung zu verbinden, müssen zunächst die folgenden Komponenten in CODESYS hinzugefügt werden:

- Ethernet-Adapter
- Modbus TCP-Master
- Modbus TCP-Slave

Ethernet-Adapter hinzufügen

▶ Im Projektbaum Rechtsklick auf **Device** (TX507-P3CV01) ausführen.

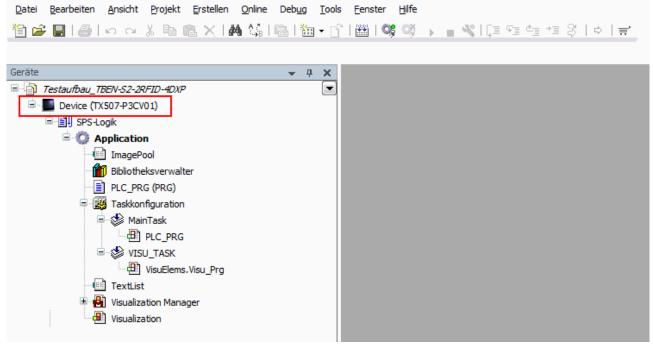


Abb. 35: Projektbaum

- ► Gerät anhängen auswählen.
- ► Ethernet-Adapter auswählen.
- ► Gerät anhängen klicken.
- Der Ethernet-Adapter erscheint als **Ethernet (Ethernet)** im Projektbaum.

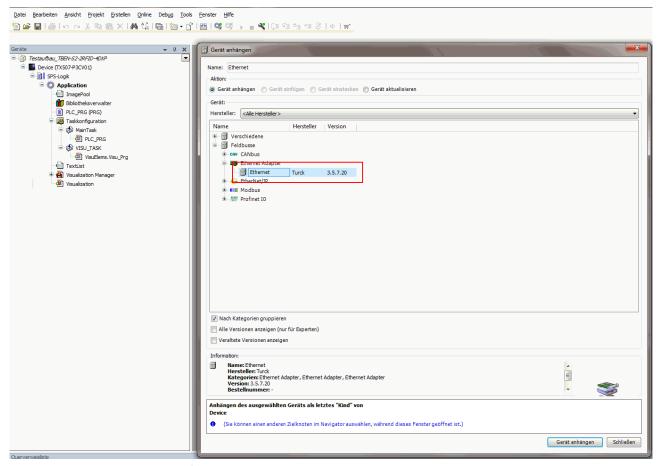


Abb. 36: Ethernet-Adapter hinzufügen

Modbus-Master hinzufügen

- Im Projektbaum Rechtsklick auf Ethernet (Ethernet) ausführen.
- ► Gerät anhängen auswählen.
- ▶ Modbus TCP Master doppelt klicken.
- ⇒ Der Modbus-Master erscheint als **Modbus_TCP_Master** (**Modbus TCP Master**) im Projektbaum.

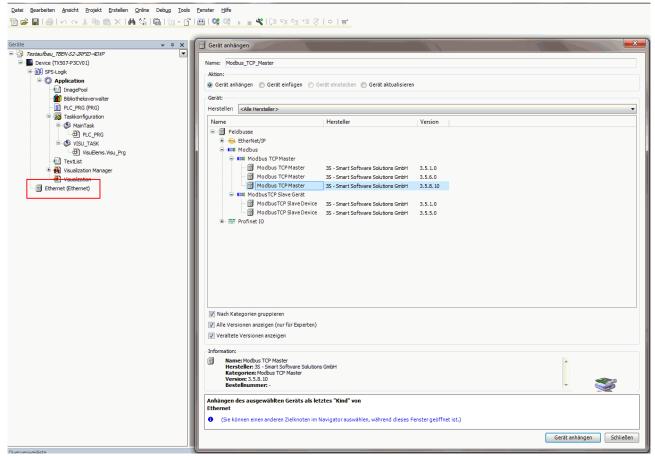


Abb. 37: Modbus-Master hinzufügen

Modbus-Slave hinzufügen

- Im Projektbaum Rechtsklick auf Modbus_TCP_Master (Modbus TCP Master) ausführen.
- ► Gerät anhängen auswählen.
- ▶ Modbus TCP Slave doppelt klicken.
- ⇒ Der Modbus-Slave erscheint als **Modbus_TCP_Slave** im Projektbaum.

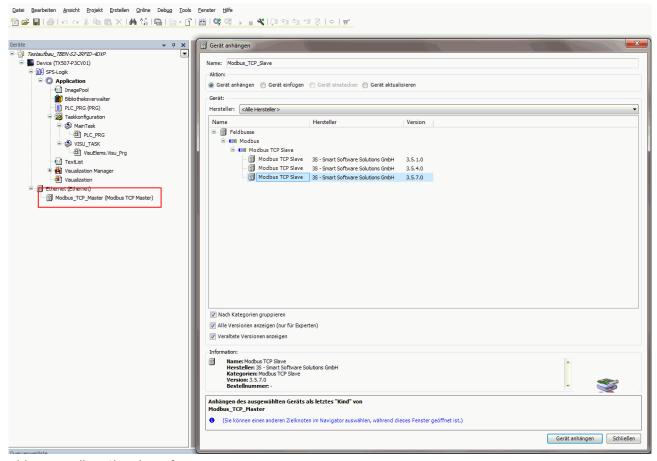


Abb. 38: Modbus-Slave hinzufügen

7.2.2 Modbus-Slave umbenennen

- ► Modbus-Slave im Projektbaum anklicken.
- ► [F2]-Taste drücken.
- Namen des Slaves im Projektbaum der Applikation anpassen.

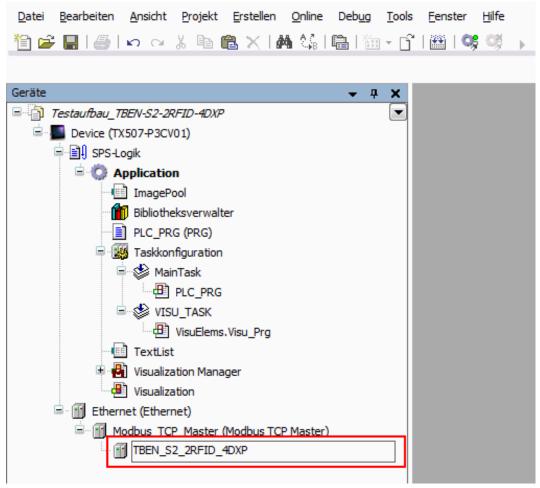


Abb. 39: Gerätenamen vergeben (hier: TBEN-S2-2RFID_4DXP)

7.2.3 Netzwerk-Schnittstellen einrichten

- ▶ **Device** → **Netzwerk durchsuchen** anklicken.
- ▶ Modbus-Master auswählen und mit **OK** bestätigen.

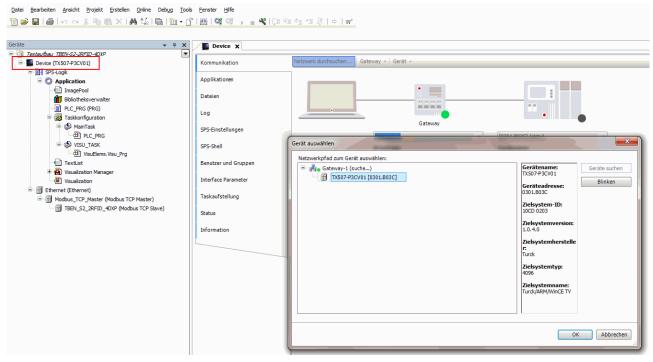


Abb. 40: Netzwerk-Schnittstelle zum Modbus-Master einrichten

- ▶ Doppelklick auf **Ethernet** ausführen.
- In der Registerkarte **Allgemein** über die Schaltfläche ... den Dialog **Netzwerk-Adapter** öffnen.
- ▶ IP-Adresse des Modbus-Masters angeben.

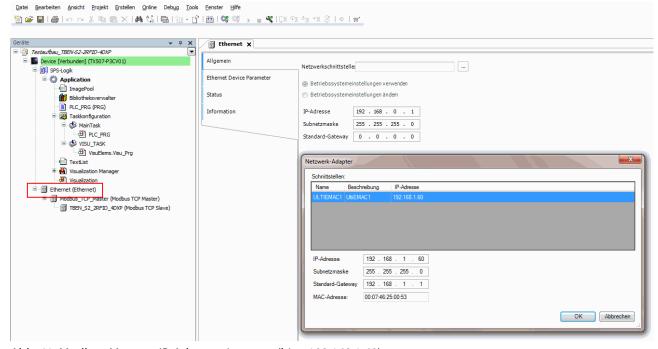


Abb. 41: Modbus-Master – IP-Adresse eintragen (hier: 192.168.1.60)

7.2.4 Modbus TCP-Slave – IP-Adresse einrichten

- ▶ Doppelklick auf den Modbus TCP-Slave ausführen.
- ▶ In der Registerkarte **Allgemein** die IP-Adresse des Slaves angeben.

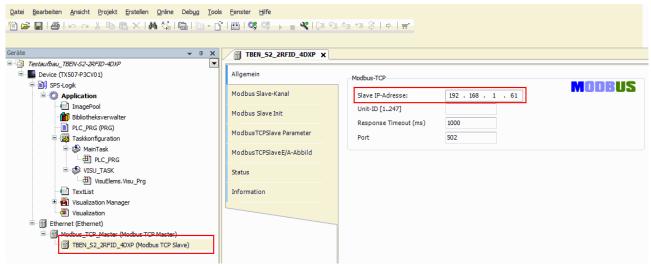


Abb. 42: Modbus-Slave – IP-Adresse eintragen (hier: 192.268.1.61)

7.2.5 Modbus-Kanäle (Register) definieren

Kanal 0 definieren (Eingangsdaten)

- ▶ Doppelklick auf den Modbus TCP-Slave ausführen.
- ▶ In der Registerkarte **Modbus Slave-Kanal** → **Kanal hinzufügen** auswählen.
- ► Folgende Werte angeben:
- Name des Kanals
- Zugriffstyp: Read Holding Registers
- Offset: 0x0000
- Länge: 64 Register (128 Bytes)
- ▶ Mit **OK** bestätigen.

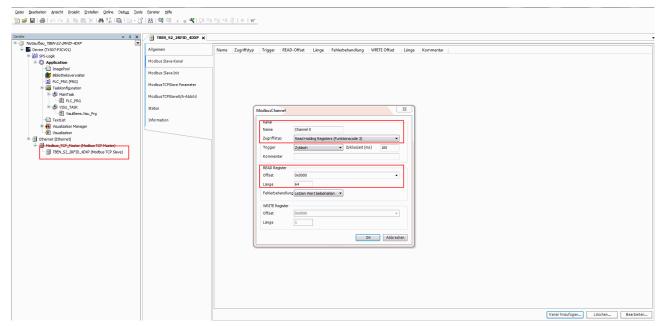


Abb. 43: READ-Register definieren

Kanal 1 definieren (Ausgangsdaten)

- ▶ Doppelklick auf den Modbus TCP-Slave ausführen.
- ▶ In der Registerkarte **Modbus Slave-Kanal** → **Kanal hinzufügen** auswählen.
- ► Folgende Werte angeben:
- Name des Kanals
- **Zugriffstyp**: Write Multiple Registers
- **Offset**: 0x0800
- **Länge**: 64 Register (128 Bytes)
- ► Mit **OK** bestätigen.

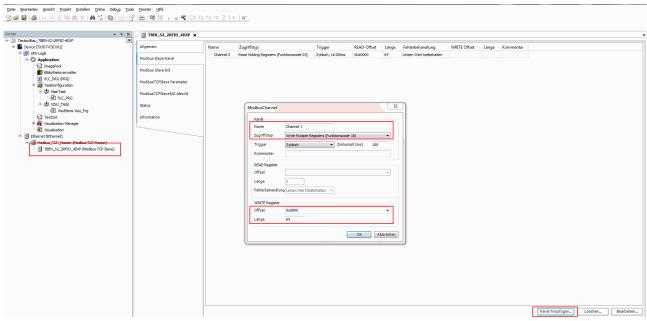


Abb. 44: WRITE-Register einstellen

Kanal-Adressen ändern

- ▶ Doppelklick auf den Modbus TCP-Slave ausführen.
- ▶ Registerkarte Modbus TCP Slave E/A-Abbild anklicken.
- Adresse in der entsprechenden Tabellenspalte eintragen.

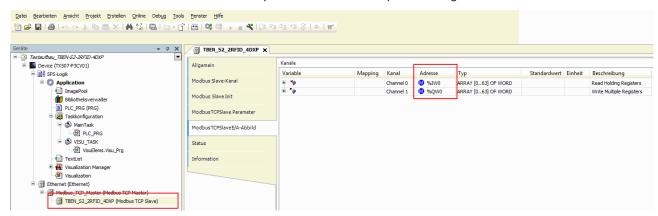


Abb. 45: Kanal-Adressen ändern

- 7.2.6 Gerät online mit der Steuerung verbinden
 - ► Gerät markieren.
 - ► Online → Einloggen klicken.

7.2.7 Prozessdaten auslesen

Die Prozessdaten können mithilfe des Mappings interpretiert werden, wenn das Gerät online mit der Steuerung verbunden ist.

- ▶ Doppelklick auf den Modbus TCP-Slave ausführen.
- ▶ Registerkarte Modbus TCP Slave E/A-Abbild anklicken.
- ⇒ Die Prozessdaten werden angezeigt.

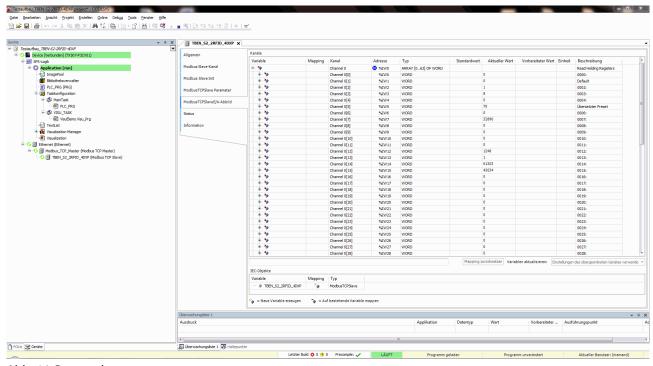
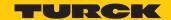


Abb. 46: Prozessdaten

7.2.8 Modbus TCP – Mapping

RFID-Kanäle – Parameterdaten

Beschreibung	Register		Bit-Offset	Bitlänge
	Kanal 0	Kanal 1		
Betriebsart	0xB000	0xB012	0	8
Auswahl Datenträger-Typ	0xB000	0xB012	8	8
Überbrückungszeit	0xB001	0xB013	0	16
HF: Multitag	0xB002	0xB014	4	1
HF: Heartbeat Schreib-Lese-Kopf	0xB002	0xB014	5	1
Leitungsabschluss aktiv	0xB002	0xB014	6	1
HF: Automatisches Tuning Schreib-Lese-Kopf	0xB002	0xB014	7	1
Diagnose HF-Schreib-Lese-Kopf- Tuning deaktivieren	0xB002	0xB014	8	1
Diagnose-Eingangsfilter	0xB002	0xB014	15	1
HF-Idle-Mode	0xB003	0xB015	0	8
Befehlswiederholungen im Fehlerfall	0xB004	0xB016	0	8
HF: Befehl im Continuous Mode	0xB004	0xB016	8	8
HF: Länge im Continuous Mode	0xB005	0xB017	0	16
HF: Adresse im Continuous Mode	0xB006	0xB018	0	32
Länge Lesedaten	0xB010	0xB022	0	16
Länge Schreibdaten	0xB011	0xB023	0	16
HF-Busmodus: Schreib-Lese-Kopf 1 aktivieren	0xB00E	0xB020	0	1
	•••	•••		1
HF-Busmodus: Schreib-Lese-Kopf 16 aktivieren	0xB00E	0xB020	15	1
HF-Busmodus: Schreib-Lese-Kopf 17 aktivieren	0xB00F	0xB021	0	1
				1
HF-Busmodus: Schreib-Lese-Kopf 32 aktivieren	0xB00F	0xB021	15	1


RFID-Kanäle – Prozess-Eingangsdaten

Manual Company Manual Company Manual Company	Beschreibung	Register		Bit-Offset	Bitlänge
Fehler 0x0000 0x004C 14 1 Busy 0x0000 0x004C 15 1 Datenträger im Erfassungsbereich 0x0002 0x004E 0 1 HF-Schreib-Lese-Kopf eingeschaltet 0x0002 0x004E 8 1 Continuous Mode aktiv 0x0002 0x004E 9 1 Schreib-Lese-Kopf eingeschaltet 0x0002 0x004E 9 1 Schreib-Lese-Kopf verstimmt 0x0002 0x004E 4 1 Parameter vom Schreib-Lese-Kopf 0x0002 0x004E 5 1 nicht unterstützt 5 1 1 Schreib-Lese-Kopf meldet Fehler 0x0002 0x004E 5 1 Schreib-Lese-Kopf meldet Fehler 0x0002 0x004E 7 1 Länge 0x0001 0x0002 0x004E 7 1 Schreib-Lese-Kopf meldet Fehler 0x0003 0x004F 0 16 Fehlercode 0x0003 0x004F 0 16		Kanal 0	Kanal 1		
Busy	Antwortcode	0x0000	0x004C	0	14
Datenträger im Erfassungsbereich 0x0002 0x004E 0 1	Fehler	0x0000	0x004C	14	1
HF-Schreib-Lese-Kopf eingeschaltet	Busy	0x0000	0x004C	15	1
Continuous Mode aktiv 0x0002 0x004E 9 1 Schleifenzähler 0x0001 0x004D 0 8 Schreib-Lese-Kopf verstimmt 0x0002 0x004E 4 1 Parameter vom Schreib-Lese-Kopf inicht unterstützt 0x0002 0x004E 5 1 Schreib-Lese-Kopf meldet Fehler 0x0002 0x004E 6 1 Erwarteter Schreib-Lese-Kopf nicht verbunden 0x0002 0x004E 7 1 Länge 0x0003 0x004F 0 16 Fehlercode 0x0004 0x0050 0 16 Datenträger-Zähler 0x0005 0x0051 0 16 Daten (Bytes) verfügbar 0x0006 0x0052 0 16 Lese-Fragment-Nr. 0x0007 0x0053 0 8 Schreib-Fragment-Nr. 0x0007 0x0053 8 8 Schreib-Lese-Kopf 1 – 0x000A 0x0056 0 1 Datenträger im Erfassungsbereich </td <td>Datenträger im Erfassungsbereich</td> <td>0x0002</td> <td>0x004E</td> <td>0</td> <td>1</td>	Datenträger im Erfassungsbereich	0x0002	0x004E	0	1
Schleifenzähler 0x0001 0x004D 0 8 Schreib-Lese-Kopf verstimmt 0x0002 0x004E 4 1 Parameter vom Schreib-Lese-Kopf nicht unterstützt 0x0002 0x004E 5 1 Schreib-Lese-Kopf micht Fehler 0x0002 0x004E 6 1 Erwarteter Schreib-Lese-Kopf nicht verbunden 0x0002 0x004E 7 1 Länge 0x0003 0x004F 0 16 Fehlercode 0x0004 0x0050 0 16 Datenträger-Zähler 0x0005 0x0051 0 16 Daten (Bytes) verfügbar 0x0006 0x0052 0 16 Daten (Bytes) verfügbar 0x0006 0x0052 0 16 Schreib-Fragment-Nr. 0x0007 0x0053 0 8 Schreib-Lese-Kopf 1 – 0x000A 0x0053 8 8 Schreib-Lese-Kopf 16 – 0x000A 0x0056 15 1 Datenträger im Erfassungsbereich <t< td=""><td>HF-Schreib-Lese-Kopf eingeschaltet</td><td>0x0002</td><td>0x004E</td><td>8</td><td>1</td></t<>	HF-Schreib-Lese-Kopf eingeschaltet	0x0002	0x004E	8	1
Schreib-Lese-Kopf verstimmt 0x0002 0x004E 4 1 Parameter vom Schreib-Lese-Kopf nicht unterstützt 0x0002 0x004E 5 1 Schreib-Lese-Kopf nicht unterstützt 0x0002 0x004E 6 1 Erwarteter Schreib-Lese-Kopf nicht verbunden 0x0002 0x004E 7 1 Länge 0x0003 0x004F 0 16 Fehlercode 0x0004 0x0050 0 16 Datenträger-Zähler 0x0005 0x0051 0 16 Daten (Bytes) verfügbar 0x0006 0x0052 0 16 Daten (Bytes) verfügbar 0x0007 0x0053 0 8 Schreib-Fragment-Nr. 0x0007 0x0053 0 8 Schreib-Fragment-Nr. 0x0007 0x0053 8 8 Schreib-Lese-Kopf 1 - 0x000A 0x0056 0 1 Datenträger im Erfassungsbereich 1 Schreib-Lese-Kopf 17 - 0x000B 0x0057 0 1	Continuous Mode aktiv	0x0002	0x004E	9	1
Parameter vom Schreib-Lese-Kopf nicht unterstützt	Schleifenzähler	0x0001	0x004D	0	8
nicht unterstützt Schreib-Lese-Kopf meldet Fehler 0x0002 0x004E 6 1 Erwarteter Schreib-Lese-Kopf nicht verbunden 0x0002 0x004E 7 1 Länge 0x0003 0x004F 0 16 Fehlercode 0x0004 0x0050 0 16 Datenträger-Zähler 0x0005 0x0051 0 16 Daten (Bytes) verfügbar 0x0006 0x0052 0 16 Lese-Fragment-Nr. 0x0007 0x0053 8 8 Schreib-Fragment-Nr. 0x0007 0x0053 8 8 Schreib-Lese-Kopf 1 - 0x000A 0x0056 0 1 Datenträger im Erfassungsbereich 0x000A 0x0056 15 1 Schreib-Lese-Kopf 16 - 0x000A 0x0057 0 1 Datenträger im Erfassungsbereich 0x000B 0x0057 0 1 Schreib-Lese-Kopf 13 - 0x000B 0x0057 15 1 Schreib-Lese-Kopf 32 - 0x000B 0x0057 <t< td=""><td>Schreib-Lese-Kopf verstimmt</td><td>0x0002</td><td>0x004E</td><td>4</td><td>1</td></t<>	Schreib-Lese-Kopf verstimmt	0x0002	0x004E	4	1
Erwarteter Schreib-Lese-Kopf nicht verbunden 0x0002 0x004E 7 1 Länge 0x0003 0x004F 0 16 Fehlercode 0x0004 0x0050 0 16 Datenträger-Zähler 0x0005 0x0051 0 16 Daten (Bytes) verfügbar 0x0006 0x0052 0 16 Lese-Fragment-Nr. 0x0007 0x0053 0 8 Schreib-Fragment-Nr. 0x0007 0x0053 8 8 Schreib-Lese-Kopf 1 – 0x000A 0x0056 0 1 Datenträger im Erfassungsbereich 1 Schreib-Lese-Kopf 16 – 0x000A 0x0056 15 1 Datenträger im Erfassungsbereich 1 Schreib-Lese-Kopf 17 – 0x000B 0x0057 0 1 Datenträger im Erfassungsbereich 1 Lesedaten Byte 0 0x000B 0x0057 15 1 Datenträger im Erfassungsbereich <td></td> <td>0x0002</td> <td>0x004E</td> <td>5</td> <td>1</td>		0x0002	0x004E	5	1
nicht verbunden Länge 0x0003 0x004F 0 16 Fehlercode 0x0004 0x0050 0 16 Datenträger-Zähler 0x0005 0x0051 0 16 Daten (Bytes) verfügbar 0x0006 0x0052 0 16 Lese-Fragment-Nr. 0x0007 0x0053 0 8 Schreib-Fragment-Nr. 0x0007 0x0053 8 8 Schreib-Lese-Kopf 1 - 0x000A 0x0056 0 1 Datenträger im Erfassungsbereich 1 Schreib-Lese-Kopf 16 - 0x000A 0x0056 15 1 Datenträger im Erfassungsbereich 1 Schreib-Lese-Kopf 17 - 0x000B 0x0057 0 1 Datenträger im Erfassungsbereich 15 1 Lese-Kopf 32 - 0x000B 0x0057 15 1 Datenträger im Erfassungsbereich 1 Lesedaten Byte 0 0x000C </td <td>Schreib-Lese-Kopf meldet Fehler</td> <td>0x0002</td> <td>0x004E</td> <td>6</td> <td>1</td>	Schreib-Lese-Kopf meldet Fehler	0x0002	0x004E	6	1
Fehlercode 0x0004 0x0050 0 16 Datenträger-Zähler 0x0005 0x0051 0 16 Daten (Bytes) verfügbar 0x0006 0x0052 0 16 Lese-Fragment-Nr. 0x0007 0x0053 0 8 Schreib-Fragment-Nr. 0x0007 0x0053 8 8 Schreib-Lese-Kopf 1 – 0x000A 0x0056 0 1 Datenträger im Erfassungsbereich 1 Schreib-Lese-Kopf 16 – 0x000A 0x0056 15 1 Datenträger im Erfassungsbereich 1 Schreib-Lese-Kopf 17 – 0x000B 0x0057 0 1 Datenträger im Erfassungsbereich 1 1 Schreib-Lese-Kopf 32 – 0x000B 0x0057 15 1 Datenträger im Erfassungsbereich 1 Lesedaten Byte 0 0x000C	•	0x0002	0x004E	7	1
Datenträger-Zähler 0x0005 0x0051 0 16 Daten (Bytes) verfügbar 0x0006 0x0052 0 16 Lese-Fragment-Nr. 0x0007 0x0053 0 8 Schreib-Fragment-Nr. 0x0007 0x0053 8 8 Schreib-Lese-Kopf 1 – 0x000A 0x0056 0 1 Datenträger im Erfassungsbereich 1 Schreib-Lese-Kopf 16 – 0x000A 0x0056 15 1 Datenträger im Erfassungsbereich 1 Schreib-Lese-Kopf 17 – 0x000B 0x0057 0 1 Datenträger im Erfassungsbereich 1 Lese-Kopf 32 – 0x000B 0x0057 15 1 Datenträger im Erfassungsbereich 1 Lesedaten Byte 0 0x000C 0x0058 0 8 Lesedaten Byte 1 0x000C 0x0058 8 8 Lesedaten Byte 3 0x000D 0	Länge	0x0003	0x004F	0	16
Daten (Bytes) verfügbar 0x0006 0x0052 0 16 Lese-Fragment-Nr. 0x0007 0x0053 0 8 Schreib-Fragment-Nr. 0x0007 0x0053 8 8 Schreib-Lese-Kopf 1 – 0x000A 0x0056 0 1 Datenträger im Erfassungsbereich 1 Schreib-Lese-Kopf 16 – 0x000A 0x0056 15 1 Datenträger im Erfassungsbereich Schreib-Lese-Kopf 17 – 0x000B 0x0057 0 1 Datenträger im Erfassungsbereich Lesedaten Byte 0 0x000B 0x0057 15 1 Datenträger im Erfassungsbereich Lesedaten Byte 0 0x000C 0x0058 0 8 Lesedaten Byte 1 0x000C 0x0058 8 8 Lesedaten Byte 2 0x000D 0x0059 8 8	Fehlercode	0x0004	0x0050	0	16
Lese-Fragment-Nr. 0x0007 0x0053 0 8 Schreib-Fragment-Nr. 0x0007 0x0053 8 8 Schreib-Lese-Kopf 1 - 0x0000A 0x0056 0 1 Datenträger im Erfassungsbereich 1 Schreib-Lese-Kopf 16 - 0x000A 0x0056 15 1 Datenträger im Erfassungsbereich 1 Schreib-Lese-Kopf 17 - 0x000B 0x0057 0 1 Datenträger im Erfassungsbereich 1 Schreib-Lese-Kopf 32 - 0x000B 0x0057 15 1 Datenträger im Erfassungsbereich 1 Lesedaten Byte 0 0x000C 0x0058 0 8 Lesedaten Byte 1 0x000C 0x0058 8 8 Lesedaten Byte 2 0x000D 0x0059 0 8 Lesedaten Byte 3 0x000D 0x0059 8 8 Lesedaten Byte 14 0x0013 0x005F <td< td=""><td>Datenträger-Zähler</td><td>0x0005</td><td>0x0051</td><td>0</td><td>16</td></td<>	Datenträger-Zähler	0x0005	0x0051	0	16
Schreib-Fragment-Nr. 0x0007 0x0053 8 8 Schreib-Lese-Kopf 1 – 0x000A 0x0056 0 1 Datenträger im Erfassungsbereich 1 Schreib-Lese-Kopf 16 – 0x000A 0x0056 15 1 Datenträger im Erfassungsbereich 1 Schreib-Lese-Kopf 17 – 0x000B 0x0057 0 1 Datenträger im Erfassungsbereich 1 Schreib-Lese-Kopf 32 – 0x000B 0x0057 15 1 Datenträger im Erfassungsbereich 1 Lesedaten Byte 0 0x000B 0x0057 15 1 Datenträger im Erfassungsbereich 1 Lesedaten Byte 0 0x000C 0x0058 0 8 Lesedaten Byte 1 0x000C 0x0058 8 8 Lesedaten Byte 2 0x000D 0x0059 8 8	Daten (Bytes) verfügbar	0x0006	0x0052	0	16
Schreib-Lese-Kopf 1 – Datenträger im Erfassungsbereich 0x000A 0x0056 0 1 1 Schreib-Lese-Kopf 16 – Datenträger im Erfassungsbereich Schreib-Lese-Kopf 17 – Ox000B 0x0057 0 1 Datenträger im Erfassungsbereich 1 Schreib-Lese-Kopf 32 – Ox000B 0x0057 15 1 Datenträger im Erfassungsbereich 1 Lesedaten Byte 0 0x000C 0x0058 0 8 Lesedaten Byte 1 0x000C 0x0058 8 8 Lesedaten Byte 2 0x000D 0x0059 0 8 Lesedaten Byte 3 0x000D 0x0059 8 8 Lesedaten Byte 14 0x0013 0x005F 0 8 Lesedaten Byte 15 0x0013 0x005F 8 8 Lesedaten Byte 15 0x0013 0x005F 8 8	Lese-Fragment-Nr.	0x0007	0x0053	0	8
Datenträger im Erfassungsbereich 1 Schreib-Lese-Kopf 16 – Datenträger im Erfassungsbereich 0x000A 0x0056 15 1 Schreib-Lese-Kopf 17 – Datenträger im Erfassungsbereich 0x000B 0x0057 0 1 Schreib-Lese-Kopf 32 – Ox000B 0x0057 15 1 Datenträger im Erfassungsbereich 1 1 Lesedaten Byte 0 0x000C 0x0058 0 8 Lesedaten Byte 1 0x000C 0x0058 8 8 Lesedaten Byte 2 0x000D 0x0059 0 8 Lesedaten Byte 3 0x000D 0x0059 8 8 8 8 Lesedaten Byte 14 0x0013 0x005F 0 8 Lesedaten Byte 15 0x0013 0x005F 8 8 8	Schreib-Fragment-Nr.	0x0007	0x0053	8	8
Schreib-Lese-Kopf 16 – 0x000A 0x0056 15 1 Datenträger im Erfassungsbereich 0x000B 0x0057 0 1 Schreib-Lese-Kopf 17 – 0x000B 0x0057 0 1 Schreib-Lese-Kopf 32 – 0x000B 0x0057 15 1 Datenträger im Erfassungsbereich 0x000C 0x0058 0 8 Lesedaten Byte 0 0x000C 0x0058 8 8 Lesedaten Byte 1 0x000C 0x0058 8 8 Lesedaten Byte 2 0x000D 0x0059 0 8 Lesedaten Byte 3 0x000D 0x0059 8 8 8 8 Lesedaten Byte 14 0x0013 0x005F 0 8 Lesedaten Byte 15 0x0013 0x005F 8 8 8	•	0x000A	0x0056	0	1
Datenträger im Erfassungsbereich Schreib-Lese-Kopf 17 – Datenträger im Erfassungsbereich 0x000B 0x0057 0 1 1 Schreib-Lese-Kopf 32 – Datenträger im Erfassungsbereich 0x000B 0x0057 15 1 Lesedaten Byte 0 0x000C 0x0058 0 8 Lesedaten Byte 1 0x000C 0x0058 8 8 Lesedaten Byte 2 0x000D 0x0059 0 8 Lesedaten Byte 3 0x000D 0x0059 8 8 8 Lesedaten Byte 14 0x0013 0x005F 0 8 Lesedaten Byte 15 0x0013 0x005F 8 8 8 8			•••	•••	1
Datenträger im Erfassungsbereich 1 Schreib-Lese-Kopf 32 – Datenträger im Erfassungsbereich 0x000B 0x0057 15 1 Lesedaten Byte 0 0x000C 0x0058 0 8 Lesedaten Byte 1 0x000C 0x0058 8 8 Lesedaten Byte 2 0x000D 0x0059 0 8 Lesedaten Byte 3 0x000D 0x0059 8 8 8 Lesedaten Byte 14 0x0013 0x005F 0 8 Lesedaten Byte 15 0x0013 0x005F 8 8 8 8	•	0x000A	0x0056	15	1
Schreib-Lese-Kopf 32 – 0x000B 0x0057 15 1 Datenträger im Erfassungsbereich 0x000C 0x0058 0 8 Lesedaten Byte 0 0x000C 0x0058 8 8 Lesedaten Byte 1 0x000C 0x0058 8 8 Lesedaten Byte 2 0x000D 0x0059 0 8 Lesedaten Byte 3 0x000D 0x0059 8 8 8 Lesedaten Byte 14 0x0013 0x005F 0 8 Lesedaten Byte 15 0x0013 0x005F 8 8 8	•	0x000B	0x0057	0	1
Datenträger im Erfassungsbereich Lesedaten Byte 0 0x000C 0x0058 0 8 Lesedaten Byte 1 0x000C 0x0058 8 8 Lesedaten Byte 2 0x000D 0x0059 0 8 Lesedaten Byte 3 0x000D 0x0059 8 8 8 Lesedaten Byte 14 0x0013 0x005F 0 8 Lesedaten Byte 15 0x0013 0x005F 8 8 8 8		•••	•••	•••	1
Lesedaten Byte 0 0x000C 0x0058 0 8 Lesedaten Byte 1 0x000C 0x0058 8 8 Lesedaten Byte 2 0x000D 0x0059 0 8 Lesedaten Byte 3 0x000D 0x0059 8 8 8 Lesedaten Byte 14 0x0013 0x005F 0 8 Lesedaten Byte 15 0x0013 0x005F 8 8 8 8		0x000B	0x0057	15	1
Lesedaten Byte 2 0x000D 0x0059 0 8 Lesedaten Byte 3 0x000D 0x0059 8 8 8 Lesedaten Byte 14 0x0013 0x005F 0 8 Lesedaten Byte 15 0x0013 0x005F 8 8 8		0x000C	0x0058	0	8
Lesedaten Byte 3 0x000D 0x0059 8 8 8 Lesedaten Byte 14 0x0013 0x005F 0 8 Lesedaten Byte 15 0x0013 0x005F 8 8 8	Lesedaten Byte 1	0x000C	0x0058	8	8
	Lesedaten Byte 2	0x000D	0x0059	0	8
Lesedaten Byte 14 0x0013 0x005F 0 8 Lesedaten Byte 15 0x0013 0x005F 8 8 8	Lesedaten Byte 3	0x000D	0x0059	8	8
Lesedaten Byte 15 0x0013 0x005F 8 8 8					8
8	Lesedaten Byte 14	0x0013	0x005F	0	8
	Lesedaten Byte 15	0x0013	0x005F	8	8
Lesedaten Byte 64 0x002C 0x007B 0 8		•••		•••	8
	Lesedaten Byte 64	0x002C	0x007B	0	8
Lesedaten Byte 65 0x002C 0x007B 8 8	Lesedaten Byte 65	0x002C	0x007B	8	8
0x0000 8			0x0000	•••	8
Lesedaten Byte 126 0x004B 0x0097 0 8	Lesedaten Byte 126	0x004B	0x0097	0	8
Lesedaten Byte 127 0x004B 0x0097 8 8	Lesedaten Byte 127	0x004B	0x0097	8	8

RFID-Kanäle – Prozess-Ausgangsdaten

Beschreibung	Register		Bit-Offset	Bitlänge
	Kanal 0	Kanal 1		
Befehlscode	0x0800	0x084C	0	16
Schleifenzähler	0x0801	0x084D	0	8
Speicherbereich (nur UHF)	0x0801	0x084D	8	8
Startadresse	0x0802	0x084E	0	32
Länge	0x0804	0x0851	0	16
Länge UID/EPC	0x0805	0x0851	0	8
Antennen-Nr.	0x080A	0x0856	0	8
Timeout	0x0806	0x0852	0	16
Lese-Fragment-Nr.	0x0807	0x0853	0	8
Schreib-Fragment-Nr.	0x0807	0x0853	8	8
Schreibdaten Byte 0	0x080C	0x0858	0	8
Schreibdaten Byte 1	0x080C	0x0858	8	8
				8
Schreibdaten Byte 14	0x0813	0x085F	0	8
Schreibdaten Byte 15	0x0813	0x085F	8	8
				8
Schreibdaten Byte 64	0x0813	0x0878	0	8
Schreibdaten Byte 65	0x0813	0x0878	8	8
				8
Schreibdaten Byte 126	0x084B	0x0897	0	8
Schreibdaten Byte 127	0x084B	0x0897	8	8

RFID-Diagnosedaten

Beschreibung	Register		Bit-Offset	Bitlänge
	Kanal 0	Kanal 1		
Überspannung VAUX	0x0098	0x00AA	7	1
Parametrierungsfehler	0x0098	0x00AA	6	1
Konfiguration über DTM aktiv	0x0098	0x00AA	5	1
Speicher voll	0x0098	0x00AA	4	1
Schreib-Lese-Kopf 1 verstimmt	0x009A	0x00AC	4	1
Schreib-Lese-Kopf 2 verstimmt	0x009A	0x00AC	12	1
	•••	•••	0	1
Schreib-Lese-Kopf 31 verstimmt	0x00A9	0x00BB	4	1
Schreib-Lese-Kopf 32 verstimmt	0x00A9	0x00BB	12	1
Parameter wird von Schreib-Lese- Kopf 1 nicht unterstützt.	0x009A	0x00AC	5	1
Parameter wird von Schreib-Lese- Kopf 2 nicht unterstützt.	0x009A	0x00AC	13	1
		•••	•••	1
Parameter wird von Schreib-Lese- Kopf 31 nicht unterstützt.	0x00A9	0x00BB	5	1
Parameter wird von Schreib-Lese- Kopf 32 nicht unterstützt.	0x00A9	0x00BB	13	1
Schreib-Lese-Kopf 1 meldet Fehler	0x009A	0x00AC	6	1
Schreib-Lese-Kopf 2 meldet Fehler	0x09A	0x00AC	14	1
	•••	•••		1
Schreib-Lese-Kopf 31 meldet Fehler	0x00A9	0x00BB	6	1
Schreib-Lese-Kopf 32 meldet Fehler	0x00A9	0x00BB	14	1
Erwarteter Schreib-Lese-Kopf 1 nicht verbunden	0x009A	0x00AC	7	1
Erwarteter Schreib-Lese-Kopf 2 nicht verbunden	0x009A	0x00AC	15	1
				1
Erwarteter Schreib-Lese-Kopf 31 nicht verbunden	0x00A9	0x00BB	7	1
Erwarteter Schreib-Lese-Kopf 32 nicht verbunden	0x00A9	0x00BB	15	1

Digitale Kanäle – Eingangsdaten

Beschreibung	Register	Bit-Offset	Bitlänge
Eingangswert Kanal 4	0x00BC	4	1
Eingangswert Kanal 5	0x00BC	5	1
Eingangswert Kanal 6	0x00BC	6	1
Eingangswert Kanal 7	0x00BC	7	1

Digitale Kanäle – Ausgangsdaten

Beschreibung	Register	Bit-Offset	Bitlänge
Ausgangswert Kanal 4	0x0898	4	1
Ausgangswert Kanal 5	0x0898	5	1
Ausgangswert Kanal 6	0x0898	6	1
Ausgangswert Kanal 7	0x0898	7	1

Digitale Kanäle – Diagnosemeldungen

Beschreibung	Register	Bit-Offset	Bitlänge
Überspannung an Versorgungsspannungs- Anschluss VAUX Kanal 4/5	0x00BD	2	1
Überspannung an Versorgungsspannungs- Anschluss VAUX Kanal 6/7	0x00BD	3	1
Überspannung am Ausgang (Kanal 4)	0x00BD	12	1
Überspannung am Ausgang (Kanal 5)	0x00BD	13	1
Überspannung am Ausgang (Kanal 6)	0x00BD	14	1
Überspannung am Ausgang (Kanal 7)	0x00BD	15	1

Modulstatus – Diagnosemeldungen

Beschreibung	Register	Bit-Offset	Bitlänge
DTM im Force Mode aktiv	0x00BE	14	1
Unterspannung V1	0x00BE	9	1
Unterspannung V2	0x00BE	7	1
Moduldiagnose liegt an	0x00BE	0	1
Interner Fehler	0x00BE	10	1
ARGEE-Programm aktiv	0x00BE	1	1

7.3 Gerät an einen EtherNet/IP-Scanner anbinden mit RS Logix

Verwendete Hardware

In diesem Beispiel werden die folgenden Hardware-Komponenten verwendet:

- Rockwell-Steuerung CompactLogix L30ER
- Blockmodul TBEN-S2-2RFID-4DXP
- HF-Schreib-Lese-Kopf TN-Q80-H1147

Verwendete Software

In diesem Beispiel wird die folgende Software verwendet:

- Rockwell RS Logix
- EDS-Datei für TBEN-S2-2RFID-4DXP (kostenfrei als Download erhältlich unter www.turck.com)

Voraussetzungen

- Die Programmiersoftware ist geöffnet.
- Ein neues Projekt ist angelegt.
- Die Steuerung wurde dem Projekt hinzugefügt.

7.3.1 EDS-Datei installieren

Die EDS-Datei für das Gerät steht unter www.turck.com zum kostenlosen Download zur Verfügung.

► EDS-Datei einfügen: Tools → EDS Hardware Installation Tool klicken.

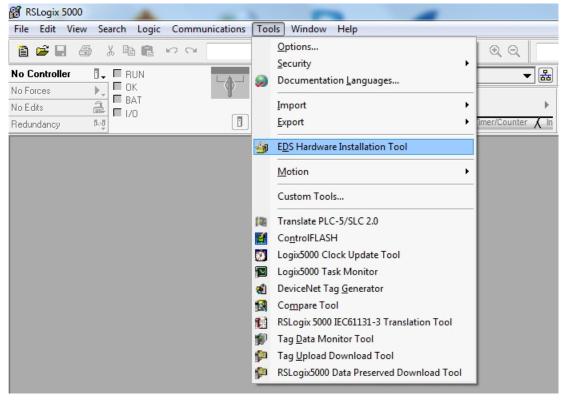


Abb. 47: EDS Hardware Installation Tool öffnen

Der Assistent für die Installation von EDS-Dateien startet.

▶ Weiter klicken, um die EDS-Datei auszuwählen.

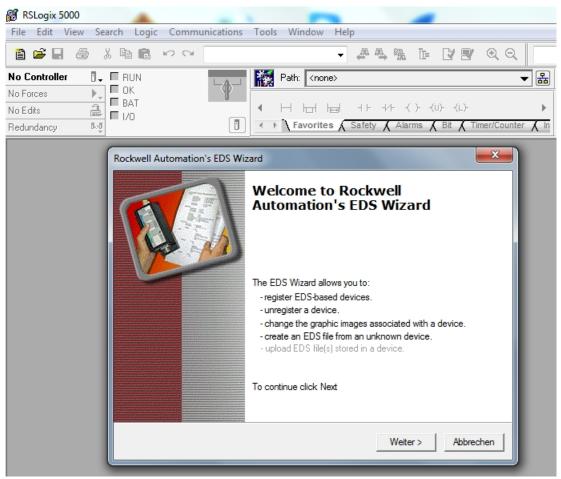
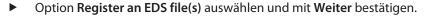



Abb. 48: EDS Wizard starten

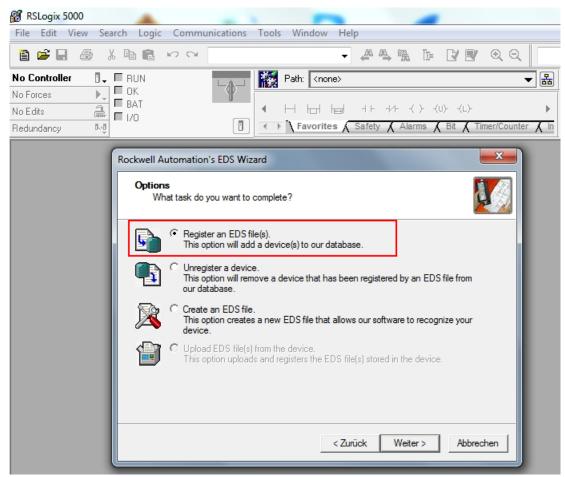


Abb. 49: Option auswählen - Register an EDS file(s)

- ▶ EDS-Datei auswählen: Einzeldatei oder Ordner auswählen (Beispiel: Einzeldatei).
- ▶ Pfad für den Speicherort der EDS-Datei angeben.
- Mit Weiter bestätigen.
- ⇒ Der Installationsassistent führt Sie durch die weitere Installation.

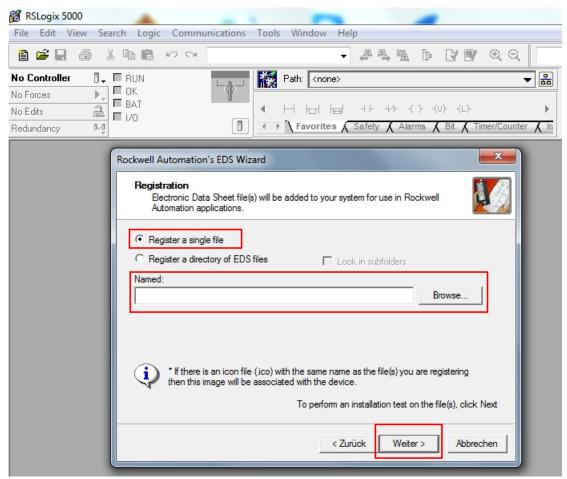


Abb. 50: EDS-Datei auswählen

7.3.2 Gerät mit der Steuerung verbinden

- ▶ Rechtsklick auf I/O Configuration → Ethernet ausführen.
- ► New Module anklicken.

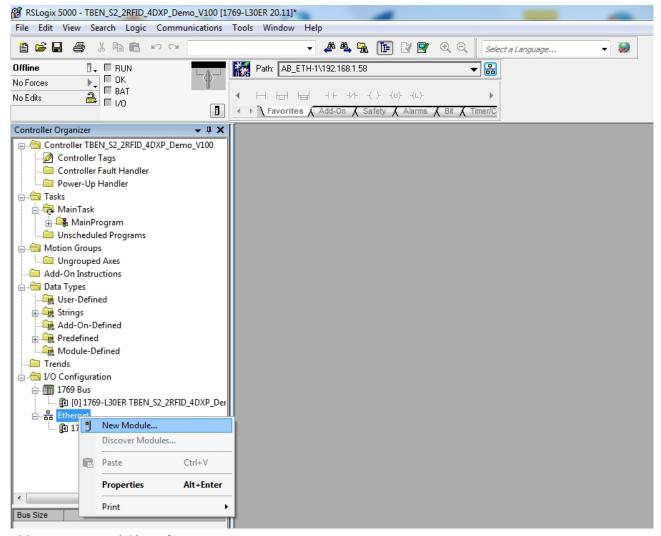


Abb. 51: Neues Modul hinzufügen

- ▶ Unter Module Type Vendor Filters Turck auswählen.
- ► TBEN-RFID-Modul auswählen.
- ► Auswahl mit Create bestätigen.

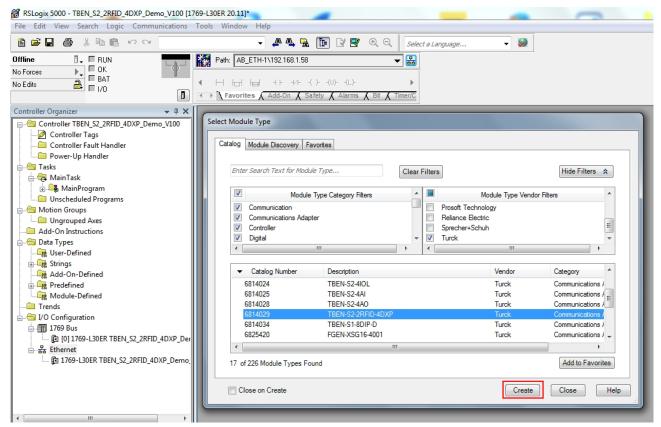


Abb. 52: EDS-Datei für TBEN-S2-2RFID-4DXP auswählen

- ► Modulnamen vergeben.
- ▶ IP-Adresse des Geräts angeben.

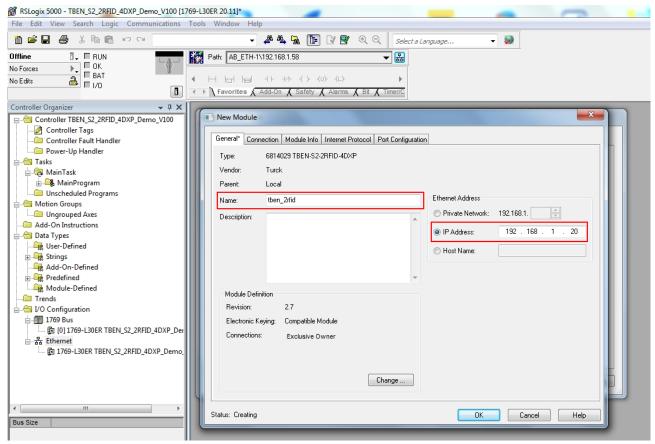


Abb. 53: Modulnamen und IP-Adresse einstellen

► Integer als Format für die Eingangsdaten und Ausgangsdaten einstellen: **Change** klicken → Im folgenden Fenster **INT** auswählen.

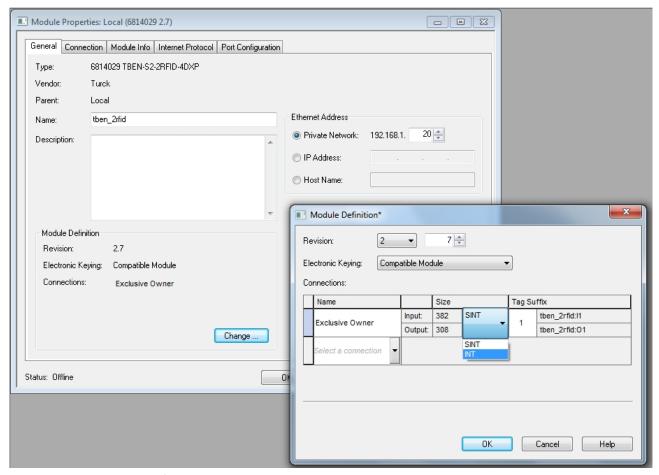


Abb. 54: Integer als Format für Ein- und Ausgangsdaten einstellen

▶ Optional: Verbindung und Port-Konfiguration einstellen.

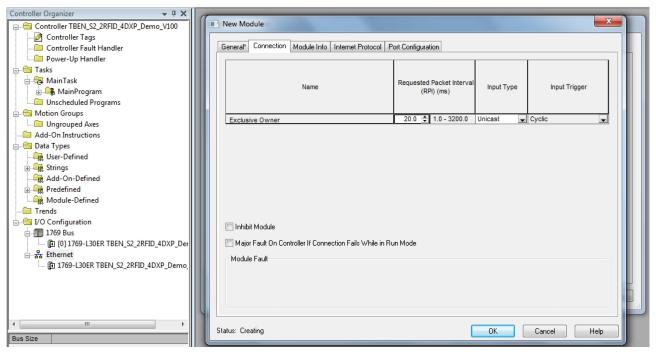


Abb. 55: Verbindung einstellen

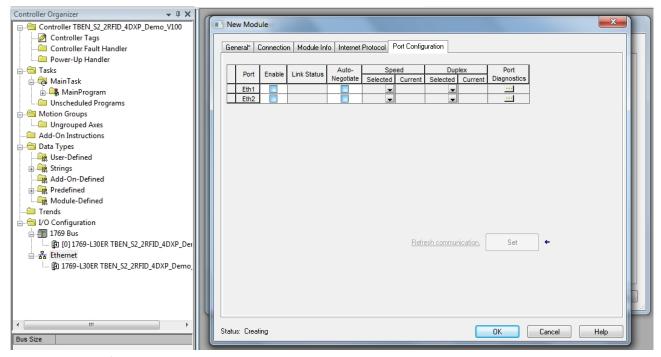


Abb. 56: Port-Konfiguration einstellen

Das Gerät erscheint im Projektbaum.

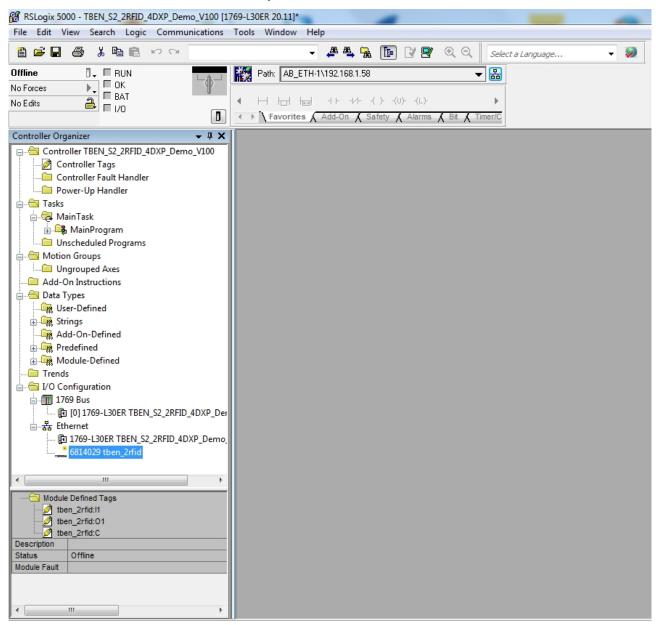


Abb. 57: TBEN-S2-2RFID-4DXP im Projektbaum

7.3.3 Gerät online mit der Steuerung verbinden

- ► Steuerung anwählen.
- ► Go online klicken.

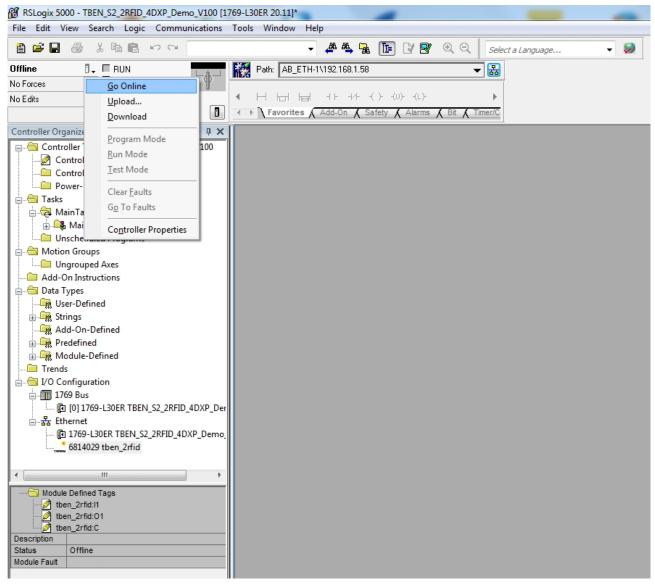


Abb. 58: Gerät online verbinden

▶ Im folgenden Fenster (Connect To Go Online) Download anklicken.

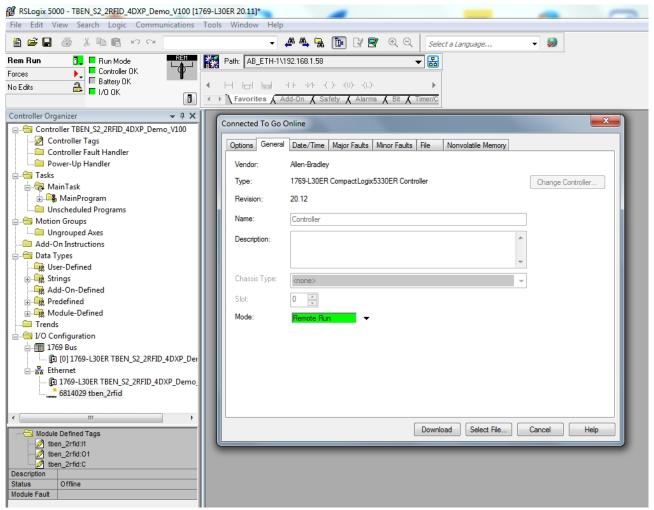


Abb. 59: Download anklicken

Alle folgenden Meldungen bestätigen.

7.3.4 Prozessdaten auslesen

▶ Controller Tags im Projektbaum anwählen.

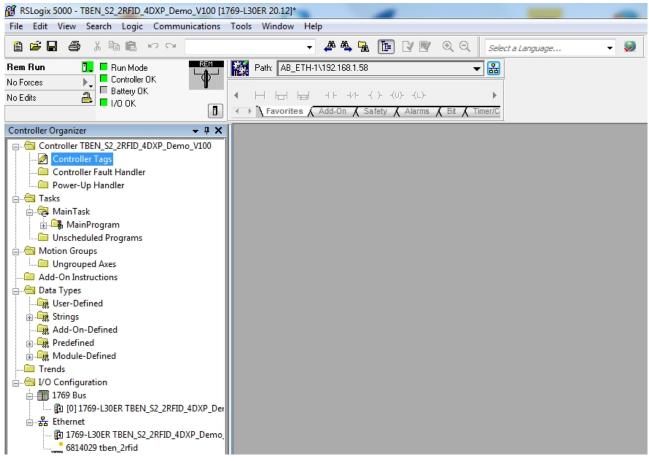


Abb. 60: Controller Tags im Projektbaum

Der Zugriff auf Parameterdaten (tben_2rfid:C), Eingangsdaten (tben_2rfid:I1) und Ausgangsdaten (tben_2rfid:O1) ist möglich.

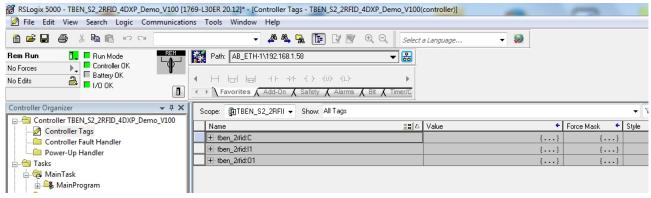


Abb. 61: Zugriff auf Parameterdaten, Eingangsdaten und Ausgangsdaten

Beispiel: Prozess-Eingangsdaten – Datenträger im Erfassungsbereich des Schreib-Lese-Kopfs

Im folgenden Beispiel befindet sich ein Datenträger im Erfassungsbereich des Schreib-Lese-Kopfs. Die Prozessdaten können mithilfe des Mappings interpretiert werden.

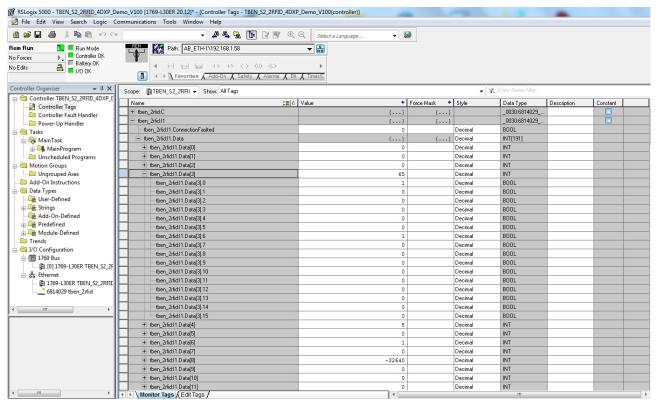


Abb. 62: Prozess-Eingangsdaten – Beispiel

7.3.5 EtherNet/IP – Mapping

Beschreibung	Assembly Instance	Größe (Wörter)
Eingang	103	191
Ausgang	104	154

RFID-Kanäle – Parameterdaten

Beschreibung	Register		Bit-Offset	Bitlänge
	Kanal 0	Kanal 1		
Betriebsart	0x000A	0x0041	0	8
Auswahl Datenträger-Typ	0x000B	0x0042	0	8
Überbrückungszeit	0x000C	0x0043	0	16
HF: Multitag	0x000D	0x0044	0	1
HF: Heartbeat Schreib-Lese-Kopf	0x000E	0x0045	0	1
Leitungsabschluss aktiv	0x000F	0x0046	0	1
HF: Automatisches Tuning Schreib- Lese-Kopf	0x0011	0x0047	0	1
Diagnose HF-Schreib-Lese-Kopf- Tuning deaktivieren	0x0012	0x0048	0	1
Diagnose-Eingangsfilter	0x0013	0x0049	0	1
Befehlswiederholungen im Fehlerfall	0x0014	0x004A	0	8
HF: Befehl im Continuous Mode	0x0015	0x004B	0	8
HF: Länge im Continuous Mode	0x0016	0x004C	0	16
HF: Adresse im Continuous Mode	0x0018	0x004E	0	32
Länge Lesedaten	0x003C	0x0072	0	16
Länge Schreibdaten	0x003E	0x0074	0	16
HF-Busmodus: Schreib-Lese-Kopf 1 aktivieren	0x001C	0x0052	0	1
HF-Busmodus: Schreib-Lese-Kopf 2 aktivieren	0x001D	0x0053	0	1
HF-Busmodus: Schreib-Lese-Kopf 3 aktivieren	0x001E	0x0054	0	1
	•••	•••	•••	1
HF-Busmodus: Schreib-Lese-Kopf 32 aktivieren	0x003B	0x0071	0	1


RFID-Kanäle – Prozess-Eingangsdaten

Beschreibung	Word-Offset		Bit-Offset	Bitlänge
	Kanal 0	Kanal 1		
Antwortcode	0x0001	0x004D	0	14
Fehler	0x0001	0x004D	14	1
Busy	0x0001	0x004D	15	1
Datenträger im Erfassungsbereich	0x0003	0x004F	0	1
HF-Schreib-Lese-Kopf eingeschaltet	0x0003	0x004F	8	1
Continuous Mode aktiv	0x0003	0x004F	9	1
Schleifenzähler	0x0002	0x004E	0	8
Schreib-Lese-Kopf verstimmt	0x0003	0x004F	5	1
Parameter vom Schreib-Lese-Kopf nicht unterstützt	0x0003	0x004F	5	1
Schreib-Lese-Kopf meldet Fehler	0x0003	0x004F	6	1
Erwarteter Schreib-Lese-Kopf nicht verbunden	0x0003	0x004F	7	1
Länge	0x0004	0x0050	0	16
Fehlercode	0x0005	0x0051	0	16
Datenträger-Zähler	0x0006	0x0052	0	16
Daten (Bytes) verfügbar	0x0007	0x0053	0	16
Lese-Fragment-Nr.	0x0008	0x0054	0	8
Schreib-Fragment-Nr.	0x0008	0x0055	8	8
Schreib-Lese-Kopf 1 – Datenträger im Erfassungsbereich	0x000B	0x0057	0	1
		•••	•••	1
Schreib-Lese-Kopf 16 – Datenträger im Erfassungsbereich	0x000B	0x0057	15	1
Schreib-Lese-Kopf 17 – Datenträger im Erfassungsbereich	0x000C	0x0058	0	1
				1
Schreib-Lese-Kopf 32 – Datenträger im Erfassungsbereich	0x000C	0x0058	15	1
Lesedaten Byte 0	0x000D	0x0059	0	8
Lesedaten Byte 1	0x000D	0x0059	8	8
Lesedaten Byte 2	0x000E	0x005A	0	8
Lesedaten Byte 3	0x000E	0x005A	8	8
	•••	•••	•••	8
Lesedaten Byte 14	0x0014	0x0060	0	8
Lesedaten Byte 15	0x0014	0x0060	8	8
		•••	•••	8
Lesedaten Byte 64	0x002D	0x0079	0	8
Lesedaten Byte 65	0x002D	0x0079	8	8
	•••	•••	•••	8
Lesedaten Byte 126	0x004C	0x0098	0	8
Lesedaten Byte 127	0x004C	0x0098	8	8

RFID-Kanäle – Prozess-Ausgangsdaten

Beschreibung	Word-Offset		Bit-Offset	Bitlänge
	Kanal 0	Kanal 1		
Befehlscode	0x0001	0x004D	0	16
Schleifenzähler	0x0002	0x004E	0	8
Speicherbereich (nur UHF)	0x0002	0x004E	8	8
Startadresse	0x0003	0x004F	0	32
Länge	0x0005	0x0051	0	16
Länge UID/EPC	0x0006	0x0052	0	8
Schreib-Lese-Kopf-Adresse	0x000B	0x0057	0	8
Timeout	0x0007	0x0053	0	16
Lese-Fragment-Nr.	0x0008	0x0054	0	8
Schreib-Fragment-Nr.	0x0008	0x0054	8	8
Schreibdaten Byte 0	0x000D	0x0059	0	8
Schreibdaten Byte 1	0x000D	0x0059	8	8
				8
Schreibdaten Byte 14	0x0014	0x0060	0	8
Schreibdaten Byte 15	0x0014	0x0060	8	8
				8
Schreibdaten Byte 64	0x002D	0x0079	0	8
Schreibdaten Byte 65	0x002D	0x0079	8	8
				8
Schreibdaten Byte 126	0x004C	0x0098	0	8
Schreibdaten Byte 127	0x004C	0x0098	8	8

RFID-Diagnosedaten

Beschreibung	Register		Bit-Offset	Bitlänge
	Kanal 0	Kanal 1		
Überspannung VAUX	0x0099	0x00AB	7	1
Parametrierungsfehler	0x0099	0x00AB	6	1
Konfiguration über DTM aktiv	0x0099	0x00AB	4	1
Puffer voll	0x0099	0x00AB	4	1
Schreib-Lese-Kopf 1 verstimmt	0x009B	0x00AD	4	1
Schreib-Lese-Kopf 2 verstimmt	0x009B	0x00AD	12	1
	•••		0	1
Schreib-Lese-Kopf 31 verstimmt	0x00AA	0x00BC	4	1
Schreib-Lese-Kopf 32 verstimmt	0x00AA	0x00BC	12	1
Parameter wird von Schreib-Lese- Kopf 1 nicht unterstützt.	0x009B	0x00AD	5	1
Parameter wird von Schreib-Lese- Kopf 2 nicht unterstützt.	0x009B	0x00AD	13	1
	•••		•••	1
Parameter wird von Schreib-Lese- Kopf 31 nicht unterstützt.	0x00AA	0x00BC	5	1
Parameter wird von Schreib-Lese- Kopf 32 nicht unterstützt.	0x00AA	0x00BC	13	1
Schreib-Lese-Kopf 1 meldet Fehler	0x009B	0x00AD	6	1
Schreib-Lese-Kopf 2 meldet Fehler	0x009B	0x00AD	14	1
			•••	1
Schreib-Lese-Kopf 31 meldet Fehler	0x00AA	0x00BC	6	1
Schreib-Lese-Kopf 32 meldet Fehler	0x00AA	0x00BC	14	1
Erwarteter Schreib-Lese-Kopf 1 nicht verbunden	0x009B	0x00AD	7	1
Erwarteter Schreib-Lese-Kopf 2 nicht verbunden	0x009B	0x00AD	15	1
	•••	•••	•••	1
Erwarteter Schreib-Lese-Kopf 31 nicht verbunden	0x00AA	0x00BC	7	1
Erwarteter Schreib-Lese-Kopf 32 nicht verbunden	0x00AA	0x00BC	15	1

DXP-Kanäle – Parameterdaten

Beschreibung	Register	Bit-Offset	Bitlänge
DXP 4 – Manueller Reset des Ausgangs nach Überstrom	0x0076	0	1
DXP 5 – Manueller Reset des Ausgangs nach Überstrom	0x0077	0	1
DXP 6 – Manueller Reset des Ausgangs nach Überstrom	0x0078	0	1
DXP 7 – Manueller Reset des Ausgangs nach Überstrom	0x0079	0	1
DXP 4 – Aktiver Ausgang	0x007A	0	1
DXP 5 – Aktiver Ausgang	0x007B	0	1
DXP 6 – Aktiver Ausgang	0x007C	0	1
DXP 7 – Aktiver Ausgang	0x007D	0	1
DXP 4 – Erweiterte Digitalfunktion	0x007E	0	1
DXP 4 – Eingangsfilter	0x007E	0	1
DXP 4 – Impulsverlängerung (*10 ms)	0x007F	0	8
DXP 5 – Erweiterte Digitalfunktion	0x0082	0	1
DXP 5 – Eingangsfilter	0x0083	0	1
DXP 5 – Impulsverlängerung (*10 ms)	0x0084	0	8
DXP 6 – Erweiterte Digitalfunktion	0x0086	0	1
DXP 6 – Eingangsfilter	0x0087	0	1
DXP 6 – Impulsverlängerung (*10 ms)	0x0088	0	8
DXP 7 – Erweiterte Digitalfunktion	0x008A	0	1
DXP 7 – Eingangsfilter	0x0139	0	1
DXP 7 – Impulsverlängerung (*10 ms)	0x008B	0	8

Digitale Kanäle – Eingangsdaten

Beschreibung	Word-Offset	Bit-Offset	Bitlänge
Eingangswert Kanal 4	0x00BD	4	1
Eingangswert Kanal 5	0x00BD	5	1
Eingangswert Kanal 6	0x00BD	6	1
Eingangswert Kanal 7	0x00BD	7	1

Digitale Kanäle – Ausgangsdaten

Beschreibung	Word-Offset	Bit-Offset	Bitlänge
Ausgangswert Kanal 4	0x0099	4	1
Ausgangswert Kanal 5	0x0099	5	1
Ausgangswert Kanal 6	0x0099	6	1
Ausgangswert Kanal 7	0x0099	7	1

Digitale Kanäle – Diagnosemeldungen

Beschreibung	Word-Offset	Bit-Offset	Bitlänge
Überspannung an Versorgungsspannungs-Anschluss VAUX Kanal 4/5	0x00BE	2	1
Überspannung an Versorgungsspannungs-Anschluss VAUX Kanal 6/7	0x00BE	3	1
Überspannung am Ausgang (Kanal 4)	0x00BE	12	1
Überspannung am Ausgang (Kanal 5)	0x00BE	13	1
Überspannung am Ausgang (Kanal 6)	0x00BE	14	1
Überspannung am Ausgang (Kanal 7)	0x00BE	15	1

Modulstatus – Diagnosemeldungen

Beschreibung	Word-Offset	Bit-Offset	Bitlänge
DTM im Force Mode aktiv	0	14	1
Unterspannung V1	0	9	1
Unterspannung V2	0	7	1
Moduldiagnose liegt an	0	0	1
Interner Fehler	0	10	1
ARGEE-Programm aktiv	0	1	1

7.3.6 QuickConnect (QC) aktivieren

Die Geräte unterstützen QuickConnect. Mit QuickConnect kann die Steuerung Verbindungen zu EtherNet/IP-Knoten in weniger als 500 ms nach Einschalten der Versorgung des EtherNet/IP-Netzwerks herstellen. Notwendig wird der schnelle Anlauf der Geräte vor allem bei schnellen Werkzeugwechseln an Roboterarmen z. B. in der Automobilindustrie.

Die Anlaufzeit für die RFID-Interfaces beträgt weniger als 150 ms.

QuickConnect kann über den Webserver des Gerätes oder in RS Logix über Configuration Assembly oder Class Instance Attribute aktiviert werden.

HINWEIS

Das Aktivieren von QuickConnect bewirkt automatisch das Anpassen aller erforderlichen Port-Eigenschaften.

Port-Eigenschaft	Zustand
Autonegotiation	deaktiviert
Übertragungsgeschwindigkeit	100BaseT
Duplex	Vollduplex
Topologie	linear
AutoMDIX	deaktiviert

Hinweise zum korrekten Anschluss der Ethernet-Leitungen in QuickConnect-Applikationen entnehmen Sie S. [▶ 25].

QuickConnect über Configuration Assembly aktivieren

Die Configuration Assembly ist Teil der Assembly Class des Gerätes.

- ► Configuration Assembly in RSLogix konfigurieren.
- ▶ QuickConnect über Byte 9, Bit 0 = 1 in den Controller Tags aktivieren.

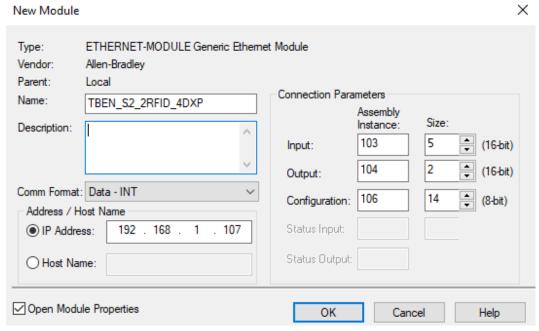


Abb. 63: Configuration Assembly in RSLogix konfigurieren

QuickConnect über Class Instance Attribute aktivieren

▶ QuickConnect über Class Instance Attribute wie folgt aktivieren:

Class	Instance	Attribute	Wert
0xF5	0x01	0x0C	0: deaktiviert (Default) 1: aktiviert

QuickConnect über den Webserver aktivieren

► Parameter → Activate QuickConnect → Yes klicken.

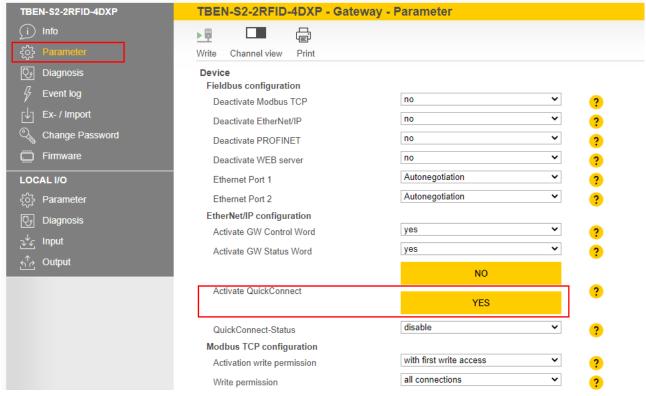


Abb. 64: QuickConnect im Webserver einstellen

- Die für QuickConnect notwendigen Einstellungen in den Port-Eigenschaften werden vorgenommen. Ungespeicherte Änderungen sind an dem Stift-Symbol erkennbar.
- ► Write klicken.
- ⇒ Die geänderten Parameter werden ins Gerät geschrieben.

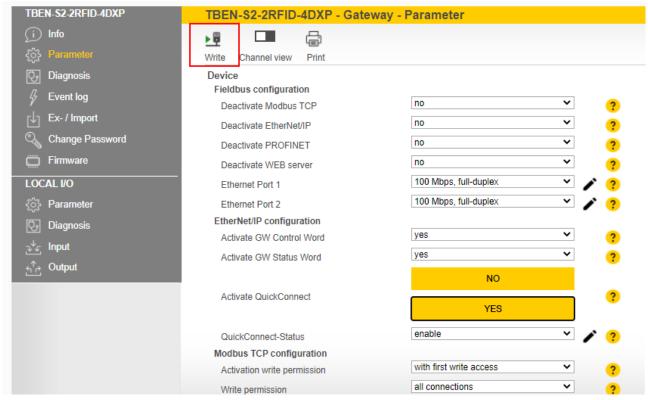


Abb. 65: QuickConnect im Webserver aktivieren

7.4 Gerät an einen PROFINET-Master anbinden mit TIA-Portal

Das folgende Beispiel beschreibt die Anbindung des Geräts an eine Siemens-Steuerung in PROFINET mit der Programmiersoftware SIMATIC STEP7 Professional V13 (TIA-Portal).

Verwendete Hardware

In diesem Beispiel werden die folgenden Hardware-Komponenten verwendet:

- Siemens-Steuerung S7-1500
- Blockmodul TBEN-S2-2RFID-4DXP
- HF-Schreib-Lese-Kopf TN-Q80-H1147

Verwendete Software

In diesem Beispiel wird die folgende Software verwendet:

- SIMATIC STEP7 Professional V13 (TIA-Portal)
- GSDML-Datei für TBEN-S2-2RFID-4DXP (kostenfrei als Download erhältlich unter www.turck.com)

Voraussetzungen

- Die Programmiersoftware ist geöffnet.
- Ein neues Projekt ist angelegt.
- Die Steuerung wurde dem Projekt hinzugefügt.

7.4.1 GSDML-Datei installieren

Die GSDML-Datei für das Gerät steht unter www.turck.com zum kostenlosen Download zur Verfügung.

► GSDML-Datei einfügen: **Optionen** → **Gerätebeschreibungsdateien** (**GSD**) **verwalten** klicken.

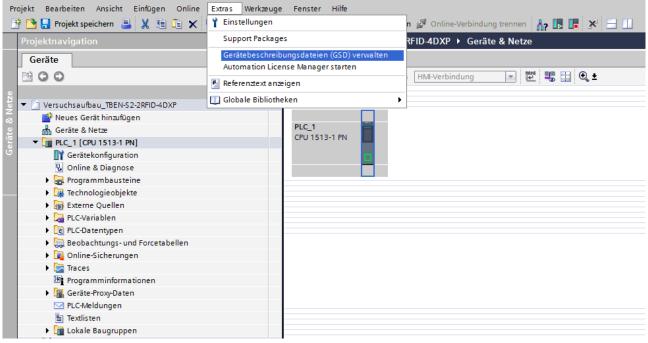


Abb. 66: GSDML-Datei einfügen

- ▶ GSDML-Datei installieren: Ablageort der GSDML-Datei angeben und Installieren klicken.
- Das Gerät wird in den Hardware-Katalog der Programmiersoftware aufgenommen.

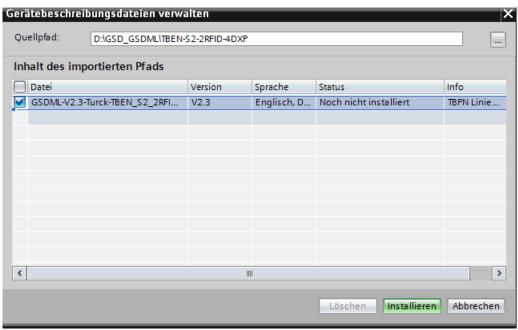


Abb. 67: GSDML-Datei installieren

7.4.2 Gerät mit der Steuerung verbinden

- RFID-Interface aus dem Hardware-Katalog auswählen und per Drag-and-drop in das Hardware-Fenster ziehen.
- ► Gerät im Hardware-Fenster mit der Steuerung verbinden.

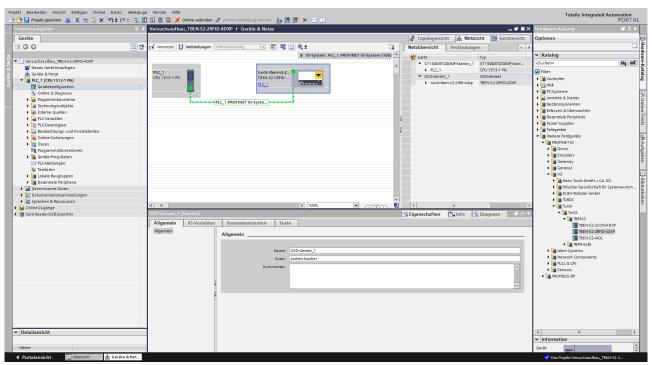


Abb. 68: Gerät mit der Steuerung verbinden

7.4.3 PROFINET-Gerätenamen zuweisen

- ► Online-Zugänge → Online & Diagnose wählen.
- ► Funktionen → PROFINET-Gerätename vergeben wählen.
- Gewünschten PROFINET-Gerätenamen zuweisen.

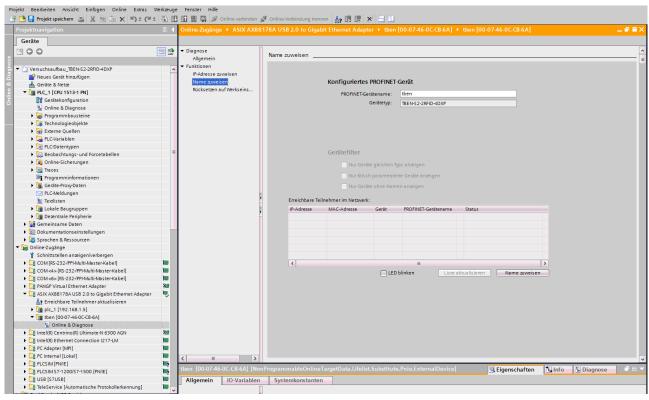


Abb. 69: PROFINET-Gerätenamen zuweisen

7.4.4 IP-Adresse im TIA-Portal einstellen

- ► Gerätesicht → Registerkarte Eigenschaften → Ethernet-Adressen wählen.
- ► Gewünschte IP-Adresse vergeben.

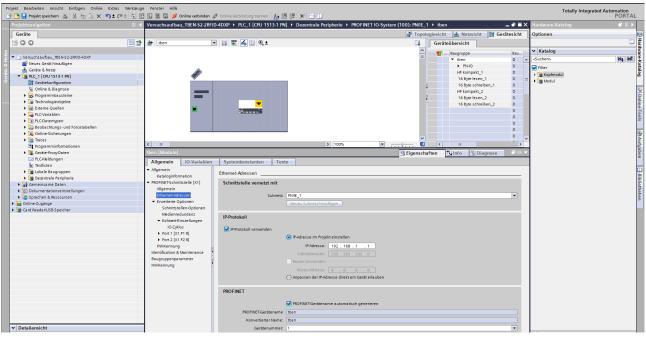


Abb. 70: IP-Adresse vergeben

7.4.5 Gerät online mit der Steuerung verbinden

- ▶ Online-Modus starten (Online verbinden).
- Das Gerät wurde erfolgreich an die Steuerung angebunden.

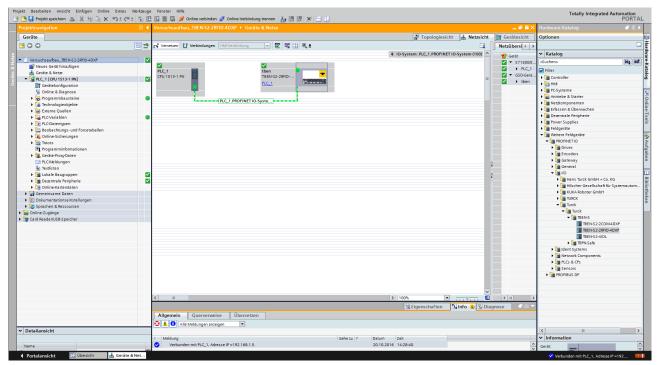


Abb. 71: Online-Modus

7.4.6 Modulparameter einstellen

- ► Gerätesicht → Geräteübersicht wählen.
- ► Einzustellende Baugruppe anwählen.
- ightharpoonup Eigenschaften ightharpoonup Allgemein ightharpoonup Baugruppenparameter anklicken.
- ► Stationsparameter einstellen.

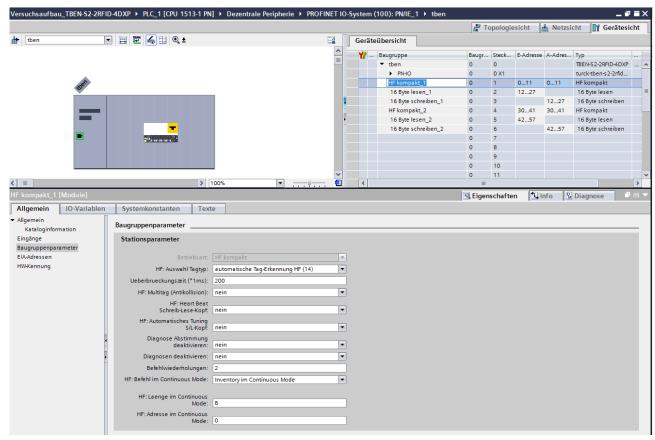


Abb. 72: Modulparameter einstellen

7.4.7 PROFINET – Mapping

Das PROFINET-Mapping entspricht dem im Kapitel "Einstellen" beschriebenen Datenmapping.

8 Einstellen

Das Gerät kann über Parameterdaten, Prozess-Eingangsdaten, Prozess-Ausgangsdaten und Diagnosedaten gesteuert, ausgelesen und eingestellt werden. Das Datenmapping entnehmen Sie folgender Tabelle:

Slot	Kanal	Paramete	rdaten	Prozess-Ei	ngangsdaten	Prozess-Au	ısgangsdaten	Diagnosed	laten
		Bytes	Bedeutung	Bytes	Bedeutung	Bytes	Bedeutung		
0	GW	01	Parameter GW					01	Diagnose GW
1	0	031	Parameter RFID	023	Eingangs- daten RFID	023	Ausgangs- daten RFID	036	Diagnose RFID
2		3233	Länge Lese- daten	24151	Lesedaten				
3		3435	Länge Schreib- daten			24151	Schreib- daten		
4	1	3667	Parameter RFID	152175	Eingangs- daten RFID	152175	Ausgangs- daten RFID	3676	Diagnose RFID
5		6869	Länge Lese- daten	176303	Lesedaten				
6		7071	Länge Schreib- daten			176303	Schreib- daten		
7	0			304339	Diagnose RFID-Kanal 0				
	1			340375	Diagnose RFID-Kanal 1				
8	47	7273	Parameter DXP	376377	Eingangs- daten DXP	304305	Ausgangs- daten DXP	7273	Diagnose DXP
9	47			378379	Fehler- meldungen DXP				
10	4	7475	erweiterte Einstellun- gen DXP						
11	5	7677	erweiterte Einstellun- gen DXP						
12	6	7879	erweiterte Einstellun- gen DXP						
13	7	8081	erweiterte Einstellun- gen DXP						
14	Modul- status			380381	Modulstatus				

8.1 RFID-Kanäle – Parameterdaten

Byte-Nr.	Bit										
	7	6	5	4	3	2	1	0			
Kanal 0											
0	Betriebsa	Betriebsart (OMRFID)									
1	Auswahl I	Datenträge	r-Typ (TAG	TYPE)							
2	Überbrüc	kungszeit (BYPASS)								
3							_				
4	AT	TERM	НВ	ANTI							
5	DDI							DXD			
6	HFIDLEM	ODE									
7	reserviert										
8	Befehlswi	ederholun	gen (CRET)								
9	HF: Befeh	l im Contin	uous Mode	e (CCM)							
10	HF: Länge	im Contin	uous Mode	e (LCM)							
11											
12	HF: Adres	se im Cont	inuous Mo	de (ACM)							
13											
14											
15											
16	reserviert										
1726											
27	reserviert										
28	XCVR8	XCVR7	XCVR6	XCVR5	XCVR4	XCVR3	XCVR2	XCVR1			
29	XCVR16	XCVR15	XCVR14	XCVR13	XCVR12	XCVR11	XCVR10	XCVR9			
30	XCVR24	XCVR23	XCVR22	XCVR21	XCVR20	XCVR19	XCVR18	XCVR17			
31	XCVR32	XCVR31	XCVR30	XCVR29	XCVR28	XCVR27	XCVR26	XCVR25			
32	Länge Les	sedaten (RI	OS)								
33											
34	Länge Sch	nreibdaten	(WDS)								
35											
Kanal 1											
3671	Belegung	analog zu	Kanal 0								

8.1.1 Bedeutung der Parameter-Bits

Die Default-Werte der Firmware, des DTM und der EDS-Datei sind **fett** dargestellt. Für PROFINET können die Default-Werte abweichen.

Bezeichnung	Bedeutung
Betriebsart (OMRFID)	0: deaktiviert 1: HF Kompakt 2: HF Erweitert 3: HF-Busmodus 4: UHF Kompakt 5: LIHE Erweitert
Datenträger-Typ (TAGTYPE)	5: UHF Erweitert 0: automatische Datenträger-Erkennung HF 1: NXP Icode SLIX 2: Fujitsu MB89R118 3: TI Tag-it HF-I Plus 4: Infineon SRF55V02P 5: NXP Icode SLIX-S 6: Fujitsu MB89R119 7: TI Tag-it HF-I 8: Infineon SRF55V10P 9: reserviert 10: reserviert 11: NXP Icode SLIX-L 12: Fujitsu MB89R112 13: EM4233SLIC Schreib-Lese-Köpfe mit Firmware ab Vx.91 unterstützen zusätzlich: 14: NXP SLIX2 15: TI Tag-it HFI Pro 16:Turck Sensor Tag 17: Infineon SRF55V10S 19: EM4233 20: EM4237 21: EM4237 SLIC 22: EM4237 SLIX
Überbrückungszeit (BYPASS)	23: EM4033 Überbrückungszeit in ms, einstellbar von 41020 ms, Default-Einstellung: 200 ms
HF: Automatisches Tuning Schreib-Lese-Kopf (AT)	0: nein (automatisches Tuning aus) 1: ja (automatisches Tuning ein)
Leitungsabschluss aktiv (TERM)	0: ja (Leitungsabschluss aktiviert) 1: nein (Leitungsabschluss deaktiviert) Im HF-Busmodus ist der Leitungsabschluss standardmäßig aktiviert.
HF: Heartbeat Schreib-Lese-Kopf (HB)	
HF: Multitag (ANTI)	0: nein (Multitag-Modus aus) 1: ja (Multitag-Modus ein)
Diagnosen deaktivieren (DDI)	0: nein (alle Diagnosemeldungen ein) 1: ja (Diagnosemeldungen aus)

Bezeichnung	Bedeutung
Diagnose HF-Schreib-Lese-Kopf- Tuning deaktivieren (DXD)	0: nein (Diagnosemeldungen des Schreib-Lese-Kopfs ein) 1: ja (Diagnosemeldungen des Schreib-Lese-Kopfs aus)
HF: Idle-Modus (HFIDLEMODE)	definiert, welche Daten im Leerlauf angezeigt werden (nicht verfügbar in EDS-Datei) 0: UID 1: 8 Bytes User-Speicher 2: UID und 8 Bytes User-Speicher 3: UID und 64 Bytes User-Speicher 4: deaktiviert
Befehlswiederholungen im Fehlerfall (CRET)	Anzahl der Wiederholungen eines Befehls nach einer Fehlermeldung, Default-Einstellung: 2
HF: Befehl im Continuous Mode (CCM)	0x01: Inventory 0x02: Lesen 0x03: Datenträger-Info 0x04: Schreiben
HF: Länge im Continuous Mode (LCM)	Anzahl der Bytes, die im Continuous Mode gelesen oder geschrieben werden sollen, Default-Einstellung: 8
HF: Adresse im Continuous Mode (ACM)	Startadresse der UID oder des USER-Speicherbereichs auf dem Datenträger, der gelesen oder beschrieben werden soll, Default-Einstellung: 0
HF-Busmodus: Schreib-Lese-Kopf aktivieren (XCVR0XCVR31)	0: nein (Schreib-Lese-Kopf deaktivieren) 1: ja (Schreib-Lese-Kopf aktivieren) Im HF-Busmodus sind standardmäßig alle angeschlossenen und adressierten Schreib-Lese-Köpfe deaktiviert und müssen in den Parametern aktiviert werden.
Länge Lesedaten (RDS)	Größe der Lesedaten, Default-Einstellung ist abhängig von ausgewähltem Interface und Feldbus
Länge Schreibdaten (WDS)	Größe der Schreibdaten, Default-Einstellung ist abhängig von ausgewähltem Interface und Feldbus

8.1.2 HF-Anwendungen – Datenträger-Typ auswählen

► In Multitag-Anwendungen für die Ausführung der Befehle Lesen und Schreiben einen Datenträger-Typ auswählen. Die automatische Datenträgererkennung wird für die Befehle Lesen und Schreiben im Multitag-Betrieb nicht unterstützt.

Welche Datenträger-Typen ausgewählt werden können, ist abhängig von der Firmware des angeschlossenen Schreib-Lese-Kopfs. Der Firmware-Stand des Schreib-Lese-Kopfs lässt sich über den Befehl **Schreib-Lese-Kopf-Identifikation** auslesen.

HINWEIS

Bei Firmware-Stand des Interface bis 3.3.5.0 werden im Webserver, im zugehörigen DTM sowie in Katalog- und GSDML-Files nur Datenträger angezeigt, die von Schreib-Lese-Köpfen mit einem Firmware-Stand bis Vx.90 erfasst werden. Unabhängig davon ist die Erkennung der Datenträger gemäß der unten stehenden Tabelle möglich.

Wenn ein ausgewählter Datenträger nicht von der Firmware des angeschlossenen Schreib-Lese-Kopfs unterstützt wird, meldet das RFID-Interface den Fehler "Length out of Tag Specification" bzw. "Länge außerhalb der Datenträger-Spezifikation".

In Singletag-Anwendungen sowie für die Ausführung von Inventory-Befehlen in Multitag-Anwendungen ist keine Auswahl des Datenträger-Typs erforderlich, wenn der Schreib-Lese-Kopf die Datenträger automatisch erkennt.

Datenträger	Firmware-Stand	Firmware-Stand	Auswählbar	Automatische	Anzeige in	
	Schreib-Lese-Kopf	Interface		Erkennung möglich	Webserver, DTM, GSDML und Katalog-Files	
1: NXP Icode SLIX	≥ Vx.91	≥ V3.4.1.0	x	Х	Х	
	≥ Vx.91	≤ V3.3.5.0	X	X	Х	
	≤ Vx.90	alle	Х	Х	Х	
2: Fujitsu	≥ Vx.91	≥ V3.4.1.0	х	х	Х	
MB89R118	≥ Vx.91	≤ V3.3.5.0	Х	Х	Х	
	≤ Vx.90	alle	х	х	Х	
3: TI Tag-it HF-I	≥ Vx.91	≥ V3.4.1.0	х	х	Х	
Plus	≥ Vx.91	≤ V3.3.5.0	х	Х	Х	
	≤ Vx.90	alle	х	х	Х	
4: Infineon	≥ Vx.91	≥ V3.4.1.0	х	х	Х	
SRF55V02P	≥ Vx.91	≤ V3.3.5.0	х	х	Х	
	≤ Vx.90	alle	Х	Х	Х	
5: NXP Icode	≥ Vx.91	≥ V3.4.1.0	Х	Х	Х	
SLIX-S	≥ Vx.91	≤ V3.3.5.0	х	х	Х	
	≤ Vx.90	alle	Х	_	Х	
6: Fujitsu	≥ Vx.91	≥ V3.4.1.0	х	Х	Х	
MB89R119	≥ Vx.91	≤ V3.3.5.0	х	х	Х	
	≤ Vx.90	alle	х	_	Х	
7: TI Tag-it HF-I	≥ Vx.91	≥ V3.4.1.0	х	х	х	
	≥ Vx.91	≤ V3.3.5.0	х	Х	Х	
	≤ Vx.90	alle	х	_	Х	

Datenträger	Firmware-Stand Schreib-Lese-Kopf	Firmware-Stand Interface	Auswählbar	Automatische Erkennung möglich	Anzeige in Webserver, DTM, GSDML und Katalog-Files
8: Infineon	≥ Vx.91	≥ V3.4.1.0	Х	Х	х
SRF55V10P	≥ Vx.91	≤ V3.3.5.0	Х	х	х
	≤ Vx.90	alle	Х	_	Х
11: NXP Icode	≥ Vx.91	≥ V3.4.1.0	Х	Х	х
SLIX-L	≥ Vx.91	≤ V3.3.5.0	X	х	х
	≤ Vx.90	alle	Х	_	х
12: Fujitsu	≥ Vx.91	≥ V3.4.1.0	X	X	Х
MB89R112	≥ Vx.91	≤ V3.3.5.0	X	X	Х
	≤ Vx.90	alle	X	_	X
13: EM4233SLIC	≥ Vx.91	≥ V3.4.1.0	Х	X	Х
	≥ Vx.91	≤ V3.3.5.0	Х	Х	Х
	≤ Vx.90	alle	Х	_	Х
14: NXP SLIX2	≥ Vx.91	≥ V3.4.1.0	Х	Х	X
	≥ Vx.91	≤ V3.3.5.0	_	х	_
	≤ Vx.90	alle	_	_	_
15: TI Tag-it HFI	≥ Vx.91	≥ V3.4.1.0	_	х	х
Pro	≥ Vx.91	≤ V3.3.5.0	_	Х	_
	≤ Vx.90	alle	_	_	_
16: Turck Sensor	≥ Vx.91	≥ V3.4.1.0	Х	х	х
Tag	≥ Vx.91	≤ V3.3.5.0	_	Х	_
	≤ Vx.90	alle	_	_	_
17: Infineon	≥ Vx.91	≥ V3.4.1.0	Х	х	х
SRF55V02S	≥ Vx.91	≤ V3.3.5.0	_	Х	_
	≤ Vx.90	alle	_	_	_
18: Infineon	≥ Vx.91	≥ V3.4.1.0	Х	Х	Х
SRF55V10S	≥ Vx.91	≤ V3.3.5.0	_	Х	_
	≤ Vx.90	alle	_	_	_
19: EM4233	≥ Vx.91	≥ V3.4.1.0	Х	Х	Х
	≥ Vx.91	≤ V3.3.5.0	_	Х	_
	≤ Vx.90	alle	_	_	_
20: EM4237	≥ Vx.91	≥ V3.4.1.0	Х	Х	Х
	≥ Vx.91	≤ V3.3.5.0	_	Х	_
	≤ Vx.90	alle	_	_	_
21: EM4237 SLIC	≥ Vx.91	≥ V3.4.1.0	Х	Х	Х
	≥ Vx.91	≤ V3.3.5.0	_	X	_
	≤ Vx.90	alle	_	_	_
22: EM4237 SLIX	≥ Vx.91	≥ V3.4.1.0	Х	X	X
	≥ Vx.91	≤ V3.3.5.0	_	X	_
	≤ Vx.90	alle	_	_	_

Datenträger	Firmware-Stand Schreib-Lese-Kopf	Firmware-Stand Interface	Auswählbar	Automatische Erkennung möglich	Anzeige in Webserver, DTM, GSDML und Katalog-Files
23: EM4033	≥ Vx.91	≥ V3.4.1.0	X	X	X
	≥ Vx.91	≤ V3.3.5.0	_	Х	_
	≤ Vx.90	alle	_	_	

8.1.3 HF-Anwendungen – Überbrückungszeit (Bypass-Zeit) einstellen

Bedingt durch die Ausdehnung der HF-Übertragungszone ist es möglich, dass der Datenträger während eines Schreib- oder Lesevorgangs kurzzeitig aus der Übertragungszone austritt und später wieder eintritt. Die Strecke zwischen Austritt und Wiedereintritt in die Übertragungszone muss überbrückt werden, damit der Schreib- oder Lesevorgang abgeschlossen werden kann und der Datenträger nicht mehrfach erfasst wird. Die Überbrückungszeit ist die Zeit zwischen Austritt und Wiedereintritt in den Erfassungsbereich. Der Parameter **Überbrückungszeit** belegt ein Wort im Parameter-Datenabbild und wird in ms angegeben.

Die Überbrückungszeit ist im Bereich von 4...1020 ms einstellbar. Die Überbrückungszeit ergibt sich aus den eingesetzten Komponenten, den Schreib-Lese-Abständen, der Geschwindigkeit des Datenträgers zum Schreib-Lese-Kopf und weiteren äußeren Einflüssen.

Die folgende Abbildung zeigt den typischen Verlauf des Erfassungsbereichs und die Wegstrecke, die der Schreib-Lese-Kopf zurücklegt. A zeigt den Streckenabschnitt an, der überbrückt werden muss:

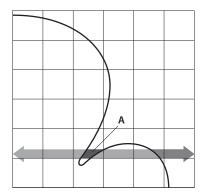


Abb. 73: Erfassungsbereich eines Schreib-Lese-Kopfs

Default-Einstellung beibehalten

Die Default-Einstellung für die Überbrückungszeit beträgt 200 ms. Im HF-Busmodus beträgt der Default-Wert 48 ms.

- ▶ Default-Einstellung beibehalten: Ist die Inbetriebnahme erfolgreich, muss der Parameter nicht an die Applikation angepasst werden. Ist die Inbetriebnahme nicht erfolgreich, erscheint eine Fehlermeldung.
- ▶ Bei Erscheinen einer Fehlermeldung Überbrückungszeit anpassen. Ist eine Anpassung der Überbrückungszeit nicht möglich, Geschwindigkeit oder Datenmenge reduzieren.

Die Angaben "empfohlener Abstand" und "maximaler Abstand" finden Sie im produktspezifischen Datenblatt.

Überbrückungszeit an die Applikation anpassen

- ► Erforderliche Überbrückungszeit vor Ort messen. Die LEDs des Schreib-Lese-Kopfs und das Statusbit "TP" zeigen an, ob sich der Schreib-Lese-Kopf im Erfassungsbereich befindet oder nicht.
- ► Erforderliche Überbrückungszeit angeben.

8.1.4 HF-Anwendungen – HF-Busmodus einstellen

HINWEIS

Im HF-Busmodus gilt ein Befehl immer nur für einen Schreib-Lese-Kopf. Während der Befehlsausführung findet keine Datenkommunikation mit weiteren Schreib-Lese-Köpfen statt.

Der HF-Busmodus unterstützt HF-Schreib-Lese-Köpfe ab Firmware-Stand Vx.90. Im HF-Continuous-Busmodus werden HF-Schreib-Lese-Köpfe ab Firmware-Stand Vx.93 unterstützt. Die Schreib-Lese-Köpfe können wie folgt adressiert werden:

- Automatische Adressierung
- Manuelle Adressierung über den Befehl HF-Schreib-Lese-Kopf-Adresse setzen
- Manuelle Adressierung über das Turck Service Tool

Die Adressen müssen pro Kanal zwischen 1 und 32 vergeben werden.

Schreib-Lese-Köpfe automatisch adressieren

HINWEIS

Turck empfiehlt, die Busadresse des Schreib-Lese-Kopfs sichtbar auf dem Gerät zu vermerken. Für die Beschriftung der Adresse am Schreib-Lese-Kopf kann der Schildträger am Kabel genutzt werden. Die passenden Schilder können unter der ID 6936206 bestellt werden.

Schreib-Lese-Köpfe mit der Default-Busadresse 68 lassen sich automatisch adressieren. Dazu muss das entsprechende XCVR-Bit in den Parameterdaten gesetzt werden.

- ► RFID-Interface mit Spannung versorgen.
- ► Gewünschte Schreib-Lese-Köpfe in den Parameterdaten über das jeweilige XCVR-Bit aktivieren.
- Schreib-Lese-Köpfe nacheinander in einer Linie an das Interface anschließen.
- Die Schreib-Lese-Köpfe erhalten ihre Adresse automatisch aufsteigend in der Reihenfolge des Anschlusses. Die niedrigste Adresse wird automatisch an den nächsten angeschlossenen Schreib-Lese-Kopf mit der Default-Adresse 68 vergeben.
- Wenn die LED des Schreib-Lese-Kopfs dauerhaft leuchtet, ist die Adressierung erfolgreich.

Schreib-Lese-Köpfe manuell adressieren – Befehl HF-Schreib-Lese-Kopf-Adresse setzen

HINWEIS

Turck empfiehlt, die Busadresse des Schreib-Lese-Kopfs sichtbar auf dem Gerät zu vermerken. Für die Beschriftung der Adresse am Schreib-Lese-Kopf kann der Schildträger am Kabel genutzt werden. Die passenden Schilder können unter der ID 6936206 bestellt werden.

Informationen zum Adressieren der Schreib-Lese-Köpfe über das RFID-Interface mit dem Befehl HF-Schreib-Lese-Kopf-Adresse setzen entnehmen Sie S. [▶ 143]. Bei der manuellen Adressierung über den Befehl HF-Schreib-Lese-Kopf-Adresse setzen dürfen die Schreib-Lese-Köpfe erst aktiviert werden, wenn die Adressierung abgeschlossen ist.

HINWEIS

Beim manuellen Adressieren darf jeweils nur ein Schreib-Lese-Kopf pro RFID-Kanal angeschlossen sein.

 Gewünschte Schreib-Lese-Köpfe in den Parameterdaten über das jeweilige XCVR-Bit aktivieren.

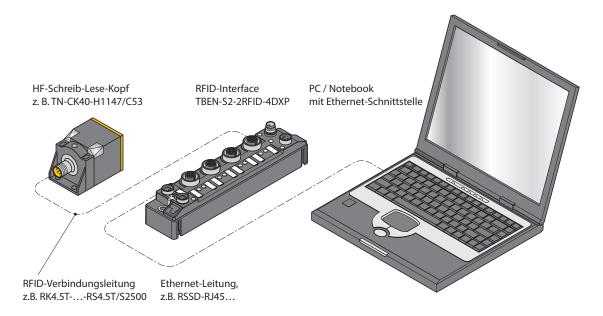


Abb. 74: Schreib-Lese-Kopf über das RFID-Interface mit einem PC verbinden

Schreib-Lese-Köpfe manuell über das Turck Service Tool adressieren

HINWEIS

Turck empfiehlt, die Busadresse des Schreib-Lese-Kopfs sichtbar auf dem Gerät zu vermerken. Für die Beschriftung der Adresse am Schreib-Lese-Kopf kann der Schildträger am Kabel genutzt werden. Die passenden Schilder können unter der ID 6936206 bestellt werden.

Zur Adressierung der Schreib-Lese-Köpfe im HF-Busmodus über das Turck Service Tool ist folgendes Zubehör erforderlich. Das Zubehör ist nicht im Lieferumfang enthalten und muss separat bestellt werden.

- geeigneter Schnittstellenkonverter, z. B. STW-RS485-USB (ID 7030354)
- passendes Steckernetzteil, z. B. STW-RS485-USB-PS (ID 7030355)
- Schreib-Lese-Kopf über eine geeignete Verbindungsleitung (z. B. RK4.5T-2/S2500) gemäß der folgenden Farbbelegung an den Schnittstellenkonverter anschließen:

STW-RS485-USB	Steckverbinder /S2500	Steckverbinder /S2501	Steckverbinder/S2503
VCC	braun (BN)	braun (BN)	rot (RD)
GND	blau (BU)	blau (BU)	schwarz (BK)
RS485-A	weiß (WH)	schwarz (BK)	weiß (WH)
RS485-B	schwarz (BK)	weiß (WH)	blau (BU)

- ▶ USB-Kabel an den Schnittstellenkonverter anschließen (USB1.1 Typ B).
- ▶ Das offene Ende des USB-Kabels an einen freien USB-Port am PC anschließen (USB1.1 Typ A).
- Am Schnittstellenkonverter die seitlichen Schalter für die Terminierung auf [ON] stellen.
- Schnittstellenkonverter über das Steckernetzteil STW... mit einer Stromquelle verbinden.

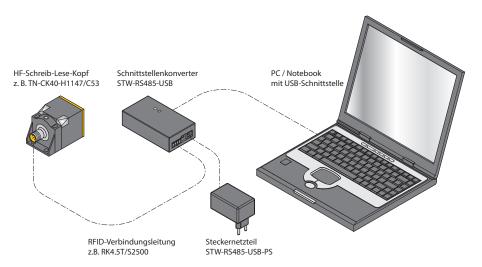


Abb. 75: Schreib-Lese-Kopf über den Schnittstellenkonverter mit einem PC verbinden

- ► Turck Service Tool starten.
- ▶ **Aktionen** anklicken oder [F4] drücken.
- ▶ Setze HF RFID Reader Bus-Adresse anklicken.

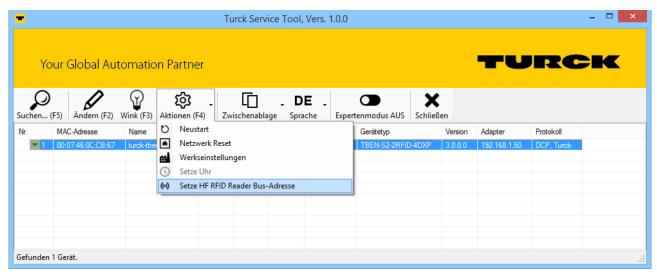


Abb. 76: Funktion auswählen – Setze HF RFID Reader Bus-Adresse

Das Fenster **HF RFID Reader Setup Tool** öffnet sich.

- ▶ **COM-Port** auswählen, an den der Schnittstellenkonverter angeschlossen ist.
- ▶ Lesen klicken.
- ⇒ Der gefundene Schreib-Lese-Kopf wird in der **Statusmeldung** angezeigt.

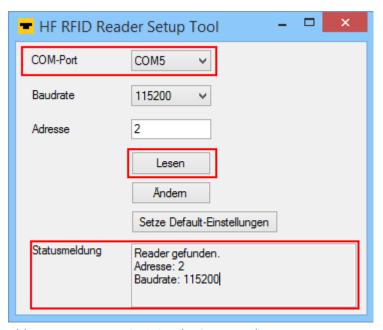


Abb. 77: Fenster – HF RFID Reader Setup Tool

- ► Gewünschte **Adresse** eintragen.
- ▶ Ändern klicken.
- Die neu eingestellte Adresse wird in der **Statusmeldung** angezeigt.

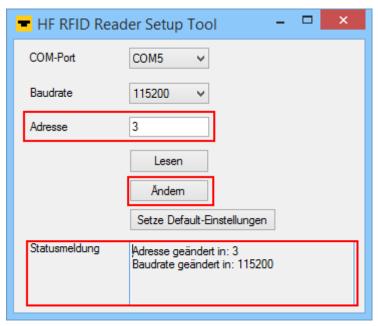


Abb. 78: Schreib-Lese-Kopf-Adresse ändern

► Gewünschte Schreib-Lese-Köpfe in den Parameterdaten über das jeweilige XCVR-Bit aktivieren.

- 8.1.5 UHF-Anwendungen Continuous Presence Sensing Mode einstellen
 - ▶ Anpassungen des Presence-Sensing-Verhaltens im DTM einstellen.
 - Optional: Gruppierung der EPCs über den Parameter Startadresse einstellen:
 0: Gruppierung inaktiv
 - 1: Gruppierung aktiv (gleicher EPC wird nicht erneut erfasst, nur Zähler im Header hochgezählt)
 - Befehl Continuous Presence Sensing Mode ausführen.
 - Der UHF-Reader wird in den Presence Sensing Mode versetzt und sendet alle empfangenen Daten an das Interface, sobald sich mindestens ein Datenträger im Erfassungsbereich befindet.
 - ⇒ Die vom UHF-Reader empfangenen Daten werden im FIFO-Speicher des Interface abgelegt.
 - ▶ Befehl **Leerlauf** (0x0000) senden, um Daten aus dem Puffer des Interface auslesen zu können.

HINWEIS

Der Befehl **Continuous Presence Sensing Mode** bleibt auch nach dem Senden des Leerlauf-Befehls aktiv.

▶ Um Daten aus dem FIFO-Speicher des Interface an die Steuerung weiterzugeben, Befehl Puffer auslesen (Cont. Mode) (0x0011) ausführen. Die Länge der Daten muss dabei kleiner oder gleich dem Wert der verfügbaren Datenbytes (BYFI) sein. Abhängig von der Länge der Daten werden die Daten nicht mehr zur Gruppierung herangezogen.

HINWEIS

Bei aktivierter Gruppierung: Daten erst aus dem Puffer auslesen, wenn die Anzahl der verfügbaren Bytes stabil ist. Wenn stabile Daten abgeholt wurden, kann der Befehl per Reset beendet werden, da die Gruppierung nicht mehr auf den abgeholten Daten basiert und daher alte EPCs erneut erkannt werden.

- ▶ Reset erst durchführen, wenn die Daten erfolgreich aus dem Puffer ausgelesen wurden.
- ► Um den Continuous Presence Sensing Mode zu beenden und den FIFO-Speicher des Interface zu löschen, Befehl Reset (0x0800) senden.
- 8.1.6 UHF-Anwendungen Reader-Einstellungen übertragen

Die Backup-Funktion ermöglicht das Übertragen von Einstellungen eines UHF-Readers, z. B. im Fall eines Geräteaustausches.

- ▶ Befehl **Backup der Einstellungen des UHF-Schreib-Lese-Kopfs** ausführen.
- ⇒ Die Einstellungen des UHF-Readers werden im Interface gespeichert.
- UHF-Reader austauschen.
- ▶ Befehl UHF-Schreib-Lese-Kopf-Einstellungen wiederherstellen ausführen.
- Die im Interface gespeicherten Daten werden an den UHF-Reader übertragen.

8.2 RFID-Kanäle – Prozess-Eingangsdaten

Prozess-Eingangsdaten – Betriebsarten HF Kompakt und UHF Kompakt

Byte-Nr.		Bit								
PROFINET	Modbus EtherNet/ IP	7	6	5	4	3	2	1	0	
Kanal 0										
n + 0	0	Antwortco	de (RESC) in	kl. ERROR u	nd BUSY					
n + 1	1									
n + 2	2	Schleifenzä	hler für sch	nelle Verarb	eitung (RCI	NT)				
n + 3	3	reserviert								
n + 4	4	TNC1	TRE1	PNS1	XD1				TP	
n + 5	5							CMON	TON	
n + 6	6	Länge (LEN)							
n + 7	7									
n + 8	8	Fehlercode	(ERRC)							
n + 9	9									
n + 10	10	Datenträge	r-Zähler (TC	CNT)						
n + 11	11									
n + 12	24	Lesedaten	Byte 0							
n + 13	25	Lesedaten	Byte 1							
n + 14	26	Lesedaten	Byte 2							
n + 15	27	Lesedaten	Byte 3							
n + 16	28	Lesedaten	Byte 4							
n + 17	29	Lesedaten	Byte 5							
n + 18	30	Lesedaten	Byte 6							
n + 19	31	Lesedaten	Byte 7							
n + 139	151	Lesedaten	Byte 127							
Kanal 1	•									
n + 140 279	152303	Belegung a	nalog zu Ka	nnal 0						

Prozess-Eingangsdaten – Betriebsarten HF Erweitert und UHF Erweitert

Byte-Nr.		Bit								
PROFINET	Modbus EtherNet/ IP	7	6	5	4	3	2	1	0	
Kanal 0										
n + 0	0	Antwortco	de (RESC) in	kl. ERROR u	nd BUSY					
n + 1	1									
n + 2	2	Schleifenzä	ihler für sch	nelle Verarb	eitung (RCI	NT)				
n + 3	3	reserviert								
n + 4	4	TNC1	TRE1	PNS1	XD1				TP	
n + 5	5							CMON	TON	
n + 6	6	Länge (LEN	l)							
n + 7	7									
n + 8	8	Fehlercode	(ERRC)							
n + 9	9									
n + 10	10	Datenträge	er-Zähler (TC	CNT)						
n + 11	11									
n + 12	12	Daten (Byte	es) verfügba	ar (BYFI)						
n + 13	13									
n + 14	14	Lese-Fragn	nent-Nr. (RF	N)						
n + 15	15	Schreib-Fra	gment-Nr.	(WFN)						
n + 16	16	reserviert								
n + 17	17	reserviert								
n + 18	18	reserviert								
n + 19	19	reserviert								
n + 20	24	Lesedaten	Byte 0							
n + 21	25	Lesedaten	Byte 1							
n + 22	26	Lesedaten	Byte 2							
n + 23	27	Lesedaten	Byte 3							
n + 24	28	Lesedaten	Byte 4							
n + 25	29	Lesedaten	Byte 5							
n + 26	30	Lesedaten	Byte 6							
n + 27	31	Lesedaten	Byte 7							
n + 147	151	Lesedaten	Byte 127							
Kanal 1										
n + 148 295	152303	Belegung a	ınalog zu Ka	nnal 0						

Prozess-Eingangsdaten – Betriebsart HF-Busmodus

Byte-Nr.		Bit							
PROFINET	Modbus EtherNet/ IP	7	6	5	4	3	2	1	0
Kanal 0									
n + 0	0	Antwortco	de (RESC) in	kl. ERROR u	nd BUSY				
n + 1	1								
n + 2	2	Schleifenzä	ihler für sch	nelle Verark	eitung (RCI	NT)			
n + 3	3	reserviert							
n + 4	4	TNC1	TRE1	PNS1	XD1				TP
n + 5	5							CMON	TON
n + 6	6	Länge (LEN	l)	1				1	
n + 7	7	1							
n + 8	8	Fehlercode	(ERRC)						
n + 9	9	1							
n + 10	10	Datenträge	er-Zähler (TC	CNT)					
n + 11	11								
n + 12	12	Daten (Byte	es) verfügba	ar (BYFI)					
n + 13	13								
n + 14	14	Lese-Fragn	nent-Nr. (RF	N)					
n + 15	15	+	gment-Nr.						
n + 16	16	reserviert							
n + 17	17	reserviert							
n + 18	18	reserviert							
n + 19	19	reserviert							
n + 20	20	TP8	TP7	TP6	TP5	TP4	TP3	TP2	TP1
n + 21	21	TP16	TP15	TP14	TP13	TP12	TP11	TP10	TP9
n + 22	22	TP24	TP23	TP22	TP21	TP20	TP19	TP18	TP17
n + 23	23	TP32	TP31	TP30	TP29	TP28	TP27	TP26	TP25
n + 24	24	Lesedaten	Byte 0	1	-		-	1	1
n + 25	25	Lesedaten	Byte 1						
n + 26	26	Lesedaten	Byte 2						
n + 27	27	Lesedaten	Byte 3						
n + 28	28	Lesedaten	Byte 4						
n + 29	29	Lesedaten	Byte 5						
n + 30	30	Lesedaten	Byte 6						
n + 31	31	Lesedaten	Byte 7						
n + 151	151	Lesedaten	Byte 127						
Kanal 1									
n + 152 303	152303	Belegung a	nalog zu Ka	ınal 0					

8.2.1 Bedeutung der Status-Bits

Bezeichnung	Bedeutung
Antwortcode (RESC)	Anzeige des letzten ausgeführten Befehls Enthält in Bit 14: Fehler (ERROR) 0: nein (Der letzte ausgeführte Befehl wurde erfolgreich abgeschlossen.) 1: ja (Während der Ausführung eines Befehls ist ein Fehler aufgetreten.)
	 Enthält in Bit 15: BUSY 0: nein (Ausführung eines Befehls abgeschlossen) 1: ja (Befehl aktiv, aber noch nicht abgeschlossen; System wartet auf Ausführung, z. B. auf Datenträger im Erfassungsbereich)
Schleifenzähler für schnelle Verarbeitung (RCNT)	Ausgabe des Schleifenzählers für den ausgewählten Befehlscode
Erwarteter Schreib-Lese-Kopf nicht verbunden (TNC1)	0: nein (vom System erwarteter Schreib-Lese-Kopf verbunden) 1: ja (vom System erwarteter Schreib-Lese-Kopf nicht verbunden) (HF-Busmodus: mindestens ein vom System erwarteter Schreib-Lese-Kopf nicht verbunden)
Schreib-Lese-Kopf meldet Fehler (TRE1)	0: nein (kein Fehler) 1: ja (Fehlermeldung des Schreib-Lese-Kopfs) (HF-Busmodus: Fehlermeldung von mindestens einem Schreib-Lese-Kopf)
Parameter vom Schreib-Lese- Kopf nicht unterstützt (PNS1)	0: nein (kein Fehler) 1: ja (Parameter wird vom Schreib-Lese-Kopf nicht unterstützt) (HF-Busmodus: Parameter von mindestens einem Schreib-Lese-Kopf nicht unterstützt)
HF-Schreib-Lese-Kopf verstimmt (XD1)	0: nein (kein Fehler) 1: ja (Schreib-Lese-Kopf verstimmt) (HF-Busmodus: mindestens einer der Schreib- Lese-Köpfe verstimmt)
Datenträger im Erfassungs- bereich am Schreib-Lese-Kopf (TP)	0: nein (kein Datenträger im Erfassungsbereich des Schreib-Lese-Kopfs) 1: ja (Datenträger im Erfassungsbereich des Schreib-Lese-Kopfs) (HF-Busmodus: Datenträger im Erfassungsbereich von mindestens einem Schreib-Lese-Kopf)
HF-Schreib-Lese-Kopf eingeschaltet (TON)	0: nein (Schreib-Lese-Kopf ausgeschaltet) 1: ja (Schreib-Lese-Kopf eingeschaltet) (HF-Busmodus: mindestens ein Schreib- Lese-Kopf eingeschaltet)
Continuous (Presence Sensing) Mode aktiv (CMON)	0: nein (Continuous Mode nicht aktiv) 1: ja (Continuous Mode aktiv)
Länge (LEN)	Anzeige der Länge der gelesenen Daten
Fehlercode (ERRC)	Anzeige des spezifischen Fehlercodes, wenn das Fehler-Bit (ERROR) gesetzt ist
Datenträger-Zähler (TCNT)	Anzeige der erkannten Datenträger. Bei HF-Multitag-Anwendungen und bei UHF werden die steigenden Flanken der Datenträger gezählt, die bei einem Inventory-Befehl gelesen werden. In HF-Singletag-Anwendungen werden alle Datenträger gezählt, die vom Schreib-Lese-Kopf erkannt werden. Ein Datenträger, der sich am Schreib-Lese-Kopf entlang bewegt, wird nicht erneut gezählt, wenn er nur kurzzeitig (innerhalb der eingestellten Bypass-Zeit) den Erfassungsbereich verlässt und wieder eintritt. Bleibt ein Datenträger stabil im Erfassungsbereich, wird er ebenfalls nur einmal gezählt. Ausnahmen: Der Continuous Mode im Bus-Modus ist aktiv oder der Continuous Mode mit Startadresse = 3 ist aktiv. Der Datenträger-Zähler wird durch die folgenden Befehle zurückgesetzt: Inventory (Ausnahme: HF-Singletag-Anwendungen) Continuous Mode Continuous Presence Sensing Mode Reset

Bezeichnung	Bedeutung
Daten (Bytes) verfügbar (BYFI) (nur bei HF Erweitert und UHF Er- weitert verfügbar)	Zeigt die Anzahl der Bytes im FIFO-Speicher des Interface an. Ansteigend: neue Daten von einem Datenträger gelesen oder vom Gerät empfangen Absteigend: Befehlsausführung abgeschlossen Fehlermeldung 0xFFFF: Speicher überfüllt, Datenverlust neuer Daten droht
Lese-Fragment-Nr. (RFN) (nur bei HF Erweitert und UHF Erweitert verfügbar)	Wenn die zu lesenden Daten die Größe des Lesedatenspeichers überschreiten, werden die Daten in max. 256 Fragmente aufgeteilt. Die Fragmente werden von 1255 laufend durchnummeriert. Ab Fragment-Nummer 256 beginnt die Nummerierung erneut bei 1. Das Senden eines Fragments wird vom Gerät bestätigt, wenn die Lese-Fragment-Nr. in den Prozess-Eingangsdaten erscheint. Nach der Bestätigung wird das nächste Fragment gelesen. 0: keine Fragmentierung Im Leerlauf wird die Größe der Fragmente angegeben. Bei einem Lesebefehl wird die aktuelle Fragment-Nr. der gelesen Daten angezeigt.
Schreib-Fragment-Nr. (WFN)	Wenn die zu schreibenden Daten die Größe des Schreibdatenspeichers überschreiten, werden die Daten in max. 256 Fragmente aufgeteilt. Die Fragmente werden von 1255 laufend durchnummeriert. Ab Fragment-Nummer 256 beginnt die Nummerierung erneut bei 1. Das Senden eines Fragments wird vom Gerät bestätigt, wenn die Schreib-Fragment-Nr. in den Prozess-Eingangsdaten erscheint. Nach der Bestätigung wird das nächste Fragment geschrieben. 0: keine Fragmentierung Im Leerlauf wird die Größe der Fragmente angegeben. Bei einem Schreibbefehl wird die aktuelle Fragment-Nr. der geschriebenen Daten angezeigt.
TP1TP32	Datenträger im Erfassungsbereich des angeschlossenen Schreib-Lese-Kopfs (nur im HF-Busmodus verfügbar)
Lesedaten	Benutzerdefinierte Lesedaten

8.2.2 Datenträger im Erfassungsbereich (TP) – Bit nutzen oder Befehl vorspannen

Das Bit **Datenträger im Erfassungsbereich** wird automatisch gesetzt, wenn ein Schreib-Lese-Gerät einen Datenträger erkennt.

In HF-Anwendungen wird das Bit standardmäßig in allen Betriebsarten und im Leerlauf gesetzt außer bei einigen Varianten des Continuous Modus.

Alle Befehle lassen sich unabhängig davon senden, ob das Bit **Datenträger im Erfassungs-bereich** (TP) gesetzt ist. Wenn zum Sendezeitpunkt des Befehls kein Datenträger im Erfassungsbereich vorhanden ist, wird der Befehl durch eine steigende Flanke an TP ausgeführt. Ein Befehl wird sofort ausgeführt, wenn sich zum Sendezeitpunkt ein Datenträger im Erfassungsbereich befindet.

HINWEIS

Wenn der HF-Schreib-Lese-Kopf einen neuen Datenträger im Erfassungsbereich erkennt, werden im Leerlauf das Bit **Datenträger im Erfassungsbereich** (TP) und die über den Parameter **HF: Idle-Modus** eingestellten Daten (UID und/oder Lesedaten) gleichzeitig angezeigt. Wenn zwei Datenträger schnell aufeinander folgen, bleibt das TP-Bit evtl. gesetzt. Die Daten des zweiten Datenträgers (UID und/oder Lesedaten) werden angezeigt.

8.3 RFID-Kanäle – Prozess-Ausgangsdaten

Prozess-Ausgangsdaten – Betriebsarten HF Kompakt und UHF Kompakt

Byte-Nr.		Bit							
PROFINET	Modbus EtherNet/ IP	7	6	5	4	3	2	1	0
Kanal 0	•						•		
n + 0	0	Befehlscod	e (CMDC)						
n + 1	1								
n + 2	2	Schleifenzä	hler für sch	nelle Verark	eitung (RCI	NT)			
n + 3	3	Speicherbe	reich (DOM) – nur bei l	JHF-Anwen	dungen ver	fügbar		
n + 4	4	Startadress	e (ADDR)						
n + 5	5								
n + 6	6								
n + 7	7								
n + 8	8	Länge (LEN)						
n + 9	9								
n + 10	10	Länge UID/	EPC (SOUID))					
n + 11	11	reserviert							
n + 12	24	Schreibdat	en Byte 0						
n + 13	25	Schreibdat	en Byte 1						
n + 14	26	Schreibdat	en Byte 2						
n + 15	27	Schreibdat	en Byte 3						
n + 16	28	Schreibdat	en Byte 4						
n + 17	29	Schreibdat	en Byte 5						
n + 18	30	Schreibdat	en Byte 6						
n + 19	31	Schreibdat	en Byte 7						
n + 139	151	Schreibdat	en Byte 127						
Kanal 1									
n + 140 279	152303	Belegung a	nalog zu Ka	ınal 0					

Prozess-Ausgangsdaten – Betriebsarten HF Erweitert und UHF Erweitert

Byte-Nr.		Bit							
PROFINET	Modbus EtherNet/ IP	7	6	5	4	3	2	1	0
Kanal 0									
n + 0	0	Befehlscod	e (CMDC)						
n + 1	1								
n + 2	2	Schleifenzä	hler für sch	nelle Verark	eitung (RCN	NT)			
n + 3	3	Speicherbe	reich (DOM) – nur bei l	JHF-Anwen	dungen ver	fügbar		
n + 4	4	Startadress	e (ADDR)						
n + 5	5								
n + 6	6								
n + 7	7								
n + 8	8	Länge (LEN)						
n + 9	9								
n + 10	10	Länge UID/	EPC (SOUID))					
n + 11	11	reserviert							
n + 12	12	Timeout (T	OUT)						
n + 13	13								
n + 14	14	Lese-Fragm	nent-Nr. (RF	N)					
n + 15	15	Schreib-Fra	igment-Nr. ((WFN)					
n + 16	16	reserviert							
n + 17	17	reserviert							
n + 18	18	reserviert							
n + 19	19	reserviert							
n + 20	24	Schreibdat	en Byte 0						
n + 21	25	Schreibdat	en Byte 1						
n + 22	26	Schreibdat	en Byte 2						
n + 23	27	Schreibdat	en Byte 3						
n + 24	28	Schreibdat	en Byte 4						
n + 25	29	Schreibdat	en Byte 5						
n + 26	30	Schreibdat	en Byte 6						
n + 27	31	Schreibdat	en Byte 7						
•••		•••							
n + 147	151	Schreibdat	en Byte 127						
Kanal 1									
n + 148 295	152303	Belegung a	nalog zu Ka	ınal 0					

Prozess-Ausgangsdaten – Betriebsart HF-Busmodus

Byte-Nr.		Bit							
PROFINET	Modbus EtherNet/ IP	7	6	5	4	3	2	1	0
Kanal 0	Canal 0								
n + 0	0	Befehlscod	e (CMDC)						
n + 1	1								
n + 2	2	Schleifenzä	hler für sch	nelle Verark	eitung (RCI	NT)			
n + 3	3	Speicherbe	reich (DOM) – nur bei l	JHF-Anwen	dungen ver	fügbar		
n + 4	4	Startadress	e (ADDR)						
n + 5	5								
n + 6	6								
n + 7	7								
n + 8	8	Länge (LEN)						
n + 9	9								
n + 10	10	Länge UID/	EPC (SOUID))					
n + 11	11	reserviert							
n + 12	12	Timeout (T	OUT)						
n + 13	13								
n + 14	14	Lese-Fragm	nent-Nr. (RF	N)					
n + 15	15	Schreib-Fra	gment-Nr.	(WFN)					
n + 16	16	reserviert							
n + 17	17	reserviert							
n + 18	18	reserviert							
n + 19	19	reserviert							
n + 20	20	Schreib-Les	se-Kopf-Adr	esse (ANTN) – nur bei F	lF-Anwend	ungen verfü	gbar	
n + 21	21	reserviert							
n + 22	22	reserviert							
n + 23	23	reserviert							
n + 24	24	Schreibdat	en Byte 0						
n + 25	25	Schreibdat	en Byte 1						
n + 26	26	Schreibdat	en Byte 2						
n + 27	27	Schreibdat	en Byte 3						
n + 28	28	Schreibdat	en Byte 4						
n + 29	29	Schreibdat	en Byte 5						
n + 30	30	Schreibdat	en Byte 6						
n + 31	31	Schreibdat	en Byte 7						
n + 151	151	Schreibdat	en Byte 127		•	•	•	•	•
Kanal 1		•							
n + 152	152303	Belegung a	nalog zu Ka	ınal 0					
303									

8.3.1 Bedeutung der Befehls-Bits

Beschreibung	Bedeutung
Befehlscode (CMDC)	Angabe des Befehlscodes
Schleifenzähler für schnelle Verarbeitung (LCNT)	Schleifenzähler zur wiederholten Bearbeitung eines Befehls 0: Schleifenzähler aus
Speicherbereich (DOM) – nur für UHF-Anwendungen nutzbar (bei HF-Anwendungen hat die Einstellung keine Auswirkungen)	1: EPC 2: TID
Startadresse (ADDR)	Angabe der Adresse in Bytes, ab der ein Befehl im Speicher des Datenträgers ausgeführt werden soll. Alternativ zur Aktivierung der Gruppierung verwendbar.
Länge (LEN)	Angabe der Länge der zu lesenden oder zu schreibenden Daten in Bytes
Länge UID/EPC (SOUID) in Bytes	Inventory-Befehl: 0: Die tatsächliche Länge (Bytes) des übertragenen UID oder EPC wird bei einem Inventory übertragen. > 0 in HF-Anwendungen: 8: Auslesen bzw. Schreiben 8 Bytes UID 17: Auslesen bzw. Schreiben eines verkürzten UID > 8: Fehlermeldung
	-1: NEXT-Modus (nur in HF-Singletag-Anwendungen verfügbar): Ein HF-Datenträger wird immer nur dann gelesen, beschrieben oder geschützt, wenn sich der UID vom UID des zuletzt gelesenen oder beschriebenen Datenträgers unterscheidet. > 0 in UHF-Anwendungen: EPC wird vollständig ausgegeben. Andere Befehle (z. B. Lesen oder Schreiben): Angabe der UID- oder EPC-Größe in Bytes, wenn ein bestimmter Datenträger gelesen, beschrieben oder geschützt werden soll. Der UID oder EPC muss in den Schreibdaten definiert werden (Startbyte: 0). Die Funktion der Länge des UID oder EPC ist abhängig vom verwendeten Befehl. 0: Keine Angabe eines UID oder EPC zur Ausführung des Befehls. Dabei darf sich nur ein Datenträger im Erfassungsbereich des Schreib-Lese-Geräts befinden. > 0: EPC-Länge des Datenträgers, der gelesen, beschrieben oder geschützt werden soll, wenn in den Schreibdaten ein EPC vorhanden ist. -1: NEXT-Modus (nur in HF-Singletag-Anwendungen verfügbar): Ein Datenträger wird immer nur dann gelesen, beschrieben oder geschützt, wenn sich der UID oder EPC vom UID oder EPC des zuletzt gelesenen oder beschriebenen Datenträgers unterscheidet.
Timeout (TOUT)	Zeit in ms, in der ein Befehl ausgeführt werden soll. Wird ein Befehl nicht innerhalb der angegebenen Zeit ausgeführt, gibt das Gerät eine Fehlermeldung aus. 0 (HF-Anwendungen): kein Time-out, Befehl bleibt aktiv, bis er ausgeführt wird 0 (UHF-Anwendungen): kein Time-out, Befehl bleibt aktiv, bis der erste Datenträger gelesen wurde 1: Befehl wird einmal ausgeführt (wenn sich bereits ein Datenträger im Erfassungsbereich befindet) > 165535: Zeit in ms HF Inventory: Befehl wird in der angegebenen Zeit einmalig ausgeführt (Ausnahme: Continuous Mode) UHF Inventory: Befehl bleibt für die gesamte angegebene Zeit aktiv

Beschreibung	Bedeutung
Lese-Fragment-Nr. (RFN)	Wenn die zu lesenden Daten die Größe des Lesedatenspeichers überschreiten, werden die Daten in max. 256 Fragmente aufgeteilt. Die Fragmente werden von 1255 laufend durchnummeriert. Ab Fragment-Nummer 256 beginnt die Nummerierung erneut bei 1. Das Senden eines Fragments wird vom Gerät bestätigt, wenn die Lese-Fragment-Nr. in den Prozess-Eingangsdaten erscheint. Nach der Bestätigung wird das nächste Fragment gelesen. 0: keine Fragmentierung Im Leerlauf wird die Größe der Fragmente angegeben. Bei einem Lesebefehl wird über die Fragment-Nr. der Zugriff auf die gelesen Daten des nächsten Fragments eingestellt.
Schreib-Fragment-Nr. (WFN)	Wenn die zu schreibenden Daten die Größe des Schreibdatenspeichers überschreiten, werden die Daten in max. 256 Fragmente aufgeteilt. Die Fragmente werden von 1255 laufend durchnummeriert. Ab Fragment-Nummer 256 beginnt die Nummerierung erneut bei 1. Das Senden eines Fragments wird vom Gerät bestätigt, wenn die Schreib-Fragment-Nr. in den Prozess-Eingangsdaten erscheint. Nach der Bestätigung wird das nächste Fragment geschrieben. 0: keine Fragmentierung Im Leerlauf wird die Größe der Fragmente angegeben. Bei einem Schreibbefehl wird über die Fragment-Nr. das nächste Fragment für die zu schreibenden Daten eingestellt.
Schreib-Lese-Kopf-Adresse	HF-Busmodus: Adresse des Schreib-Lese-Kopfs, wenn mehrere busfähige Schreib-Lese-Köpfe angeschlossen sind UHF: Werte werden ignoriert bzw. automatisch gesetzt.
Schreibdaten	benutzerdefinierte Schreibdaten oder Angabe eines UID oder EPC, um einen bestimmten Datenträger für die Befehlsausführung auszuwählen (wenn der Befehlsparameter "Länge UID/EPC (SOUID)" größer 0 ist)

8.4 Digitale Kanäle – Parameterdaten

Byte-Nr.	Bit							
	7	6	5	4	3	2	1	0
0	SRO7	SRO6	SRO5	SRO4				
1	OE7	OE6	OE5	OE4				

8.4.1 Bedeutung der Parameter-Bits

Default-Werte sind fett dargestellt.

Bezeichnung	Bedeutung
Manueller Reset des Ausgangs nach Überstrom (SRO…)	0: nein (Der Ausgang schaltet sich nach Überstrom automatisch wieder ein.) 1: ja (Der Ausgang schaltet sich nach Überstrom erst nach Zurücknehmen und erneutem Setzen des Schaltsignals wieder ein.)
Ausgang aktivieren (OEx)	0: nein (Ausgang deaktiviert) 1: ja (Ausgang aktiviert)

8.5 Digitale Kanäle – Erweiterte Parameter einstellen (EXT LEAN)

Byte-Nr.	Bit								
	7	6	5	4	3	2	1	0	
0	DIFT	DMOD (Byte	DMOD (Byte 17)						
1	IST (Byte 0	.8)							

8.5.1 Bedeutung der Parameter-Bits

Default-Werte sind fett dargestellt.

Bezeichnung	Bedeutung
Eingangsfilter (DIFT)	Der Eingangsfilter bestimmt, wie lange eine Eingangsänderung anstehen muss, bis sie in die Eingangsdaten übernommen wird. 0: 0,2 ms 1: 3 ms
Erweiterte Digitalfunktion (DMOD)	0: deaktiviert 1: Digitalfilter und Impulsverlängerung aktiviert
Impulsverlängerung (IST)	Impulsverlängerung: 02550 ms (in 10-ms-Schritten einstellbar), Default-Wert: 10 ms

8.6 Digitale Kanäle – Prozess-Eingangsdaten

Byte-Nr.	Bit							
	7	6	5	4	3	2	1	0
0	DXP7	DXP6	DXP5	DXP4				
1								

8.6.1 Bedeutung der Status-Bits

Bezeichnung	Bedeutung
DXP4	0: aus (digitaler Kanal 1 nicht aktiv) 1: ein (digitaler Kanal 1 aktiv)
DXP5	0: aus (digitaler Kanal 2 nicht aktiv) 1: ein (digitaler Kanal 2 aktiv)
DXP6	0: aus (digitaler Kanal 3 nicht aktiv) 1: ein (digitaler Kanal 3 aktiv)
DXP7	0: aus (digitaler Kanal 4 nicht aktiv) 1: ein (digitaler Kanal 4 aktiv)

8.7 Digitale Kanäle – Prozess-Ausgangsdaten

Byte-Nr.	Bit									
	7	6	5	4	3	2	1	0		
0	DXP7	DXP6	DXP5	DXP4						
1										

8.7.1 Bedeutung der Befehls-Bits

Default-Werte sind **fett** dargestellt.

Bezeichnung	Bedeutung	
DXP4	0: aus (digitalen Kanal 1 ausschalten) 1: ein (digitalen Kanal 1 einschalten)	
DXP5	0: aus (digitalen Kanal 2 ausschalten) 1: ein (digitalen Kanal 2 einschalten)	
DXP6	0: aus (digitalen Kanal 3 ausschalten) 1: ein (digitalen Kanal 3 einschalten)	
DXP7	0: aus (digitalen Kanal 4 ausschalten) 1: ein (digitalen Kanal 4 einschalten)	

8.8 RFID-Kanäle – Übersicht der Befehle

RFID-Befehle werden über den Befehlscode in den Prozess-Ausgangsdaten eines RFID-Kanals angestoßen. Die Befehle lassen sich mit oder ohne Schleifenzähler-Funktion ausführen. Der Schleifenzähler muss für jeden neuen Befehl einzeln gesetzt werden.

HINWEIS

Nach dem Ausführen von Befehlen ohne Schleifenzähler-Funktion muss das Gerät in den Leerlauf-Zustand zurückgesetzt werden, bevor ein neuer Befehl gesendet wird.

▶ Nach ausgeführtem Befehl einen Leerlauf-Befehl an das Gerät senden.

Leerlauf 0x0000 0 x x x x x X <	Befehl	Befehlscode möglich für						
Leerlauf		hex.	dez.	HF				UHF
Inventory				Kompakt	Erweitert	Busmodus	Kompakt	Erweitert
Inventory mit Schleifenzähler	Leerlauf	0x0000	0	Х	Х	Х	Х	Х
Lesen 0x0002 2 x		0x0001	1	Х	X	X	X	Х
Schreiben	Inventory mit Schleifenzähler	0x2001	8193	Х	Х	Х	Х	Х
Schreiben 0x0004 4 x	Lesen	0x0002	2	Х	Х	Х	Х	Х
Schreiben mit Schleifenzähler 0x2004 8196 x	Lesen mit Schleifenzähler	0x2002	8194	Х	Х	Х	Х	Х
EPC-Länge ändern und neuen EPC schreiben (UHF) 0x0007 7 - - - x x Schreiben mit Validierung 0x0008 8 x x x x x Continuous Mode 0x0010 16 - x* x***** - x Puffer auslesen (Cont. Mode) 0x0011 17 - x x***** - x Puffer auslesen (Cont. Mode) 0x2011 8209 - x x***** - x Puffer auslesen (Cont. Mode) 0x0012 18 - x* x**** - x Continuous (Presence 0x0012 18 - x* x**** - x Sensing) Mode beenden 0x0013 19 - x x x x Puffer löschen (Cont. Mode) 0x0013 19 - x x x x x HF-Schreib-Lese-Kopf ausschalten 0x0040 64 x x x x <td>Schreiben</td> <td>0x0004</td> <td>4</td> <td>X</td> <td>Х</td> <td>Х</td> <td>Х</td> <td>Х</td>	Schreiben	0x0004	4	X	Х	Х	Х	Х
schreiben (UHF) Schreiben mit Validierung 0x0008 8 x <td>Schreiben mit Schleifenzähler</td> <td>0x2004</td> <td>8196</td> <td>X</td> <td>Х</td> <td>Х</td> <td>Х</td> <td>Х</td>	Schreiben mit Schleifenzähler	0x2004	8196	X	Х	Х	Х	Х
Continuous Mode 0x0010 16 - x* x**** - x Puffer auslesen (Cont. Mode) 0x0011 17 - x x**** - x Puffer auslesen (Cont. Mode) 0x2011 8209 - x x**** - x Schleifenzähler 0x0012 18 - x* x***** - x Continuous (Presence 0x0012 18 - x* x**** - x Sensing) Mode beenden 0x0013 19 - x x - x Puffer löschen (Cont. Mode) 0x0013 19 - x x - - x UHF Continuous Presence Sensing 0x0020 32 - - - - x x Where Continuous Presence Sensing 0x0020 32 - - - - x x x x x x x x x x x <td>•</td> <td>0x0007</td> <td>7</td> <td>_</td> <td>_</td> <td>_</td> <td>X</td> <td>Х</td>	•	0x0007	7	_	_	_	X	Х
Puffer auslesen (Cont. Mode) 0x0011 17 - x x**** - x Puffer auslesen (Cont. Mode) mit Schleiferazähler 0x2011 8209 - x x**** - x Continuous (Presence Sensing Mode beenden 0x0012 18 - x* x***** - x Puffer löschen (Cont. Mode) 0x0013 19 - x x - x UHF Continuous Presence Sensing Mode 0x0020 32 - - - - x UHF Continuous Presence Sensing Mode 0x0020 32 - - - - x Whode UHF Continuous Presence Sensing Mode 0x0020 32 - - - - - - x Whode UHF Continuous Presence Sensing Mode 0x0040 64 x x x x x x x x x x x x x x x x x x <t< td=""><td>Schreiben mit Validierung</td><td>0x0008</td><td>8</td><td>Х</td><td>Х</td><td>Х</td><td>Х</td><td>Х</td></t<>	Schreiben mit Validierung	0x0008	8	Х	Х	Х	Х	Х
Puffer auslesen (Cont. Mode) mit Schleifenzähler 0x2011 8209 - x x***** - x Continuous (Presence Sensing Sensing) Mode beenden 0x0012 18 - x* x***** - x Puffer löschen (Cont. Mode) 0x0013 19 - x x - x UHF Continuous Presence Sensing Mode 0x0020 32 - - - - x HF-Schreib-Lese-Kopf ausschalten 0x0040 64 x	Continuous Mode	0x0010	16	_	x*	x***	_	Х
Schleifenzähler X* X* X*** - X Continuous (Presence Sensing) Mode beenden 0x0012 18 - X* X* X* X* - X Puffer löschen (Cont. Mode) 0x0013 19 - X X X - X UHF Continuous Presence Sensing Mode 0x0020 32 X HF-Schreib-Lese-Kopf ausschalten Ox0040 64 X X X X X X X X X X X X Schreib-Lese-Kopf-Identifikation Ox0041 65 X X X X X X X X X X X X X X Fehler/Status UHF-Schreib-Lese-Kopf Ox0042 66 X X X X X X X X X X X X X X X X X X X X X X	Puffer auslesen (Cont. Mode)	0x0011	17	_	X	X***	_	Х
Sensing Mode beenden Puffer löschen (Cont. Mode) 0x0013 19 -	,	0x2011	8209	_	Х	X***	_	X
UHF Continuous Presence Sensing Mode 0x0020 32 - - - - x HF-Schreib-Lese-Kopf ausschalten 0x0040 64 x x x x - - - Schreib-Lese-Kopf-Identifikation 0x0041 65 x	•	0x0012	18	_	X*	X***	_	Х
Mode HF-Schreib-Lese-Kopf ausschalten 0x0040 64 x	Puffer löschen (Cont. Mode)	0x0013	19	-	Х	Х	-	Х
Schreib-Lese-Kopf-Identifikation 0x0041 65 x	9	0x0020	32	_	_	_	_	Х
Fehler/Status UHF-Schreib-Lese-Kopf 0x0042 66 X X X lesen Fehler/Status UHF-Schreib-Lese-Kopf 0x2042 8258 X X Iesen mit Schleifenzähler Datenträger-Info 0x0050 80 X X X X X X X X X X X X X X X X X X	HF-Schreib-Lese-Kopf ausschalten	0x0040	64	Х	Х	Х	_	_
lesen Fehler/Status UHF-Schreib-Lese-Kopf 0x2042 8258 x x x lesen mit Schleifenzähler Datenträger-Info 0x0050 80 x x x x x x x x x x x x x x x x x x	Schreib-Lese-Kopf-Identifikation	0x0041	65	Х	Х	Х	Х	Х
lesen mit Schleifenzähler Datenträger-Info 0x0050 80 x x x x x x x x x x x x x x x x x x	•	0x0042	66	_	_	_	х	х
Datenträger-Info mit Schleifenzähler 0x2050 8272 x x x x x x x x x x x x x x x x x x		0x2042	8258	_	_	_	х	х
Direkter Schreib-Lese-Kopf-Befehl 0x0060 96 x x x x x x x x x x Direkter Schreib-Lese-Kopf-Befehl 0x2060 8288 x x x x x x x x x x x x x x x x x	Datenträger-Info	0x0050	80	Х	Х	Х	Х	Х
Direkter Schreib-Lese-Kopf-Befehl 0x2060 8288 x x x x x x x x x mit Schleifenzähler HF-Schreib-Lese-Kopf- 0x0070 112 x - Adresse abfragen HF-Schreib-Lese-Kopf-Adresse setzen 0x0071 113 x	Datenträger-Info mit Schleifenzähler	0x2050	8272	х	Х	Х	Х	Х
mit Schleifenzähler HF-Schreib-Lese-Kopf- 0x0070 112 x Adresse abfragen HF-Schreib-Lese-Kopf-Adresse setzen 0x0071 113 x	Direkter Schreib-Lese-Kopf-Befehl	0x0060	96	Х	Х	Х	Х	Х
Adresse abfragen HF-Schreib-Lese-Kopf-Adresse setzen 0x0071 113 - x x		0x2060	8288	Х	Х	Х	Х	Х
HF-Schreib-Lese-Kopf-Adresse setzen 0x0071 113 – – x – –	•	0x0070	112	-	_,	х	_	_
HF-Schreib-Lese-Kopf-Tuning 0x0080 128 x x x x		0x0071	113	_	_	Х	_	_
	HF-Schreib-Lese-Kopf-Tuning	0x0080	128	Х	X	X	_	_

Befehl	Befehlscode		möglich fü	r			
	hex.	dez.	HF Kompakt	HF Erweitert	HF- Busmodus	UHF Kompakt	UHF Erweitert
AFI von HF-Datenträger lesen	0x0090	144	Х	Х	Х	-	-
AFI auf HF-Datenträger schreiben	0x0091	145	Х	Х	Х	-	-
AFI in HF-Datenträger sperren	0x0092	146	Х	Х	Х	-	-
DSFID von HF-Datenträger lesen	0x0094	148	Х	Х	Х	-	-
DSFID auf HF-Datenträger schreiben	0x0095	149	Х	Х	Х	-	-
DSFID in HF-Datenträger sperren	0x0096	150	Х	Х	Х	-	-
Schreib-Lese-Kopf-Passwort setzen	0x0100	256	X**	X**	X**	Х	Х
Schreib-Lese-Kopf-Passwort zurück- setzen	0x0101	257	X**	X**	X**	Х	Х
Datenträger-Passwort setzen	0x0102	258	X**	X**	X**	Х	Х
Datenträger-Passwort setzen mit Schleifenzähler	0x2102	8450	X**	X**	x**	Х	Х
Datenträger-Schutz setzen	0x0103	259	X**	X**	X**	Х	Х
Datenträger-Schutz setzen mit Schleifenzähler	0x2103	8451	X**	X**	X**	Х	Х
Schutzstatus HF-Datenträger abfragen	0x0104	260	X**	X**	x**	Х	Х
Permanente Sperre setzen (Lock)	0x0105	261	Х	Х	Х	Х	Х
Permanente Sperre setzen (Lock) mit Schleifenzähler	0x2105	8453	Х	Х	Х	Х	Х
UHF-Datenträger unwiderruflich deaktivieren (Kill)	0x0200	512	_	_	_	Х	Х
UHF-Datenträger deaktivieren (Kill) mit Schleifenzähler	0x2200	8704	_	_	_	Х	Х
Einstellungen UHF-Schreib-Lese-Kopf wiederherstellen	0x1000	4096	-	-	_	Х	Х
Backup der Einstellungen des UHF- Schreib-Lese-Kopfs	0x1001	4097	_	_	-	Х	Х
Reset	0x8000	32768	Х	Х	Х	Х	Х

^{*} Bei automatischer Erkennung des Datenträger-Typs unterstützt der Continuous Mode nur den Inventory-Befehl.

^{**} Der Befehl wird nur von den Chiptypen EM42... und NXP SLIX2 unterstützt.

^{***} Der Befehl wird im HF-Continuous-Busmodus unterstützt.

8.8.1 Befehl: Leerlauf

HF

Über den Befehl Leerlauf wird das Interface in den Leerlauf versetzt. Ein zuvor ausgeführter Befehl wird zurückgesetzt. Wenn sich ein Datenträger im Erfassungsbereich eines HF-Schreib-Lese-Kopfs befindet und der Singletag-Modus eingestellt ist, wird das Bit **Datenträger im Erfassungsbereich** gesetzt und standardmäßig der UID des Datenträgers im Lesedatenbereich angezeigt.

Mit dem nächsten Datenträger im Erfassungsbereich werden die vorhandenen Daten überschrieben.

Über Webserver, DTM, PROFINET oder Modbus-Register kann eingestellt werden, welche Daten vom Datenträger ausgelesen und angezeigt werden.

Möglich sind folgende Optionen:

- UID
- 8 Bytes User-Speicher
- UID und 8 Bytes User-Speicher
- UID und 64 Bytes User-Speicher
- Deaktiviert

Im HF-Busmodus wird zusätzlich die Adresse des Schreib-Lese-Kopfes ausgegeben, der die Daten ausgelesen hat.

HINWEIS

Wenn der HF-Schreib-Lese-Kopf einen neuen Datenträger im Erfassungsbereich erkennt, werden im Leerlauf das Bit **Datenträger im Erfassungsbereich** (TP) und die über den Parameter **HF: Idle-Modus** eingestellten Daten (UID und/oder Lesedaten) gleichzeitig angezeigt. Wenn zwei Datenträger schnell aufeinander folgen, bleibt das TP-Bit evtl. gesetzt. Die Daten des zweiten Datenträgers (UID und/oder Lesedaten) werden angezeigt.

UHF

Über den Befehl Leerlauf wird das Interface in den Leerlauf versetzt. Ein zuvor ausgeführter Befehl wird zurückgesetzt. Standardmäßig ist der UHF-Reader beim Befehl Leerlauf ausgeschaltet und führt keine Aktion aus. Wenn sich ein Datenträger im Erfassungsbereich eines UHF-Readers befindet und der Presence Sensing Mode aktiv ist, wird das Bit Datenträger im Erfassungsbereich gesetzt und der EPC und/oder die User-Daten des Datenträgers im Lesedatenbereich angezeigt.

Mit dem nächsten Datenträger im Erfassungsbereich werden die vorhandenen Daten überschrieben.

Über Webserver oder DTM kann in der Konfiguration des UHF-Readers eingestellt werden, welche Daten vom Datenträger ausgelesen und angezeigt werden.

Möglich sind folgende Optionen:

- EPC
- User-Speicher oder Teil des User-Speichers
- EPC und User-Speicher oder Teil des User-Speichers
- Deaktiviert

Übersicht Ausgangsdaten

Die Beschreibung der Ausgangsdaten finden Sie auf S. [▶ 103].

Request	
Schleifenzähler	nicht erforderlich
Befehlscode	0x0000 (hex.), 0 (dez.)
Schreib-Lese-Kopf-Adresse	nicht erforderlich
Länge UID/EPC	nicht erforderlich
Startadresse	nicht erforderlich
Länge	nicht erforderlich
Befehls-Time-out	nicht erforderlich
Schreib-Fragment-Nr.	nicht erforderlich
Lese-Fragment-Nr.	nicht erforderlich
Schreibdaten	nicht erforderlich

Übersicht Eingangsdaten

Die Beschreibung der Eingangsdaten finden Sie auf S. [> 98].

Response	
Schleifenzähler	siehe Beschreibung der Eingangsdaten
Antwortcode	0x0000 (hex.), 0 (dez.)
Länge	Länge der UID/EPC des Datenträgers im Erfassungsbereich
Fehlercode	siehe Beschreibung der Eingangsdaten
Datenträger im Erfassungsbereich	siehe Beschreibung der Eingangsdaten
Daten (Bytes) verfügbar	siehe Beschreibung der Eingangsdaten
Datenträger-Zähler	siehe Beschreibung der Eingangsdaten
Schreib-Fragment-Nr.	Größe der Fragmente
Lese-Fragment-Nr.	Größe der Fragmente
Lesedaten, Byte 0n	UID/EPC des Datenträgers im Erfassungsbereich

Beispiel: UID, HF-Busmodus

Тур	Name	Bedeutung
uint8_t	Daten [8]	uint8_t UID [8]
uint8_t	reserviert	reserviert
uint8_t	Adresse	Adresse des Schreib-Lese-Kopfs

Beispiel: Erfolgreicher Lesebefehl (64 Bytes), HF-Busmodus

Тур	Name	Bedeutung
uint8_t	Daten [64]	uint8_t Lesedaten [64]
uint8_t	reserviert	reserviert
uint8_t	Adresse	Adresse des Schreib-Lese-Kopfs

8.8.2 Befehl: Inventory

Über den Befehl **Inventory** sucht das Schreib-Lese-Gerät nach Datenträgern im Erfassungsbereich und liest den UID, EPC oder – sofern im UHF-Reader aktiviert – den RSSI der Datenträger aus. Der Inventory-Befehl kann im Singletag-Modus und im Multitag-Modus ausgeführt werden. Der NEXT-Modus ist nur im Singletag-Modus möglich.

HINWEIS

Der Befehlscode für die schnelle Bearbeitung mit dem Schleifenzähler ist 0x2001 (hex.) bzw. 8193 (dez.).

Request		
Schleifenzähler	siehe Beschreibung der Ausgangsdaten	
Befehlscode	0x0001 (hex.), 1 (dez.)	
Schreib-Lese-Kopf-Adresse	siehe Beschreibung der Ausgangsdaten	
Länge UID/EPC	nicht erforderlich	
Startadresse	1: Gruppierung der EPCs aktiv (nur UHF) 0: Gruppierung der EPCs inaktiv (nur UHF)	
Länge	 0: Die tatsächliche Länge (Bytes) des übertragenen UID oder EPC wird bei einem Inventory übertragen. > 0 in HF-Anwendungen: 8: Rückmeldung 8 Bytes UID 17: Rückmeldung eines verkürzten UID > 8: Fehlermeldung 	
	-1: NEXT-Modus (nur in HF-Singletag-Anwendungen verfügbar): Ein HF-Datenträger wird immer nur dann gelesen, beschrieben oder geschützt, wenn sich der UID vom UID des zuletzt gelesenen oder beschriebenen Datenträgers unterscheidet. > 0 in UHF-Anwendungen: EPC wird vollständig ausgegeben.	
Befehls-Time-out	siehe Beschreibung der Ausgangsdaten	
Schreib-Fragment-Nr.	0	
Lese-Fragment-Nr.	siehe Beschreibung der Ausgangsdaten	
Schreibdaten	nicht erforderlich	

Die Beschreibung der Eingangsdaten finden Sie auf S. [▶ 98].

Response (HF)	
Schleifenzähler	siehe Beschreibung der Eingangsdaten
Antwortcode	0x0001 (hex.), 1 (dez.)
Länge	Länge der gelesenen Daten in Bytes
Fehlercode	siehe Beschreibung der Eingangsdaten
Datenträger im Erfassungsbereich	siehe Beschreibung der Eingangsdaten
Daten (Bytes) verfügbar	siehe Beschreibung der Eingangsdaten
Datenträger-Zähler	ansteigend
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Eingangsdaten
Lesedaten, Byte 0n	UID
Response (UHF)	
Schleifenzähler	siehe Beschreibung der Eingangsdaten
Antwortcode	0x0001 (hex.), 1 (dez.)
Länge	Länge der gelesenen Daten
Fehlercode	siehe Beschreibung der Eingangsdaten
Datenträger im Erfassungsbereich	siehe Beschreibung der Eingangsdaten
Daten (Bytes) verfügbar	siehe Beschreibung der Eingangsdaten
Datenträger-Zähler	ansteigend

Datenformat in UHF-Anwendungen

Lese-Fragment-Nr.

Schreib-Fragment-Nr.

Lesedaten, Byte 0...n

Die UHF-Lesedaten sind durch einen Header formatiert. Der Header ist wie folgt aufgebaut:

siehe Beschreibung der Eingangsdaten

siehe Beispiel: UHF-Lesedaten

Тур	Name	Bedeutung
uint8_t	Größe	Datengröße
uint8_t	Blocktyp	1: UID/EPC/RSSI etc. 2: Lesedaten andere Werte: reserviert
uint8_t	Daten [Größe]	EPC/RSSI etc. oder Lesedaten

Die Größe von EPC/RSSI etc. ist abhängig von den Reader-Einstellungen.

0

RSSI-Wert auslesen

Der RSSI-Wert wird binär codiert in 2 Bytes ausgegeben und entspricht dem Zweierkomplement des ausgegebenen Binärcodes. Auf ein Signed Integer gemappt ergeben die ausgegebenen 2 Bytes das Zehnfache des aktuellen RSSI-Werts. Ein Beispiel zum Auslesen des RSSI-Werts entnehmen Sie folgender Tabelle:

MSBLSB (dezimal)	MSBLSB (binär)	Zweierkomplement	RSSI (dBm)
252 253	11111100 11111101	-771	-77,1

Beispiel: UHF-Lesedaten (Header und EPC, Gruppierung deaktiviert)

Тур	Name	Bedeutung
uint8_t	Größe	12
uint8_t	Blocktyp	1
uint8_t	Daten [14]	uint8_t EPC [12]

Beispiel: UHF-Lesedaten (Header und EPC, Gruppierung aktiviert)

Тур	Name	Bedeutung
uint8_t	Größe	14
uint8_t	Blocktyp	1
uint8_t	Daten [14]	uint8_t EPC [12]
		uint16_t Anzahl der Lesevorgänge (LSB → MSB) [2]

Beispiel: UHF-Lesedaten (Header und EPC, Gruppierung mit RSSI aktiviert)

Тур	Name	Bedeutung
uint8_t	Größe	16
uint8_t	Blocktyp	1
uint8_t	Daten [18]	uint8_t EPC [12] uint16_t RSSI [2] uint16_t Anzahl der Lesevorgänge (LSB → MSB) [2]

Byte	Inhalt	Bedeutung
0	Datengröße (EPC + Anzahl Lesevorgänge)	2 Byte Header
1	UHF-Speicherbereich	_
313	EPC	12 Byte EPC
14	LSB	2 Byte RSSI
15	MSB	-
16	LSB	2 Byte Anzahl Lesevorgänge
17	MSB	

Beispiel: UHF-Lesedaten (Header, EPC, Gruppierung mit RSSI, Slot, Zeit, Phase aktiviert)

Тур	Name	Bedeutung
uint8_t	Größe	24
uint8_t	Blocktyp	1
uint8_t	Daten [24]	uint8_t EPC [12]
		uint16_t RSSI (LSB \rightarrow MSB)
		uint16_t Slot (LSB \rightarrow MSB)
		uint32_t Zeit (LSB → MSB)
		uint16_t Phase (LSB → MSB)
		uint16_t Anzahl der Lesevorgänge (LSB 🔿
		MSB)

8.8.3 Befehl: Lesen

Über den Befehl Lesen liest das Schreib-Lese-Gerät Daten von Datenträgern im Erfassungsbereich. Standardmäßig werden bei einem Lesevorgang 128 Bytes übertragen. Größere Datenmengen können in Fragmenten übertragen werden. Wird ein bestimmter UID bzw. EPC angegeben, liest das Schreib-Lese-Gerät ausschließlich die entsprechenden Datenträger. Alle anderen Datenträger im Erfassungsbereich werden in diesem Fall ignoriert.

HINWEIS

Der Befehlscode für die schnelle Bearbeitung mit dem Schleifenzähler ist 0x2002 (hex.) bzw. 8194 (dez.).

Request	
Schleifenzähler	siehe Beschreibung der Ausgangsdaten
Befehlscode	0x0002 (hex.), 2 (dez.)
Speicherbereich	siehe Beschreibung der Ausgangsdaten
Schreib-Lese-Kopf-Adresse	siehe Beschreibung der Ausgangsdaten
Länge UID/EPC	Angabe der UID- oder EPC-Größe in Bytes, wenn ein bestimmter Datenträger gelesen werden soll. Der UID oder EPC muss in den Schreibdaten definiert werden (Startbyte: 0). Die Funktion der Länge des UID/EPC ist abhängig vom verwendeten Befehl. 0: Keine Angabe eines UID/EPC zur Ausführung des Befehls. Dabei darf sich nur ein Datenträger im Erfassungsbereich des Schreib-Lese-Geräts befinden. > 0: EPC-Länge des Datenträgers, der gelesen werden soll, wenn in den Schreibdaten ein EPC vorhanden ist -1: NEXT-Modus: Ein Datenträger wird immer nur dann gelesen, wenn sich der UID/EPC vom UID/EPC des zuletzt gelesenen oder beschriebenen Datenträgers unterscheidet.
Startadresse	Startadresse des Speicherbereichs auf dem Datenträger, der gelesen werden soll (Angabe in Bytes)
Länge	Länge der zu lesenden Daten in Bytes
Befehls-Time-out	siehe Beschreibung der Ausgangsdaten
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Ausgangsdaten
Schreibdaten, Byte 0(Größe des UID/EPC - 1)	UID oder EPC des Datenträgers, der gelesen werden soll
Schreibdaten, Byte (Größe des EPC)…127	nicht erforderlich

Response	
Schleifenzähler	siehe Beschreibung der Eingangsdaten
Antwortcode	0x0002 (hex.), 2 (dez.)
Länge	Länge der gelesenen Daten
Fehlercode	siehe Beschreibung der Eingangsdaten
Datenträger im	siehe Beschreibung der Eingangsdaten
Erfassungsbereich	
Daten (Bytes) verfügbar	steigt während der Befehlsausführung an
Datenträger-Zähler	siehe Beschreibung der Eingangsdaten
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Eingangsdaten
Lesedaten, Byte 0n	gelesene Daten

8.8.4 Befehl: Schreiben

Über den Befehl **Schreiben** schreibt das Schreib-Lese-Gerät Daten auf Datenträger im Erfassungsbereich. Standardmäßig werden bei einem Schreibvorgang 128 Bytes übertragen. Größere Datenmengen können in Fragmenten übertragen werden. Wird ein bestimmter UID bzw. EPC angegeben, schreibt das Schreib-Lese-Gerät ausschließlich die entsprechenden Datenträger. Alle anderen Datenträger im Erfassungsbereich werden in diesem Fall ignoriert.

HINWEIS

▶ Bei Multitag-Anwendungen UID oder EPC des zu beschreibenden Datenträgers angeben.

HINWEIS

Der Befehlscode für die schnelle Bearbeitung mit dem Schleifenzähler ist 0x2004 (hex.) bzw. 8196 (dez.).

Request	
Schleifenzähler	siehe Beschreibung der Ausgangsdaten
Befehlscode	0x0004 (hex.), 4 (dez.)
Speicherbereich	siehe Beschreibung der Ausgangsdaten
Schreib-Lese-Kopf-Adresse	siehe Beschreibung der Ausgangsdaten
Länge UID/EPC	Angabe der UID- oder EPC-Größe in Bytes, wenn ein bestimmter Datenträger beschrieben werden soll. Der UID oder EPC muss in den Schreibdaten definiert werden (Startbyte: 0). Die Funktion der Länge des UID/EPC ist abhängig vom verwendeten Befehl. 0: Keine Angabe eines UID/EPC zur Ausführung des Befehls. Dabei darf sich nur ein Datenträger im Erfassungsbereich des Schreib-Lese-Geräts befinden. > 0: EPC-Länge des Datenträgers, der beschrieben werden soll, wenn in den Schreibdaten ein EPC vorhanden ist -1: NEXT-Modus: Ein Datenträger wird immer nur dann beschrieben, wenn sich der UID/EPC vom UID/EPC des zuletzt gelesenen oder beschriebenen Datenträgers unterscheidet.
Startadresse	Startadresse des Speicherbereichs auf dem Datenträger, der beschrieben werden soll (Angabe in Bytes)
Länge	Länge der zu schreibenden Daten in Bytes
Befehls-Time-out	siehe Beschreibung der Ausgangsdaten
Schreib-Fragment-Nr.	1: Fragmentierung nutzen 0: Fragmentierung nicht nutzen
Lese-Fragment-Nr.	0
Schreibdaten, Byte 0(Größe des UID/EPC -1)	UID oder EPC des Datenträgers, der beschrieben werden soll
Schreibdaten, Byte (Größe des EPC)127	Schreibdaten

Response	
Schleifenzähler	siehe Beschreibung der Eingangsdaten
Antwortcode	0x0004 (hex.), 4 (dez.)
Länge	Länge der gelesenen Daten
Fehlercode	siehe Beschreibung der Eingangsdaten
Datenträger im Erfassungsbereich	siehe Beschreibung der Eingangsdaten
Daten (Bytes) verfügbar	steigt während der Befehlsausführung an
Datenträger-Zähler	siehe Beschreibung der Eingangsdaten
Schreib-Fragment-Nr.	siehe Beschreibung der Eingangsdaten
Lese-Fragment-Nr.	0
Lesedaten, Byte 0127	nicht erforderlich

8.8.5 Befehl: EPC-Länge ändern und neuen EPC schreiben (UHF)

HINWEIS

Die maximale EPC-Länge eines Datenträgers hängt vom Chiptyp ab. Die Länge kann dem entsprechenden Datenblatt entnommen werden.

Über den Befehl EPC-Länge ändern und neuen EPC schreiben (UHF) wird vom RFID-Modul automatisch die im Datenträger eingestellte Länge für die EPC-Antwort angepasst (Änderung des PCs im Datenträger) und der EPC mit dieser Länge auf den Datenträger geschrieben. Wird ein bestimmter EPC angegeben, schreibt der UHF-Reader ausschließlich die entsprechenden Datenträger. Alle anderen Datenträger im Erfassungsbereich werden in diesem Fall ignoriert.

Die Beschreibung der Ausgangsdaten finden Sie auf S. [▶ 103].

Request	
Schleifenzähler	siehe Beschreibung der Ausgangsdaten
Befehlscode	0x0007 (hex.), 7 (dez.)
Schreib-Lese-Kopf-Adresse	siehe Beschreibung der Ausgangsdaten
Länge UID/EPC	reservierte Bytes in den Schreibdaten für den EPC 0: Datenträger nicht adressieren, beliebigen Datenträger in der Luftschnittstelle lesen
Startadresse	nicht erforderlich
Länge	Länge der zu schreibenden Daten in Bytes; muss gerade und ≤ 62 sein
Befehls-Time-out	nicht erforderlich
Schreib-Fragment-Nr.	siehe Beschreibung der Ausgangsdaten
Lese-Fragment-Nr.	0
Schreibdaten, Byte 0(Länge UID/EPC - 1)	EPC des Datenträgers, der beschrieben werden soll
Schreibdaten, Byte (Länge UID/ EPC)127	neuer EPC mit neuer Länge

Response	
Schleifenzähler	siehe Beschreibung der Eingangsdaten
Antwortcode	0x0007 (hex.), 7 (dez.)
Länge	0
Fehlercode	siehe Beschreibung der Eingangsdaten
Datenträger im Erfassungsbereich	siehe Beschreibung der Eingangsdaten
Daten (Bytes) verfügbar	siehe Beschreibung der Eingangsdaten
Datenträger-Zähler	siehe Beschreibung der Eingangsdaten
Schreib-Fragment-Nr.	siehe Beschreibung der Eingangsdaten
Lese-Fragment-Nr.	siehe Beschreibung der Eingangsdaten
Lesedaten, Byte 0127	nicht erforderlich

8.8.6 Befehl: Schreiben mit Validierung

Über den Befehl **Schreiben mit Validierung** wird eine vom Anwender definierte Anzahl Bytes geschrieben. Die geschriebenen Daten werden zusätzlich zurück an das Interface geschickt und validiert. Beim Schreiben werden standardmäßig bis zu 128 Bytes übertragen. Größere Datenmengen können in Fragmenten übertragen werden. Die geschriebenen Daten werden ausschließlich im Interface validiert und nicht an die Steuerung zurückgeschickt. Schlägt die Validierung fehl, wird eine Fehlermeldung ausgegeben. Wird der Befehl ohne Fehlermeldung abgearbeitet, wurden die Daten erfolgreich validiert.

HINWEIS

Bei Multitag-Anwendungen UID oder EPC des zu beschreibenden Datenträgers angeben.

HINWEIS

Der Befehlscode für die schnelle Bearbeitung mit dem Schleifenzähler ist 0x2008 (hex.) bzw. 8200 (dez.).

Request	
Schleifenzähler	siehe Beschreibung der Ausgangsdaten
Befehlscode	0x0008 (hex.), 8 (dez.)
Speicherbereich	siehe Beschreibung der Ausgangsdaten
Schreib-Lese-Kopf-Adresse	siehe Beschreibung der Ausgangsdaten
Länge UID/EPC	Angabe der UID- oder EPC-Größe in Bytes, wenn ein bestimmter Datenträger beschrieben werden soll. Der UID oder EPC muss in den Schreibdaten definiert werden (Startbyte: 0). Die Funktion der Länge des UID/EPC ist abhängig vom verwendeten Befehl. 0: Keine Angabe eines UID/EPC zur Ausführung des Befehls. Dabei darf sich nur ein Datenträger im Erfassungsbereich des Schreib-Lese-Geräts befinden. > 0: EPC-Länge des Datenträgers, der beschrieben werden soll, wenn in den Schreibdaten ein EPC vorhanden ist -1: NEXT-Modus: Ein Datenträger wird immer nur dann beschrieben, wenn sich der UID/EPC vom UID/EPC des zuletzt gelesenen oder beschriebenen Datenträgers unterscheidet.
Startadresse	Startadresse des Speicherbereichs auf dem Datenträger, der beschrieben werden soll (Angabe in Bytes)
Länge	Länge der zu schreibenden Daten in Bytes
Befehls-Time-out	siehe Beschreibung der Ausgangsdaten
Schreib-Fragment-Nr.	1: Fragmentierung nutzen 0: Fragmentierung nicht nutzen
Lese-Fragment-Nr.	0
Schreibdaten, Byte 0(Größe des UID/EPC - 1)	optional: UID oder EPC des Datenträgers, der beschrieben werden soll
Schreibdaten, Byte (Größe des EPC)…127	Schreibdaten

Response	
Schleifenzähler	siehe Beschreibung der Eingangsdaten
Antwortcode	0x0008 (hex.), 8 (dez.)
Länge	Länge der gelesenen Daten
Fehlercode	siehe Beschreibung der Eingangsdaten
Datenträger im Erfassungsbereich	siehe Beschreibung der Eingangsdaten
Daten (Bytes) verfügbar	steigt während der Befehlsausführung an
Datenträger-Zähler	siehe Beschreibung der Eingangsdaten
Schreib-Fragment-Nr.	siehe Beschreibung der Eingangsdaten
Lese-Fragment-Nr.	0
Lesedaten, Byte 0MIN (127, eingestellte Länge - 1)	nicht erforderlich

8.8.7 Befehl: Continuous Mode

HINWEIS

Der Continuous Mode ist in HF-Anwendungen ausschließlich für Singletag-Applikationen verfügbar. Die automatische Datenträgererkennung ist im Continuous Mode nicht nutzbar. In den Parametern muss ein spezifischer Datenträger-Typ ausgewählt werden.

Im Continuous Mode wird ein benutzerdefinierter Befehl an das Schreib-Lese-Gerät gesendet und im Schreib-Lese-Gerät gespeichert. Der Befehl wird kontinuierlich ausgeführt, wenn ein Datenträger in das Erfassungsfeld des Schreib-Lese-Gerätes kommt (selbstgetriggert). Im HF-Busmodus führen alle aktivierten busfähigen Schreib-Lese-Köpfe parallel den Befehl kontinuierlich aus. Bei HF sind folgende Befehle in den Parametern einstellbar: Schreiben, Lesen, Inventory, Datenträger-Info. Bei UHF sind die Befehle Schreiben, Lesen und Inventory im Continuous Mode ausführbar. Bei UHF-Anwendungen müssen die Parameter für den Continuous Mode über den DTM direkt im UHF-Reader eingestellt werden.

Der Befehl wird so lange kontinuierlich ausgeführt, bis der Anwender den Continuous Mode beendet. Der Continuous Mode lässt sich durch das Ausführen eines Reset-Befehls beenden.

HINWEIS

Der Reset-Befehl setzt alle gelesenen Daten zurück. Nach einem Neustart des Contiuous Mode werden alle Daten des bereits laufenden Continuous Mode gelöscht.

Schreib-Lese-Geräte im Continuous Mode senden alle befehlsspezifischen Daten an das Interface. Die Daten werden im FIFO-Speicher des Interface hinterlegt und können über den Befehl **Puffer auslesen (Cont. Mode)** durch die Steuerung abgefragt werden.

Befehle im Continuous Mode werden ausgelöst, wenn das Schreib-Lese-Gerät einen Datenträger erkennt. Wenn sich beim Starten des Continuous Mode ein Datenträger im Erfassungsbereich des Schreib-Lese-Geräts befindet, wird der im Continuous Mode gesendete Befehl erst für den nächsten Datenträger ausgeführt.

Im Continuous Mode wird das Signal **Datenträger im Erfassungsbereich** in folgenden Fällen aktualisiert:

- Im Continuous Mode (HF), wenn als Startadresse 3 eingestellt ist
- Im HF-Continuous-Busmodus, wenn als Startadresse 0 oder 1 eingestellt ist

Im Continuous Mode für UHF-Reader wird das Signal **Datenträger im Erfassungsbereich** nicht aktualisiert.

HINWFIS

Die Parameter HF: Adresse im Continuous Mode (ACM) und HF: Länge im Continuous Mode (LCM) können während der Ausführung des Continuous Mode nicht geändert werden.

Die Beschreibung der Ausgangsdaten finden Sie auf S. [▶ 103].

Request	
Schleifenzähler	siehe Beschreibung der Ausgangsdaten
Befehlscode	0x0010 (hex.), 16 (dez.)
Schreib-Lese-Kopf-Adresse	siehe Beschreibung der Ausgangsdaten
Länge UID/EPC	nicht erforderlich
Startadresse	UHF Inventory 0: Gruppierung der EPCs inaktiv, kontinuierliche Erfassung 1: Gruppierung der EPCs aktiv, kontinuierliche Erfassung >1: nicht definiert HF Inventory 0: Gruppierung der UIDs oder USER-Daten inaktiv, flankengesteuerte Erfassung 1: Gruppierung der UIDs oder USER-Daten aktiv, flankengesteuerte Erfassung 2: nicht definiert 3: Gruppierung der UIDs oder USER-Daten aktiv, kontinuierliche Erfassung (zeitgesteuert durch Bypass-Zeit), Datenträger im Erfassungsbereich wird unterstützt > 3: nicht definiert HF-Busmodus 0: Gruppierung der UIDs oder USER-Daten inaktiv, kontinuierliche Erfassung (zeitgesteuert durch Bypass-Zeit), Datenträger im Erfassungsbereich wird unterstützt 1: Gruppierung der UIDs oder USER-Daten aktiv, kontinuierliche Erfassung (zeitgesteuert durch Bypass-Zeit), Datenträger im Erfassungsbereich wird unterstützt 2: nicht definiert
Länge	nicht erforderlich
Befehls-Time-out	nicht erforderlich
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Ausgangsdaten
Schreibdaten	nicht erforderlich

Response	
Schleifenzähler	siehe Beschreibung der Eingangsdaten
Antwortcode	0x0010 (hex.), 16 (dez.)
Länge	0
Fehlercode	siehe Beschreibung der Eingangsdaten
Datenträger im Erfassungsbereich	siehe Beschreibung der Eingangsdaten
Daten (Bytes) verfügbar	steigt während der Befehlsausführung an
Datenträger-Zähler	steigt mit jedem gelesenen oder geschriebenen UID/EPC
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Eingangsdaten
Lesedaten	siehe Beschreibung der Eingangsdaten

8.8.8 Befehl: Puffer auslesen (Cont. Mode)

HINWEIS

Der Befehlscode für die schnelle Bearbeitung mit dem Schleifenzähler ist 0x2011 (hex.) bzw. 8209 (dez.).

Über den Befehl **Puffer auslesen (Cont. Mode)** können im Interface gespeicherte Daten an die Steuerung weitergegeben werden. Pro Kanal lassen sich bis zu 16 KB Daten in einem Ringspeicher speichern. Abgeholte Daten werden aus dem Ringspeicher gelöscht. Der Befehl ist erforderlich, um im Continuous Mode oder im Continuous Presence Sensing Mode gelesene Daten an die Steuerung zu übertragen. Die Daten werden in Fragmenten von bis zu 128 Bytes an die Steuerung übertragen. Die Größe der Fragmente lässt sich vom Anwender einstellen. Ein UID oder EPC wird nicht durch Fragmentgrenzen geteilt. Passt ein UID oder EPC nicht vollständig in ein Fragment, wird er automatisch in das nächste Fragment geschoben.

HINWEIS

Der Befehl Puffer auslesen (Cont. Mode) beendet nicht den Continuous Mode.

Die Beschreibung der Ausgangsdaten finden Sie auf S. [▶ 103].

Request	
Schleifenzähler	siehe Beschreibung der Ausgangsdaten
Befehlscode	0x0011 (hex.), 17 (dez.)
Schreib-Lese-Kopf-Adresse	siehe Beschreibung der Ausgangsdaten
Länge UID/EPC	nicht erforderlich
Startadresse	nicht erforderlich
Länge	max. Länge der Daten, die vom Gerät gelesen werden sollen (≤ Größe der Daten, die das Gerät tatsächlich gespeichert hat), Angabe in Bytes
Befehls-Time-out	siehe Beschreibung der Ausgangsdaten
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Ausgangsdaten
Schreibdaten	nicht erforderlich

Response	
Schleifenzähler	siehe Beschreibung der Eingangsdaten
Antwortcode	0x0011 (hex.), 17 (dez.)
Länge	Länge der gelesenen Daten. Die Daten werden in vollständigen Blöcken angegeben.
Fehlercode	siehe Beschreibung der Eingangsdaten
Datenträger im Erfassungsbereich	siehe Beschreibung der Eingangsdaten
Daten (Bytes) verfügbar	wird nach der Befehlsausführung automatisch verringert
Datenträger-Zähler	siehe Beschreibung der Eingangsdaten
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Eingangsdaten
Lesedaten	Lesedaten

Datenformat in UHF-Anwendungen

Die UHF-Lesedaten sind durch einen Header formatiert. Der Header ist wie folgt aufgebaut:

Тур	Name	Bedeutung
uint8_t	Größe	Datengröße
uint8_t	Blocktyp	1: UID/EPC/RSSI etc. 2: Lesedaten andere Werte: reserviert
uint8_t	Daten [Größe]	EPC/RSSI etc. oder Lesedaten

Die Größe von EPC/RSSI etc. ist abhängig von den Reader-Einstellungen.

Beispiel: UHF-Lesedaten (Header und EPC, Gruppierung deaktiviert)

Тур	Name	Bedeutung
uint8_t	Größe	12
uint8_t	Blocktyp	1
uint8_t	Daten [14]	uint8_t EPC [12]

Beispiel: UHF-Lesedaten (Header und EPC, Gruppierung aktiviert)

Тур	Name	Bedeutung
uint8_t	Größe	14
uint8_t	Blocktyp	1
uint8_t	Daten [14]	uint8_t EPC [12]
		uint16_t Anzahl der Lesevorgänge (LSB > MSB) [2]

Beispiel: UHF-Lesedaten (Header, EPC, Gruppierung mit RSSI, Slot, Zeit, Phase aktiviert)

Тур	Name	Bedeutung
uint8_t	Größe	24
uint8_t	Blocktyp	1
uint8_t	Daten [24]	uint8_t EPC [12] uint16_t RSSI (LSB → MSB) uint16_t Slot (LSB → MSB) uint32_t Zeit (LSB → MSB) uint16_t Phase (LSB → MSB) uint16_t Anzahl der Lesevorgänge (LSB → MSB)

Datenformat in HF-Anwendungen

In HF-Anwendungen sind die Daten nicht durch einen Header formatiert. Im Folgenden sind einige Beispiele für HF-Daten aufgeführt.

Beispiel: UID, Gruppierung deaktiviert

Тур	Name	Bedeutung
uint8_t	Daten [8]	uint8_t UID [8]

Beispiel: UID, Gruppierung aktiviert

Тур	Name	Bedeutung
uint8_t	Daten [10]	uint8_t UID [8] uint16_t Anzahl der Lesevorgänge

Beispiel: Erfolgreicher Lesebefehl (64 Bytes)

Тур	Name	Bedeutung
uint8_t	Daten [64]	uint8_t Lesedaten [64]

Beispiel: Erfolgreicher Schreibbefehl

Тур	Name	Bedeutung
uint8_t	Daten [2]	uint16_t Fehlercode 0x0000

Beispiel: Fehler beim Schreiben von Daten

Тур	Name	Bedeutung
uint8_t	Daten [2]	uint16_t Fehlercode 0x0201

Beispiel: UID, Gruppierung deaktiviert, HF-Busmodus

Тур	Name	Bedeutung
uint8_t	Daten [8]	uint16_t UID [8]
uint8_t	reserviert	reserviert
uint8_t	Adresse	Adresse des Schreib-Lese-Kopfs

Beispiel: UID, Gruppierung deaktiviert, HF-Busmodus

Тур	Name	Bedeutung
uint8_t	Daten [64]	uint16_t UID [64]
uint8_t	reserviert	reserviert
uint8_t	Adresse	Adresse des Schreib-Lese-Kopfs

8.8.9 Befehl: Continuous (Presence Sensing) Mode beenden

Über den Befehl **Continuous (Presence Sensing) Mode beenden** können Continuous Mode und Presence Sensing Mode gestoppt werden. Die Daten im Puffer des Interface werden nach der Befehlsausführung nicht gelöscht und können über den Befehl **Puffer auslesen (Cont. Mode)** weiterhin abgerufen werden.

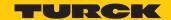
Die Beschreibung der Ausgangsdaten finden Sie auf S. [▶ 103].

Request	
Schleifenzähler	siehe Beschreibung der Ausgangsdaten
Befehlscode	0x0012 (hex.), 18 (dez.)
Schreib-Lese-Kopf-Adresse	nicht erforderlich
Länge UID/EPC	nicht erforderlich
Startadresse	nicht erforderlich
Länge	nicht erforderlich
Befehls-Time-out	siehe Beschreibung der Ausgangsdaten
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Ausgangsdaten
Schreibdaten	nicht erforderlich

Response	
Schleifenzähler	siehe Beschreibung der Eingangsdaten
Antwortcode	0x0012 (hex.), 18 (dez.)
Länge	nicht erforderlich
Fehlercode	siehe Beschreibung der Eingangsdaten
Datenträger im Erfassungsbereich	siehe Beschreibung der Eingangsdaten
Daten (Bytes) verfügbar	siehe Beschreibung der Eingangsdaten
Datenträger-Zähler	siehe Beschreibung der Eingangsdaten
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Eingangsdaten
Lesedaten	nicht erforderlich

8.8.10 Befehl: Puffer löschen (Cont. Mode)

Über den Befehl **Puffer löschen (Cont. Mode)** können alle im Interface gespeicherten Daten gelöscht werden.


HINWEIS

Der Befehl Puffer löschen (Cont. Mode) beendet nicht den Continuous Mode.

Die Beschreibung der Ausgangsdaten finden Sie auf S. [▶ 103].

Request	
Schleifenzähler	siehe Beschreibung der Ausgangsdaten
Befehlscode	0x0013 (hex.), 19 (dez.)
Schreib-Lese-Kopf-Adresse	siehe Beschreibung der Ausgangsdaten
Länge UID/EPC	nicht erforderlich
Startadresse	nicht erforderlich
Länge	nicht erforderlich
Befehls-Time-out	siehe Beschreibung der Ausgangsdaten
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Ausgangsdaten
Schreibdaten	nicht erforderlich

Response	
Schleifenzähler	siehe Beschreibung der Eingangsdaten
Antwortcode	0x0013 (hex.), 19 (dez.)
Länge	nicht erforderlich
Fehlercode	siehe Beschreibung der Eingangsdaten
Datenträger im	siehe Beschreibung der Eingangsdaten
Erfassungsbereich	
Daten (Bytes) verfügbar	siehe Beschreibung der Eingangsdaten
Datenträger-Zähler	siehe Beschreibung der Eingangsdaten
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Eingangsdaten
Lesedaten	nicht erforderlich

8.8.11 Befehl: UHF Continuous Presence Sensing Mode

Im Continuous Presence Sensing Mode wird ein benutzerdefinierter Befehl (**Schreiben**, **Lesen**, **Inventory**) an den UHF-Reader gesendet und im Reader gespeichert. Die Reader werden im Continuous Presence Sensing Mode automatisch eingeschaltet, sobald sich ein Datenträger im Erfassungsbereich befindet. Die Dauer des Abfrageintervalls und die Einschaltdauer können in den Einstellungen des UHF-Readers angepasst werden. Der Befehl wird so lange kontinuierlich ausgeführt, bis der Anwender den Continuous Presence Sensing Mode durch das Ausführen eines Reset-Befehls beendet.

HINWEIS

Der Reset-Befehl setzt alle gelesenen Daten zurück.

Reader im Continuous Presence Sensing Mode senden alle befehlsspezifischen Daten an das Interface. Die Daten werden im Puffer des Interface hinterlegt und können über den Befehl **Puffer auslesen (Cont. Mode)** durch die Steuerung abgefragt werden. Im Continuous Presence Sensing Mode wird das Signal **Datenträger im Erfassungsbereich** nicht dauerhaft aktualisiert.

Die Beschreibung der Ausgangsdaten finden Sie auf S. [▶ 103].

Request	
Schleifenzähler	siehe Beschreibung der Ausgangsdaten
Befehlscode	0x0020 (hex.), 32 (dez.)
Schreib-Lese-Kopf-Adresse	siehe Beschreibung der Ausgangsdaten
Länge UID/EPC	nicht erforderlich
Startadresse	0: Gruppierung inaktiv 1: Gruppierung aktiv >1: nicht definiert
Länge	nicht erforderlich
Befehls-Time-out	nicht erforderlich
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Ausgangsdaten
Schreibdaten	nicht erforderlich

Response	
Schleifenzähler	siehe Beschreibung der Eingangsdaten
Antwortcode	0x0020 (hex.), 32 (dez.)
Länge	nicht erforderlich
Fehlercode	siehe Beschreibung der Eingangsdaten
Datenträger im	siehe Beschreibung der Eingangsdaten
Erfassungsbereich	
Daten (Bytes) verfügbar	steigt während der Befehlsausführung an
Datenträger-Zähler	steigt mit jedem gelesenen oder geschriebenen UID/EPC
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Eingangsdaten
Lesedaten	siehe Beschreibung der Eingangsdaten

8.8.12 Befehl: HF-Schreib-Lese-Kopf ausschalten

Über den Befehl **HF-Schreib-Lese-Kopf ausschalten** können HF-Schreib-Lese-Köpfe ausgeschaltet werden, bis ein Schreib- oder Lesebefehl ansteht. Das Ein- und Ausschalten der Schreib-Lese-Köpfe kann erforderlich sein, um Energie zu sparen oder wenn die Geräte sehr dicht zueinander montiert sind und sich die Erfassungsbereiche überschneiden. Bei der Ausführung eines Befehls werden die Schreib-Lese-Köpfe automatisch wieder aktiviert. Nach der Befehlsausführung muss der Schreib-Lese-Kopf erneut ausgeschaltet werden.

Die Beschreibung der Ausgangsdaten finden Sie auf S. [▶ 103].

Request	
Schleifenzähler	siehe Beschreibung der Ausgangsdaten
Befehlscode	0x0040 (hex.), 64 (dez.)
Schreib-Lese-Kopf-Adresse	siehe Beschreibung der Ausgangsdaten
Länge UID/EPC	nicht erforderlich
Startadresse	nicht erforderlich
Länge	nicht erforderlich
Befehls-Time-out	siehe Beschreibung der Ausgangsdaten
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Ausgangsdaten
Schreibdaten	nicht erforderlich

Response	
Schleifenzähler	siehe Beschreibung der Eingangsdaten
Antwortcode	0x0040 (hex.), 64 (dez.)
Länge	nicht erforderlich
Fehlercode	siehe Beschreibung der Eingangsdaten
Datenträger im Erfassungsbereich	siehe Beschreibung der Eingangsdaten
Daten (Bytes) verfügbar	siehe Beschreibung der Eingangsdaten
Datenträger-Zähler	siehe Beschreibung der Eingangsdaten
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Eingangsdaten
Lesedaten	nicht erforderlich

8.8.13 Befehl: Schreib-Lese-Kopf-Identifikation

Der Befehl **Schreib-Lese-Kopf-Identifikation** fragt die folgenden Parameter des angeschlossenen Schreib-Lese-Kopfs ab:

- ID
- Seriennummer
- Hardware-Version
- Firmware-Stand

Die Parameter sind im Schreib-Lese-Kopf im Identification Record zusammengefasst.

Die Beschreibung der Ausgangsdaten finden Sie auf S. [▶ 103].

Request	
Schleifenzähler	siehe Beschreibung der Ausgangsdaten
Befehlscode	0x0041 (hex.), 65 (dez.)
Schreib-Lese-Kopf-Adresse	siehe Beschreibung der Ausgangsdaten
Länge UID/EPC	nicht erforderlich
Startadresse	Startadresse im Identification Record, Angabe in Bytes
Länge	Länge der abzufragenden Daten 0: vollständigen Parametersatz lesen
Befehls-Time-out	nicht erforderlich
Schreib-Fragment-Nr.	nicht erforderlich
Lese-Fragment-Nr.	siehe Beschreibung der Ausgangsdaten
Schreibdaten	nicht erforderlich

Response	
Schleifenzähler	siehe Beschreibung der Eingangsdaten
Antwortcode	0x0041 (hex.), 65 (dez.)
Länge	siehe Beschreibung der Eingangsdaten
Fehlercode	siehe Beschreibung der Eingangsdaten
Datenträger im Erfassungsbereich	siehe Beschreibung der Eingangsdaten
Daten (Bytes) verfügbar	siehe Beschreibung der Eingangsdaten
Datenträger-Zähler	steigt mit jedem gelesenen oder geschriebenen UID/EPC
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Eingangsdaten
Lesedaten, Byte 019	ID: ARRAY [019] of BYTE
Lesedaten, Byte 2035	Seriennummer: ARRAY [015] of BYTE
Lesedaten, Byte 3637	Hardware-Version: INT16 (Little Endian)
Lesedaten, Byte 3841	Firmware-Stand: ARRAY [0] of BYTE: V (0x56), x, y, z (Vx.y.z)
Lesedaten, Byte 42119	nicht erforderlich

8.8.14 Befehl: Fehler/Status UHF-Schreib-Lese-Kopf lesen

HINWEIS

Der Befehl ist ausschließlich für UHF-Anwendungen verfügbar.

Über den Befehl **Fehler/Status UHF-Schreib-Lese-Kopf lesen** können Fehler- und Statusmeldungen eines angeschlossenen UHF-Readers ausgelesen werden.

HINWEIS

Der Befehlscode für die schnelle Bearbeitung mit dem Schleifenzähler ist 0x2042 (hex.) bzw. 8258 (dez.).

Request	
Schleifenzähler	siehe Beschreibung der Ausgangsdaten
Befehlscode	0x0042 (hex.), 66 (dez.)
Schreib-Lese-Kopf-Adresse	nicht erforderlich
Länge UID/EPC	nicht erforderlich
Startadresse	Adresse im Get-Status-response-Record
Länge	Länge der Daten, die aus dem Get-Status-response-Record ausgelesen werden sollen 0: gesamten Get-Status-response-Record lesen
Befehls-Time-out	siehe Beschreibung der Ausgangsdaten
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Ausgangsdaten
Schreibdaten	nicht erforderlich

Die Beschreibung der Eingangsdaten finden Sie auf S. [> 98].

Response	
Schleifenzähler	siehe Beschreibung der Eingangsdaten
Antwortcode	0x042 (hex.), 66 (dez.)
Länge	siehe Beschreibung der Eingangsdaten
Fehlercode	siehe Beschreibung der Eingangsdaten
Datenträger im Erfassungsbereich	siehe Beschreibung der Eingangsdaten
Daten (Bytes) verfügbar	siehe Beschreibung der Eingangsdaten
Datenträger-Zähler	siehe Beschreibung der Eingangsdaten
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Eingangsdaten
Lesedaten, Byte 0(Länge - 1)	 Status allgemein: 1 Byte allgemeiner Status RF-Status: 1 Byte Status des RF-Moduls Gerätestatus: 1 Byte gerätespezifischer Status-Informationen RF-Modus: 1 Byte, definiert den Grund für den Start eines Lesevorgangs Trigger-Status: 1 Byte, Trigger-Nummer des RF-Moduls I/O-Status: 1 Byte, Status der Ein- und Ausgänge (0 = low, 1 = high) Umgebungstemperatur: 1 Byte, Umgebungstemperatur in °C (Datenformat: 8 bit, Zweierkomplement) PA-Temperatur: 1 Byte, PA-Temperatur in °C (Datenformat: 8 bit, Zweierkomplement) RF-Antennenemperatur: 1 Byte, Antennentemperatur in °C (Datenformat: 8 bit, Zweierkomplement) Transmit Power: 2 Bytes, Ausgangsleistung des Readers in 1/10-dBm-Schritten, LSBMSB (Datenformat: 16 bit, Zweierkomplement) Reverse Power: 2 Byte zurückgestrahlte Leistung in 1/10-dBm-Schritten, LSBMSB (Datenformat: 16 bit, Zweierkomplement) Antenna DC Resistance: 4 Bytes Widerstand am Antennenport in Ω, LSBMSB Jammer Power: 2 Bytes, Eingangsleistung am RX-Port in 1/10-dBm-Schritten, LSBMSB (Datenformat: 16 bit, Zweierkomplement) Kanal: Nummer des aktuell genutzten Kanals (Offset zum nächsten verfügbaren Kanal)
Lesedaten, Byte (Länge)127	format: 8 bit, Zweierkomplement) RF-Antennenemperatur: 1 Byte, Antennentemperatur in °C (Datenformat: 8 bit, Zweierkomplement) Transmit Power: 2 Bytes, Ausgangsleistung des Readers in 1/10-dBm-Schritten, LSBMSB (Datenformat: 16 bit, Zweierkomplement) Reverse Power: 2 Byte zurückgestrahlte Leistung in 1/10-dBm-Schritten, LSBMSB (Datenformat: 16 bit, Zweierkomplement) Antenna DC Resistance: 4 Bytes Widerstand am Anten-
	 Jammer Power: 2 Bytes, Eingangsleistung am RX-Port in 1/10-dBm-Schritten, LSBMSB (Datenformat: 16 bit, Zweierkomplement) Kanal: Nummer des aktuell genutzten Kanals (Offset zum

Lesedaten auswerten – Allgemeiner Status

Bit	Bedeutung
7	Schreib-Lese-Kopf wurde zurückgesetzt (nach Reset).
6	Schreib-Lese-Kopf-Konfiguration beschädigt, Default-Einstellungen werden genutzt.
5	Testmodus aktiv
1	Datenträger vorhanden

Lesedaten auswerten – RF-Status

Bit	Bedeutung
4	Grenzwert für abgestrahlte Leistung überschritten
3	kein freier Kanal vorhanden
2	Antennenwiderstand zu hoch oder zu niedrig
1	Rückleistung zu hoch
0	PLL nicht gesperrt

Lesedaten auswerten – Gerätestatus

Bit	Bedeutung
4	Fehler bei der Nachrichtengenerierung (im Polling-Modus außerhalb des Speicherbereichs)
3	Temperaturwarnung
2	Temperatur zu hoch
1	Kommunikationsfehler
0	Konfiguration ungültig. Ausführung des Kommandos nicht möglich.

Lesedaten auswerten – RF-Modus

Wert	Bedeutung
0x00	keine (Träger aus)
0x01	Modus 1: Trigger ist digitales Signal (Flanke), Time-out
0x02	Modus 2: Trigger ist digitales Signal (Flanke), Time-out
0x03	Modus 3: Trigger ist digitales Signal (Level), kein Time-out
0x04	Trigger ist ein Kommando
0x08	reserviert
0x10	DCU-gesteuerter Lesevorgang
0x20	Continuous Mode
0x80	automatischer Trigger (Presence Sensing Mode)

Lesedaten auswerten – I/O-Status

Wert	Bedeutung
7	Ausgang 4
6	Ausgang 3
5	Ausgang 2
4	Ausgang 1
3	Eingang 4
2	Eingang 3
1	Eingang 2
0	Eingang 1

8.8.15 Befehl: Datenträger-Info

HINWEIS

Der Befehlscode für die schnelle Bearbeitung mit dem Schleifenzähler ist 0x2050 (hex.) bzw. 8272 (dez.).

Über den Befehl **Datenträger-Info** können die Chip-Informationen eines HF-Datenträgers abgefragt werden. Für HF-Anwendungen ist der Befehl nur bei automatischer Erkennung verfügbar. In UHF-Anwendungen werden Allocation Class Identifier, Tag Mask Designer Identifier und Tag Model Number abgefragt. Die Daten werden aus dem GSI-Record des Datenträgers abgefragt.

Die Beschreibung der Ausgangsdaten finden Sie auf S. [▶ 103].

Request	
Schleifenzähler	siehe Beschreibung der Ausgangsdaten
Befehlscode	0x0050 (hex.), 80 (dez.)
Schreib-Lese-Kopf-Adresse	siehe Beschreibung der Ausgangsdaten
Länge UID/EPC	nicht erforderlich
Startadresse	Startadresse im GSI-Record
Länge	Länge der Systemdaten, die gelesen werden (Byte) 0: Alle Systemdaten werden gelesen.
Befehls-Time-out	nicht erforderlich
Schreib-Fragment-Nr.	nicht erforderlich
Lese-Fragment-Nr.	siehe Beschreibung der Ausgangsdaten
Schreibdaten	nicht erforderlich

Response (HF)	
Schleifenzähler	siehe Beschreibung der Eingangsdaten
Antwortcode	0x0050 (hex.), 80 (dez.)
Länge	siehe Beschreibung der Eingangsdaten
Fehlercode	siehe Beschreibung der Eingangsdaten
Datenträger im Erfassungsbereich	siehe Beschreibung der Eingangsdaten
Daten (Bytes) verfügbar	siehe Beschreibung der Eingangsdaten
Datenträger-Zähler	siehe Beschreibung der Eingangsdaten
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Eingangsdaten
Lesedaten, Byte 07	UID, MSB (immer 0xE0)
Lesedaten, Byte 8	DSFID (Data Storage Format Identifier)
Lesedaten, Byte 9	AFI (Application Identifier)
Lesedaten, Byte 10	Speichergröße: Blocknummer (0x000xFF)
Lesedaten, Byte 11	Speichergröße: Byte/Block (0x000x1F)
Lesedaten, Byte 12	IC-Referenz

Response (UHF)	
Schleifenzähler	siehe Beschreibung der Eingangsdaten
Antwortcode	0x0050 (hex.), 80 (dez.)
Länge	siehe Beschreibung der Eingangsdaten
Fehlercode	siehe Beschreibung der Eingangsdaten
Datenträger im Erfassungs- bereich	siehe Beschreibung der Eingangsdaten
Daten (Bytes) verfügbar	siehe Beschreibung der Eingangsdaten
Datenträger-Zähler	siehe Beschreibung der Eingangsdaten
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Eingangsdaten
Lesedaten, Byte 03	erste 32 Bytes der TID (Datenträger-Klasse, Hersteller und Chip-Typ)
Lesedaten, Byte 4n	EPC (Länge variabel)

Chip-Informationen zu den UHF-Datenträgern

Name	TID-Speicher			Größe (Bits)		
	Allocation Class Identifier	Tag Mask Designer	Tag Model Number	EPC	TID	USER
Alien Higgs-3	0xE2	0x003	0x412	96480	96	512
Alien Higgs-4	0xE2	0x003	0x414	16128	96	128
NXP U-Code G2XM	0xE2	0x006	0x003	240	64	512
NXP U-Code G2XL	0xE2	0x006	0x004	240	64	_
NXP U-Code G2iM	0xE2	0x006	0x80A	256	96	512
NXP U-Code G2iM+	0xE2	0x006	0x80B	128448	96	640320
NXP U-Code G2iL	0xE2	0x006	0x806, 0x906, 0xB06	128	64	_
NXP U-Code G2iL+	0xE2	0x006	0x807, 0x907, 0xB07	128	64	_
NXP U-Code 7	0xE2	0x806	0x890	128	96	_
NXP U-Code 7xm (2k)	0xE2	0x806	0xF12	448	96	2048
Impinj Monza 4E	0xE2	0x001	0x10C	496	96	128
Impinj Monza 4D	0xE2	0x001	0x100	128	96	32
Impinj Monza 4QT	0xE2	0x001	0x105	128	96	512
Impinj Monza 5	0xE2	0x001	0x130	128	96	_
Impinj Monza R6	0xE2	0x001	0x160	96	96	_
Impinj Monza R6-P	0xE2	0x001	0x170	128	96	64

8.8.16 Direkter Schreib-Lese-Kopf-Befehl

HINWEIS

Der Befehlscode für die schnelle Bearbeitung mit dem Schleifenzähler ist 0x2060 (hex.) bzw. 8288 (dez.).

Über einen direkten Befehl können Kommandos aus dem Schreib-Lese-Kopf-Protokoll direkt an das Schreib-Lese-Gerät gesendet werden. Die Kommandos werden über Angaben in den Schreib- und Lesedaten definiert und interpretiert.

HINWEIS

Das Schreib-Lese-Kopf-Protokoll ist nicht Bestandteil dieser Dokumentation und muss bei Turck angefragt und speziell freigegeben werden. Bei Fragen zum Schreib-Lese-Kopf-Protokoll wenden Sie sich an Turck.

Die Beschreibung der Ausgangsdaten finden Sie auf S. [▶ 103].

Request	
Schleifenzähler	siehe Beschreibung der Ausgangsdaten
Befehlscode	0x0060 (hex.), 96 (dez.)
Schreib-Lese-Kopf-Adresse	siehe Beschreibung der Ausgangsdaten
Länge UID/EPC	0
Startadresse	nicht erforderlich
Länge	Länge der Beschreibung des direkten Befehls in den Schreibdaten, Angabe in Bytes
Befehls-Time-out	siehe Beschreibung der Ausgangsdaten
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Ausgangsdaten
Schreibdaten	Beschreibung des direkten Befehls

Response	
Schleifenzähler	siehe Beschreibung der Eingangsdaten
Antwortcode	0x0060 (hex.), 96 (dez.)
Länge	Länge der Beschreibung des direkten Befehls in den Schreibdaten
Fehlercode	siehe Beschreibung der Eingangsdaten
Datenträger im Erfassungsbereich	siehe Beschreibung der Eingangsdaten
Daten (Bytes) verfügbar	siehe Beschreibung der Eingangsdaten
Datenträger-Zähler	siehe Beschreibung der Eingangsdaten
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Eingangsdaten
Lesedaten	Antwort auf den direkten Befehl

Beispiel: Direkter Befehl in HF-Anwendungen (Schreib-Lese-Kopf-Version abfragen)

Request	
Schleifenzähler	0
Befehlscode	0x0060
Schreib-Lese-Kopf-Adresse	0
Länge UID/EPC	0
Startadresse	0
Länge	2
Befehls-Time-out	200
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	0
Schreibdaten	0xE0 (CC), 0x00 (CI) – siehe BL ident-Protokoll

Response	
Schleifenzähler	0
Antwortcode	0x0060
Länge	6
Fehlercode	0
Datenträger im	0
Erfassungsbereich	
Daten (Bytes) verfügbar	0
Datenträger-Zähler	0
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	0
Lesedaten	0xE0 (CC), 0x00 (CI), 0x04, 0x06, 0xA1, 0x77

Über das BL ident-Protokoll können mit den beschriebenen Bytes folgende Informationen abgefragt werden:

- Byte 5 Schreib-Lese-Kopf-ID: 4
- Byte 6 Hardware-Version: 6
- Byte 7 Software-Version: x.y, x (A1)
- Byte 8 Software-Version x.y, y (0x77)
- Die gesamte Software-Version setzt sich aus Byte 7 und Byte 8 zusammen (A1v77).

Beispiel: Direkter Befehl in UHF-Anwendungen (Schreib-Lese-Kopf-Version abfragen)

Request	
Schleifenzähler	0
Befehlscode	0x0060
Schreib-Lese-Kopf-Adresse	0
Länge UID/EPC	0
Startadresse	0
Länge	2
Befehls-Time-out	200
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	0
Schreibdaten	0x02 (CMD), 0x00 (application) – siehe debus-Protokoll

Response	
Schleifenzähler	0
Antwortcode	0x0060
Länge	12
Fehlercode	0
Datenträger im Erfassungsbereich	0
Daten (Bytes) verfügbar	0
Datenträger-Zähler	0
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	0
Lesedaten	0x02, 0x00, 0x01, 0x02, 0x03, 0x04, 0x8B, 0x20, 0x00, 0x01, 0x00, 0x01

Über das debus-Protokoll können die Lesedaten wie folgt interpretiert werden:

MSG	ERR	SNR0	SNR1	SNR2	SNR3	GTYP	VERS	HW
0x02	0x00	0x01	0x02	0x03	0x04	0x8B	0x00	0x00
						0x20	0x01	0x01

■ Seriennummer: 0x01020304

Gerätetyp: 0x208BSoftware-Version: v1.00

■ Hardware-Version: v1.00

Beispiel: Direkter Befehl in UHF-Anwendungen (Ausgangsleistung einstellen)

▶ Eingestellte Leistung aus dem RAM des Readers lesen.

Request	
Schleifenzähler	0
Befehlscode	0x0060
Schreib-Lese-Kopf-Adresse	0
Länge UID/EPC	0
Startadresse	0
Länge	5
Befehls-Time-out	200
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	0
Schreibdaten	0x09 8A 4A 03 01

Ausgangsleistung ändern: Leistung "30 dBm" in RAM und Flash Memory des Readers schreiben. Das sechste Byte der Schreibdaten setzt die Leistung in dBm als Hexadezimal-Wert.

Request	
Schleifenzähler	0
Befehlscode	0x0060
Schreib-Lese-Kopf-Adresse	0
Länge UID/EPC	0
Startadresse	0
Länge	6
Befehls-Time-out	200
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	0
Schreibdaten	0x09 8A 3C 03 01 1E

Die folgende Tabelle unterstützt Sie bei der Umrechnung der Leistungswerte von dBm in mW.

dBm	mW	dBm	mW
1	1,25	16	40
2	1,6	17	50
3	2	18	63
4	2,5	19	80
5	3	20	100
6	4	21	125
7	5	22	160
8	6	23	200
9	8	24	250
10	10	25	316
11	13	26	400
12	16	27	500
13	20	28	630
14	25	29	800
15	32	30	1000

8.8.17 Befehl: HF-Schreib-Lese-Kopf-Adresse abfragen

HINWEIS

Der Befehl ist ausschließlich im HF-Busmodus verfügbar.

Über den Befehl **HF-Schreib-Lese-Kopf-Adresse abfragen** ruft das Interface die Adressen aller angeschlossenen HF-Schreib-Lese-Köpfe ab. Wenn ein nicht busfähiger Schreib-Lese-Kopf angeschlossen wird, gibt das Gerät eine Fehlermeldung aus.

Die Beschreibung der Ausgangsdaten finden Sie auf S. [▶ 103].

Request	
Schleifenzähler	siehe Beschreibung der Ausgangsdaten
Befehlscode	0x0070 (hex.), 112 (dez.)
Schreib-Lese-Kopf-Adresse	nicht erforderlich
Länge UID/EPC	nicht erforderlich
Startadresse	nicht erforderlich
Länge	nicht erforderlich
Befehls-Time-out	siehe Beschreibung der Ausgangsdaten
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Ausgangsdaten
Schreibdaten	nicht erforderlich

Response	
Schleifenzähler	siehe Beschreibung der Eingangsdaten
Antwortcode	0x0070 (hex.), 112 (dez.)
Länge	nicht erforderlich
Fehlercode	siehe Beschreibung der Eingangsdaten
Datenträger im Erfassungsbereich	siehe Beschreibung der Eingangsdaten
Daten (Bytes) verfügbar	siehe Beschreibung der Eingangsdaten
Datenträger-Zähler	siehe Beschreibung der Eingangsdaten
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Eingangsdaten
Lesedaten, Byte 0[Anzahl der angeschlos- senen Schreib-Lese-Köpfe]	Adressen der angeschlossenen Schreib-Lese-Köpfe (uint8_t)
Lesedaten, Byte [Anzahl der angeschlosse- nen Schreib-Lese-Köpfe]127	nicht erforderlich

8.8.18 Befehl: HF-Schreib-Lese-Kopf-Adresse setzen

HINWEIS

Der Befehl ist ausschließlich im HF-Busmodus verfügbar.

Während der Befehlsausführung darf nur ein einzelner busfähiger Schreib-Lese-Kopf angeschlossen sein.

Schreib-Lese-Köpfe vor der manuellen Adressierung über die Parameterdaten deaktivieren, damit die automatische Adressierung nicht ausgeführt wird.

Über den Befehl **HF-Schreib-Lese-Kopf-Adresse setzen** lässt sich die Adresse busfähiger HF-Schreib-Lese-Köpfe einstellen. Die Befehlsausführung ist unabhängig von der Aktivierung oder einer bereits eingestellten Adresse eines Schreib-Lese-Kopfs. Eine bereits vorhandene Schreib-Lese-Kopf-Adresse wird überschrieben.

Zulässige Werte sind 1, 2...32, 68.

HINWEIS

68 ist die Standardadresse des Schreib-/Lesekopfes. Ein busfähiger Schreib-/Lesekopf mit dieser Adresse kann nicht aktiviert werden.

Wenn ein nicht busfähiger Schreib-Lese-Kopf angeschlossen wird, gibt das Gerät eine Fehlermeldung aus.

Request	
Schleifenzähler	siehe Beschreibung der Ausgangsdaten
Befehlscode	0x0071 (hex.), 113 (dez.)
Schreib-Lese-Kopf-Adresse	nicht erforderlich
Länge UID/EPC	nicht erforderlich
Startadresse	nicht erforderlich
Länge	nicht erforderlich
Befehls-Time-out	siehe Beschreibung der Ausgangsdaten
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Ausgangsdaten
Schreibdaten, Byte 0	neue Schreib-Lese-Kopf-Adresse (uint8_t), zulässige Werte:
	0, 132, 68
Schreibdaten, Byte 1127	nicht erforderlich

Response	
Schleifenzähler	siehe Beschreibung der Eingangsdaten
Antwortcode	0x0071 (hex.), 113 (dez.)
Länge	nicht erforderlich
Fehlercode	siehe Beschreibung der Eingangsdaten
Datenträger im Erfassungsbereich	siehe Beschreibung der Eingangsdaten
Daten (Bytes) verfügbar	siehe Beschreibung der Eingangsdaten
Datenträger-Zähler	siehe Beschreibung der Eingangsdaten
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Eingangsdaten
Lesedaten	nicht erforderlich

8.8.19 Befehl: HF-Schreib-Lese-Kopf-Tuning

HINWEIS

Der Befehl ist ausschließlich für die HF-Schreib-Lese-Köpfe TNLR-... und TNSLR-... verfügbar.

Über den Befehl **Schreib-Lese-Kopf-Tuning** können HF-Schreib-Lese-Köpfe automatisch auf ihre Umgebungsbedingungen abgestimmt werden. Die Abstimmungswerte werden bis zum nächsten Spannungsreset im Schreib-Lese-Kopf gespeichert.

In der Default-Einstellung wird das HF-Schreib-Lese-Kopf-Tuning nach jedem Spannungsreset automatisch durchgeführt.

Die Beschreibung der Ausgangsdaten finden Sie auf S. [▶ 103].

Request	
Schleifenzähler	siehe Beschreibung der Ausgangsdaten
Befehlscode	0x0080 (hex.), 128 (dez.)
Schreib-Lese-Kopf-Adresse	siehe Beschreibung der Ausgangsdaten
Länge UID/EPC	nicht erforderlich
Startadresse	nicht erforderlich
Länge	nicht erforderlich
Befehls-Time-out	siehe Beschreibung der Ausgangsdaten
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Ausgangsdaten
Schreibdaten	nicht erforderlich

Response	
Schleifenzähler	siehe Beschreibung der Eingangsdaten
Antwortcode	0x0080 (hex.), 128 (dez.)
Länge	2
Fehlercode	siehe Beschreibung der Eingangsdaten
Datenträger im Erfassungsbereich	siehe Beschreibung der Eingangsdaten
Daten (Bytes) verfügbar	siehe Beschreibung der Eingangsdaten
Datenträger-Zähler	siehe Beschreibung der Eingangsdaten
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Eingangsdaten
Lesedaten, Byte 0	Abstimmungswert: TNLR: 0x000x0F TNSLR: 0x000x1F
Lesedaten, Byte 1	empfangener Spannungswert (0x000xFF)

8.8.20 Befehl: AFI von HF-Datenträger lesen

Über den Befehl **AFI von HF-Datenträger lesen** kann das AFI-Byte eines HF-Datenträgers ausgelesen werden.

HINWEIS

Der Befehl wird unterstützt von HF-Schreib-Lese-Köpfen der Revision xV99 oder höher.

Die Beschreibung der Ausgangsdaten finden Sie auf S. [▶ 103].

Request	
Schleifenzähler	siehe Beschreibung der Ausgangsdaten
Befehlscode	0x0090 (hex.), 144 (dez.)
Schreib-Lese-Kopf-Adresse	siehe Beschreibung der Ausgangsdaten
Länge UID/EPC	nicht erforderlich
Startadresse	nicht erforderlich
Länge	nicht erforderlich
Befehls-Time-out	siehe Beschreibung der Ausgangsdaten
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Ausgangsdaten
Schreibdaten	nicht erforderlich

Response	
Schleifenzähler	siehe Beschreibung der Eingangsdaten
Antwortcode	0x0090 (hex.), 144 (dez.)
Länge	nicht erforderlich
Fehlercode	siehe Beschreibung der Eingangsdaten
Datenträger im Erfassungsbereich	siehe Beschreibung der Eingangsdaten
Daten (Bytes) verfügbar	siehe Beschreibung der Eingangsdaten
Datenträger-Zähler	siehe Beschreibung der Eingangsdaten
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Eingangsdaten
Lesedaten, Byte 0	AFI
Lesedaten, Byte 1(Länge - 1)	nicht erforderlich

8.8.21 Befehl: AFI auf HF-Datenträger schreiben

Der Befehl **AFI auf HF-Datenträger schreiben** schreibt ein AFI-Byte auf einen HF-Datenträger.

HINWEIS

Der Befehl wird unterstützt von HF-Schreib-Lese-Köpfen der Revision xV99 oder höher.

HINWEIS

Das Beschreiben eines gesperrten AFI-Bytes ist nicht möglich. Die Fehlermeldung 0xF102 wird ausgegeben (Luftschnittstellenfehler: Time-out).

Die Beschreibung der Ausgangsdaten finden Sie auf S. [▶ 103].

Request	
Schleifenzähler	siehe Beschreibung der Ausgangsdaten
Befehlscode	0x0091 (hex.), 145 (dez.)
Schreib-Lese-Kopf-Adresse	siehe Beschreibung der Ausgangsdaten
Länge UID/EPC	nicht erforderlich
Startadresse	nicht erforderlich
Länge	nicht erforderlich
Befehls-Time-out	siehe Beschreibung der Ausgangsdaten
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Ausgangsdaten
Schreibdaten, Byte 0	AFI
Schreibdaten, Byte 1(Länge - 1)	nicht erforderlich

Response	
Schleifenzähler	siehe Beschreibung der Eingangsdaten
Antwortcode	0x0091 (hex.), 145 (dez.)
Länge	nicht erforderlich
Fehlercode	siehe Beschreibung der Eingangsdaten
Datenträger im	siehe Beschreibung der Eingangsdaten
Erfassungsbereich	
Daten (Bytes) verfügbar	siehe Beschreibung der Eingangsdaten
Datenträger-Zähler	siehe Beschreibung der Eingangsdaten
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Eingangsdaten
Lesedaten	nicht erforderlich

8.8.22 Befehl: AFI in HF-Datenträger sperren

Der Befehl **AFI in HF-Datenträger sperren** sperrt das AFI-Byte auf einem HF-Datenträger.

HINWEIS

Der Befehl wird unterstützt von HF-Schreib-Lese-Köpfen der Revision xV99 oder höher.

HINWEIS

Das Sperren eines bereits gesperrten AFI-Bytes ist nicht möglich. Die Fehlermeldung 0xF102 wird ausgegeben (Luftschnittstellenfehler: Time-out).

Die Beschreibung der Ausgangsdaten finden Sie auf S. [▶ 103].

Request	
Schleifenzähler	siehe Beschreibung der Ausgangsdaten
Befehlscode	0x0092 (hex.), 146 (dez.)
Schreib-Lese-Kopf-Adresse	siehe Beschreibung der Ausgangsdaten
Länge UID/EPC	nicht erforderlich
Startadresse	nicht erforderlich
Länge	nicht erforderlich
Befehls-Time-out	siehe Beschreibung der Ausgangsdaten
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Ausgangsdaten
Schreibdaten	nicht erforderlich

siehe Beschreibung der Eingangsdaten
0x0092 (hex.), 146 (dez.)
nicht erforderlich
siehe Beschreibung der Eingangsdaten
siehe Beschreibung der Eingangsdaten
siehe Beschreibung der Eingangsdaten
siehe Beschreibung der Eingangsdaten
0
siehe Beschreibung der Eingangsdaten
nicht erforderlich

8.8.23 Befehl: DSFID von HF-Datenträger lesen

Über den Befehl **DSFID von HF-Datenträger lesen** kann das DSFID-Byte eines HF-Datenträgers ausgelesen werden.

HINWEIS

Der Befehl wird unterstützt von HF-Schreib-Lese-Köpfen der Revision xV99 oder höher.

Die Beschreibung der Ausgangsdaten finden Sie auf S. [▶ 103].

Request	
Schleifenzähler	siehe Beschreibung der Ausgangsdaten
Befehlscode	0x0094 (hex.), 148 (dez.)
Schreib-Lese-Kopf-Adresse	siehe Beschreibung der Ausgangsdaten
Länge UID/EPC	nicht erforderlich
Startadresse	nicht erforderlich
Länge	nicht erforderlich
Befehls-Time-out	siehe Beschreibung der Ausgangsdaten
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Ausgangsdaten
Schreibdaten	nicht erforderlich

Response	
Schleifenzähler	siehe Beschreibung der Eingangsdaten
Antwortcode	0x0094 (hex.), 148 (dez.)
Länge	nicht erforderlich
Fehlercode	siehe Beschreibung der Eingangsdaten
Datenträger im Erfassungsbereich	siehe Beschreibung der Eingangsdaten
Daten (Bytes) verfügbar	siehe Beschreibung der Eingangsdaten
Datenträger-Zähler	siehe Beschreibung der Eingangsdaten
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Eingangsdaten
Lesedaten, Byte 0	DSFID
Lesedaten, Byte 1(Länge - 1)	nicht erforderlich

8.8.24 Befehl: DSFID auf HF-Datenträger schreiben

Der Befehl **DSFID auf HF-Datenträger schreiben** schreibt ein DSFID-Byte auf einen HF-Datenträger.

HINWEIS

Der Befehl wird unterstützt von HF-Schreib-Lese-Köpfen der Revision xV99 oder höher.

HINWEIS

Das Beschreiben eines gesperrten DSFID-Bytes ist nicht möglich. Die Fehlermeldung 0xF102 wird ausgegeben (Luftschnittstellenfehler: Time-out).

Die Beschreibung der Ausgangsdaten finden Sie auf S. [▶ 103].

Request	
Schleifenzähler	siehe Beschreibung der Ausgangsdaten
Befehlscode	0x0095 (hex.), 149 (dez.)
Schreib-Lese-Kopf-Adresse	siehe Beschreibung der Ausgangsdaten
Länge UID/EPC	nicht erforderlich
Startadresse	nicht erforderlich
Länge	nicht erforderlich
Befehls-Time-out	siehe Beschreibung der Ausgangsdaten
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Ausgangsdaten
Schreibdaten, Byte 0	DSFID
Schreibdaten, Byte 1(Länge - 1)	nicht erforderlich
byte 1(Larige - 1)	

Response	
Schleifenzähler	siehe Beschreibung der Eingangsdaten
Antwortcode	0x0095 (hex.), 149 (dez.)
Länge	nicht erforderlich
Fehlercode	siehe Beschreibung der Eingangsdaten
Datenträger im	siehe Beschreibung der Eingangsdaten
Erfassungsbereich	
Daten (Bytes) verfügbar	siehe Beschreibung der Eingangsdaten
Datenträger-Zähler	siehe Beschreibung der Eingangsdaten
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Eingangsdaten
Lesedaten	nicht erforderlich

8.8.25 Befehl: DSFID in HF-Datenträger sperren

Der Befehl **DSFID in HF-Datenträger sperren** sperrt das DSFID-Byte auf einem HF-Datenträger.

HINWEIS

Der Befehl wird unterstützt von HF-Schreib-Lese-Köpfen der Revision xV99 oder höher.

HINWEIS

Das Sperren eines bereits gesperrten DSFID-Bytes ist nicht möglich. Die Fehlermeldung 0xF102 wird ausgegeben (Luftschnittstellenfehler: Time-out).

Die Beschreibung der Ausgangsdaten finden Sie auf S. [▶ 103].

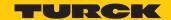
Request	
Schleifenzähler	siehe Beschreibung der Ausgangsdaten
Befehlscode	0x0096 (hex.), 150 (dez.)
Schreib-Lese-Kopf-Adresse	siehe Beschreibung der Ausgangsdaten
Länge UID/EPC	nicht erforderlich
Startadresse	nicht erforderlich
Länge	nicht erforderlich
Befehls-Time-out	siehe Beschreibung der Ausgangsdaten
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Ausgangsdaten
Schreibdaten	nicht erforderlich

Response	
Schleifenzähler	siehe Beschreibung der Eingangsdaten
Antwortcode	0x0096 (hex.), 150 (dez.)
Länge	nicht erforderlich
Fehlercode	siehe Beschreibung der Eingangsdaten
Datenträger im	siehe Beschreibung der Eingangsdaten
Erfassungsbereich	
Daten (Bytes) verfügbar	siehe Beschreibung der Eingangsdaten
Datenträger-Zähler	siehe Beschreibung der Eingangsdaten
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Eingangsdaten
Lesedaten	nicht erforderlich

8.8.26 Befehl: Schreib-Lese-Kopf-Passwort setzen

HINWEIS

Der Befehl ist ausschließlich für Applikationen mit UHF-Datenträgern und den HF-Datenträgern mit den Chiptypen EM42... und NXP SLIX2 verfügbar.


Über den Befehl Schreib-Lese-Kopf-Passwort setzen wird mit einem direkten Befehl ein Passwort für einen Schreibzugriff, einen Lesezugriff oder einen Kill-Befehl gesetzt. Das Passwort wird flüchtig im Speicher des Schreib-Lese-Geräts hinterlegt. Nach einem Spannungsreset des Schreib-Lese-Geräts muss das Passwort erneut im Schreib-Lese-Gerät gesetzt werden. Bei UHF-Anwendungen wird das Passwort im Speicher des Interface gespeichert. Das im Schreib-Lese-Gerät hinterlegte Passwort wird bei einem Schreibbefehl, einem Lesebefehl oder einem Kill-Befehl automatisch mitgesendet, damit der Befehl auf einem geschützten Datenträger ausgeführt werden kann.

Die Passwort-Funktion ist in HF-Anwendungen nur im Singletag-Modus verfügbar. Bei Multitag-Anwendungen wird eine Fehlermeldung ausgegeben. Zur Fehlerbehebung den Parameter HF: Multitag auf 0: Multitag-Modus aus einstellen. Um die Passwort-Funktion in HF-Anwendungen nutzen zu können, muss das Passwort in Datenträger und Schreib-Lese-Kopf übereinstimmen. Das Default-Passwort ist 0000 und muss zuerst im Schreib-Lese-Kopf gesetzt werden, bevor ein neues Passwort vergeben werden kann ([> 154]). Der Befehl wird für den Chiptyp NXP SLIX2 von HF-Schreib-Lese-Köpfen ab Firmware Vx.98 unterstützt.

Die Beschreibung der Ausgangsdaten finden Sie auf S. [▶ 103].

Request	
Schleifenzähler	siehe Beschreibung der Ausgangsdaten
Befehlscode	0x0100 (hex.), 256 (dez.)
Schreib-Lese-Kopf-Adresse	siehe Beschreibung der Ausgangsdaten
Länge UID/EPC	nicht erforderlich
Startadresse	nicht erforderlich
Länge	nicht erforderlich
Befehls-Time-out	siehe Beschreibung der Ausgangsdaten
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Ausgangsdaten
Schreibdaten, Byte 03	Passwort: ARRAY [03] OF BYTE
Schreibdaten, Byte 4127	nicht erforderlich

Response	
Schleifenzähler	siehe Beschreibung der Eingangsdaten
Antwortcode	0x0100 (hex.), 256 (dez.)
Länge	nicht erforderlich
Fehlercode	siehe Beschreibung der Eingangsdaten
Datenträger im Erfassungsbereich	siehe Beschreibung der Eingangsdaten
Daten (Bytes) verfügbar	siehe Beschreibung der Eingangsdaten
Datenträger-Zähler	siehe Beschreibung der Eingangsdaten
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Eingangsdaten
Lesedaten	nicht erforderlich

8.8.27 Befehl: Schreib-Lese-Kopf-Passwort zurücksetzen

HINWEIS

Der Befehl ist ausschließlich für Applikationen mit UHF-Datenträgern und den HF-Datenträgern mit den Chiptypen EM42... und NXP SLIX2 verfügbar.

Über den Befehl **Schreib-Lese-Kopf-Passwort zurücksetzen** wird mit einem direkten Befehl das Passwort für einen Schreibzugriff, einen Lesezugriff oder einen Kill-Befehl im Schreib-Lese-Gerät zurückgesetzt. Die Passwort-Funktion wird ausgeschaltet, zwischen Schreib-Lese-Gerät und Passwort findet kein Passwort-Austausch mehr statt.

Die Passwort-Funktion ist in HF-Anwendungen nur im Singletag-Modus verfügbar. Bei Multitag-Anwendungen wird eine Fehlermeldung ausgegeben. Zur Fehlerbehebung den Parameter **HF: Multitag** auf **0: Multitag-Modus aus** einstellen.

Die Beschreibung der Ausgangsdaten finden Sie auf S. [▶ 103].

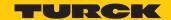
Request	
Schleifenzähler	siehe Beschreibung der Ausgangsdaten
Befehlscode	0x0101 (hex.), 257 (dez.)
Schreib-Lese-Kopf-Adresse	siehe Beschreibung der Ausgangsdaten
Länge UID/EPC	nicht erforderlich
Startadresse	nicht erforderlich
Länge	nicht erforderlich
Befehls-Time-out	siehe Beschreibung der Ausgangsdaten
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Ausgangsdaten
Schreibdaten	nicht erforderlich

Response	
Schleifenzähler	siehe Beschreibung der Eingangsdaten
Antwortcode	0x0101 (hex.), 257 (dez.)
Länge	nicht erforderlich
Fehlercode	siehe Beschreibung der Eingangsdaten
Datenträger im Erfassungsbereich	siehe Beschreibung der Eingangsdaten
Daten (Bytes) verfügbar	siehe Beschreibung der Eingangsdaten
Datenträger-Zähler	siehe Beschreibung der Eingangsdaten
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Eingangsdaten
Lesedaten	nicht erforderlich

8.8.28 Befehl: Datenträger-Passwort setzen

HINWEIS

Der Befehl ist ausschließlich für Applikationen mit UHF-Datenträgern und den HF-Datenträgern mit den Chiptypen EM42... und NXP SLIX2 verfügbar.


HINWEIS

Der Befehlscode für die schnelle Bearbeitung mit dem Schleifenzähler ist 0x2102 (hex.) bzw. 8450 (dez.).

Über den Befehl **Datenträger-Passwort setzen** wird ein Passwort in den Datenträger gesetzt. Der Datenträger-Schutz wird erst aktiv, wenn der Befehl **Datenträger-Schutz setzen** zusätzlich ausgeführt wurde. Beim Senden des Befehls darf sich nur ein Datenträger im Erfassungsbereich des Schreib-Lese-Geräts befinden. Nach dem Senden des Passworts können weitere Befehle (z. B. **Datenträger-Schutz setzen**) an den Datenträger gesendet werden. Über den Befehl **Datenträger-Passwort setzen** kann kein Kill-Passwort in den Datenträger gesetzt werden.

Die Passwort-Funktion ist in HF-Anwendungen nur im Singletag-Modus verfügbar. Bei Multitag-Anwendungen wird eine Fehlermeldung ausgegeben. Zur Fehlerbehebung den Parameter HF: Multitag auf 0: Multitag-Modus aus einstellen. Um die Passwort-Funktion in HF-Anwendungen nutzen zu können, muss das Passwort in Datenträger und Schreib-Lese-Kopf übereinstimmen. Das Default-Passwort ist 0000 und muss zuerst im Schreib-Lese-Kopf gesetzt werden, bevor ein neues Passwort vergeben werden kann ([> 152]). Der Befehl wird für den Chiptyp NXP SLIX2 von HF-Schreib-Lese-Köpfen ab Firmware Vx.98 unterstützt.

Request	
Schleifenzähler	siehe Beschreibung der Ausgangsdaten
Befehlscode	0x0102 (hex.), 258 (dez.)
Schreib-Lese-Kopf-Adresse	siehe Beschreibung der Ausgangsdaten
Länge UID/EPC	Angabe der UID- oder EPC-Größe in Bytes, wenn ein bestimmter Datenträger geschützt werden soll. Der UID oder EPC muss in den Schreibdaten definiert werden (Startbyte: 0). Die Funktion der Länge des UID/EPC ist abhängig vom verwendeten Befehl. 0: Keine Angabe eines UID/EPC zur Ausführung des Befehls. Dabei darf sich nur ein Datenträger im Erfassungsbereich des Schreib-Lese-Kopfs befinden. > 0: EPC-Länge des Datenträgers, der geschützt werden soll, wenn in den Schreibdaten ein EPC vorhanden ist -1: NEXT-Modus: Ein Datenträger wird immer nur dann geschützt, wenn sich der UID/EPC vom UID/EPC des zuletzt gelesenen oder beschriebenen Datenträgers unterscheidet.
Startadresse	nicht erforderlich
Länge	nicht erforderlich
Befehls-Time-out	siehe Beschreibung der Ausgangsdaten
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Ausgangsdaten
Schreibdaten, Byte 03	Passwort: ARRAY [03] OF BYTE
Schreibdaten, Byte 4127	nicht erforderlich

Response	
Schleifenzähler	siehe Beschreibung der Eingangsdaten
Antwortcode	0x0102 (hex.), 258 (dez.)
Länge	nicht erforderlich
Fehlercode	siehe Beschreibung der Eingangsdaten
Datenträger im Erfassungsbereich	siehe Beschreibung der Eingangsdaten
Daten (Bytes) verfügbar	siehe Beschreibung der Eingangsdaten
Datenträger-Zähler	siehe Beschreibung der Eingangsdaten
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Eingangsdaten
Lesedaten	nicht erforderlich

8.8.29 Befehl: Datenträger-Schutz setzen

HINWEIS

Der Befehl ist ausschließlich für Applikationen mit UHF-Datenträgern und den HF-Datenträgern mit den Chiptypen EM42... und NXP SLIX2 verfügbar.

HINWEIS

Der Befehlscode für die schnelle Bearbeitung mit dem Schleifenzähler ist 0x2103 (hex.) bzw. 8451 (dez.).

Über den Befehl **Datenträger-Schutz setzen** wird mit einem direkten Befehl der Passwort-Schutz für den Datenträger definiert. Dazu muss festgelegt werden, ob ein Schreibschutz und/oder ein Leseschutz gesetzt werden soll und für welchen Bereich des Datenträgers das Passwort gilt. Der Schutz für alle Bereiche wird mit einem Befehl definiert. Beim Senden des Befehls darf sich nur ein Datenträger im Erfassungsbereich des Schreib-Lese-Geräts befinden.

Die Passwort-Funktion ist in HF-Anwendungen nur im Singletag-Modus verfügbar. Bei Multitag-Anwendungen wird eine Fehlermeldung ausgegeben. Zur Fehlerbehebung den Parameter **HF: Multitag auf 0: Multitag-Modus aus** einstellen.

In einem Leseschutz ist immer auch ein Schreibschutz enthalten.

Für NXP-SLIX2-Datenträger gelten folgende Einschränkungen:

- Die Bits für den Lese- und den Schreibschutz müssen entweder für die jeweilige Page gleich sein oder alle Leseschutzbits sind null oder alle Schreibschutzbits sind null.
- Die Bits müssen lückenlos von einem beliebigen Bit bzw. einer beliebigen Page bis zum letzten Bit bzw. bis zur letzten Page (Page 19) gesetzt werden.
 - Beispiel: Bit 4 im ersten Byte bis Bit 3 im dritten Byte sind gesetzt, d. h., Page 4...19 (Block 16...79) sind geschützt, Page 0...3 (Block 0...15) sind ungeschützt.
 - Beispiele: FF FF 0F 00 FF FF 0F 00: alles geschützt, FE FF 0F 00 FE FF 0F 00: alles außer Page 0 geschützt, 00 00 08 00 00 00 08 00: nur letzte Page geschützt
- Pagegröße: 1 Page = 4 Blöcke = 128 Bits, Ausnahme: Page 19 hat nur 3 Blöcke = 96 Bits (Block 79 ist vom Schutz ausgenommen).

Wenn die Einschränkungen nicht beachtet werden, wird der Fehlercode 0x2502 gesendet.

HINWEIS

Ein Schreibschutz für UHF-Datenträger kann nicht rückgängig gemacht werden.

Request	
Schleifenzähler	siehe Beschreibung der Ausgangsdaten
Befehlscode	0x0103 (hex.), 259 (dez.)
Schreib-Lese-Kopf-Adresse	siehe Beschreibung der Ausgangsdaten
Länge UID/EPC	Angabe der UID- oder EPC-Größe in Bytes, wenn ein bestimmter Datenträger geschützt werden soll. Der UID oder EPC muss in den Schreibdaten definiert werden (Startbyte: 0). Die Funktion der Länge des UID/EPC ist abhängig vom verwendeten Befehl. 0: Der Befehl wird für den Datenträger ausgeführt, der sich im Erfassungsbereich des Schreib-Lese-Geräts befindet. > 0: EPC-Länge des Datenträgers, der geschützt werden soll, wenn in den Schreibdaten ein EPC vorhanden ist -1: NEXT-Modus: Ein Datenträger wird immer nur dann geschützt, wenn sich der UID/EPC vom UID/EPC des zuletzt gelesenen oder beschriebenen Datenträgers unterscheidet.
Startadresse	nicht erforderlich
Speicherbereich	mögliche Werte: HF: USER memory (Speicherbereiche 1 und 3) UHF: PC und EPC (Speicherbereich 1), USER memory (Speicherbereich 3) UHF: Der gesamte ausgewählte Speicherbereich wird mit einem Passwort schreibgeschützt. HF: Angabe des Speicherbereichs nicht erforderlich. Die Pages des Speicherbereichs werden über Byte 07 der Schreibdaten ausgewählt. Eine Page besteht aus 4 Blöcken
Länge	(16 Byte). UHF: 0 Byte HF: 8 Byte
Befehls-Time-out	siehe Beschreibung der Ausgangsdaten
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Ausgangsdaten
Schreibdaten, Byte 0	HF: EM4233 SLIC/NXP SLIX2: Bit 0: Schreibschutz, Page 0 Bit 1: Schreibschutz, Page 1 Bit 2: Schreibschutz, Page 2 Bit 3: Schreibschutz, Page 3 Bit 4: Schreibschutz, Page 4 Bit 5: Schreibschutz, Page 5 Bit 6: Schreibschutz, Page 6 Bit 7: Schreibschutz, Page 7
-	UHF: nicht erforderlich

Dogwood	
Request Schroibdatan Puta 1	HF:
Schreibdaten, Byte 1	EM4233 SLIC: 0 NXP SLIX2: Bit 0: Schreibschutz, Page 8 Bit 1: Schreibschutz, Page 9 Bit 2: Schreibschutz, Page 10 Bit 3: Schreibschutz, Page 11 Bit 4: Schreibschutz, Page 12 Bit 5: Schreibschutz, Page 13 Bit 6: Schreibschutz, Page 14 Bit 7: Schreibschutz, Page 15
	UHF: nicht erforderlich
Schreibdaten, Byte 2	HF: EM4233 SLIC: 0 NXP SLIX2: Bit 0: Schreibschutz, Page 16 Bit 1: Schreibschutz, Page 17 Bit 2: Schreibschutz, Page 18 Bit 3: Schreibschutz, Page 19 Bit 4: reserviert Bit 5: reserviert Bit 6: reserviert Bit 7: reserviert
	UHF: nicht erforderlich
Schreibdaten, Byte 3	0
Schreibdaten, Byte 4	HF: EM4233 SLIC/NXP SLIX2: Bit 0: Leseschutz, Page 0 Bit 1: Leseschutz, Page 1 Bit 2: Leseschutz, Page 2 Bit 3: Leseschutz, Page 3 Bit 4: Leseschutz, Page 4 Bit 5: Leseschutz, Page 5 Bit 6: Leseschutz, Page 6 Bit 7: Leseschutz, Page 7
Schreibdaten, Byte 5	UHF: nicht erforderlich HF: EM4233 SLIC: 0 NXP SLIX2: Bit 0: Leseschutz, Page 8 Bit 1: Leseschutz, Page 9 Bit 2: Leseschutz, Page 10 Bit 3: Leseschutz, Page 11 Bit 4: Leseschutz, Page 12 Bit 5: Leseschutz, Page 13 Bit 6: Leseschutz, Page 14 Bit 7: Leseschutz, Page 15 UHF: nicht erforderlich

Request	
Schreibdaten, Byte 6	HF: EM4233 SLIC: 0 NXP SLIX2: Bit 0: Leseschutz, Page 16 Bit 1: Leseschutz, Page 17 Bit 2: Leseschutz, Page 18 Bit 3: Leseschutz, Page 19 Bit 4: reserviert Bit 5: reserviert Bit 6: reserviert UHF: nicht erforderlich
Schreibdaten, Byte 7	0
Schreibdaten, Byte 8127	nicht erforderlich

Response	
Schleifenzähler	siehe Beschreibung der Eingangsdaten
Antwortcode	0x0103 (hex.), 259 (dez.)
Länge	nicht erforderlich
Fehlercode	siehe Beschreibung der Eingangsdaten
Datenträger im Erfassungsbereich	siehe Beschreibung der Eingangsdaten
Daten (Bytes) verfügbar	siehe Beschreibung der Eingangsdaten
Datenträger-Zähler	siehe Beschreibung der Eingangsdaten
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Eingangsdaten
Lesedaten	nicht erforderlich

8.8.30 Befehl: Schutzstatus HF-Datenträger abfragen

HINWEIS

Der Befehl ist ausschließlich für Applikationen mit den HF-Datenträgern mit den Chiptypen EM42... und NXP SLIX2 verfügbar.

Über den Befehl **Schutzstatus HF-Datenträger abfragen** wird mit einem direkten Befehl abgefragt, ob ein bestimmter Bereich des Datenträgers passwortgeschützt ist. Beim Senden des Befehls darf sich nur ein Datenträger im Erfassungsbereich des Schreib-Lese-Kopfs befinden.

Die Passwort-Funktion ist in HF-Anwendungen nur im Singletag-Modus verfügbar. Bei Multitag-Anwendungen wird eine Fehlermeldung ausgegeben. Zur Fehlerbehebung den Parameter **HF: Multitag auf 0: Multitag-Modus aus** einstellen.

Request	
Schleifenzähler	siehe Beschreibung der Ausgangsdaten
Befehlscode	0x0104 (hex.), 260 (dez.)
Schreib-Lese-Kopf-Adresse	siehe Beschreibung der Ausgangsdaten
Länge UID/EPC	Angabe der UID- oder EPC-Größe in Bytes, wenn ein bestimmter Datenträger geschützt werden soll. Der UID oder EPC muss in den Schreibdaten definiert werden (Startbyte: 0). Die Funktion der Länge des UID/EPC ist abhängig vom verwendeten Befehl. 0: Der Befehl wird für den Datenträger ausgeführt, der sich im Erfassungsbereich des Schreib-Lese-Kopfs befindet. > 0: EPC-Länge des Datenträgers, der geschützt werden soll, wenn in den Schreibdaten ein EPC vorhanden ist -1: NEXT-Modus: Ein Datenträger wird immer nur dann geschützt, wenn sich der UID/EPC vom UID/EPC des zuletzt gelesenen oder beschriebenen Datenträgers unterscheidet.
Startadresse	nicht erforderlich
Länge	8 Byte
Befehls-Time-out	siehe Beschreibung der Ausgangsdaten
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Ausgangsdaten
Schreibdaten	nicht erforderlich

Dognance	
Response Schleifenzähler	siska Dasakusikusa day Finana andatan
-	siehe Beschreibung der Eingangsdaten
Antwortcode	0x0104 (hex.), 260 (dez.)
Länge	nicht erforderlich
Fehlercode	siehe Beschreibung der Eingangsdaten
Datenträger im Erfassungsbereich	siehe Beschreibung der Eingangsdaten
Daten (Bytes) verfügbar	siehe Beschreibung der Eingangsdaten
Datenträger-Zähler	siehe Beschreibung der Eingangsdaten
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Eingangsdaten
Lesedaten, Byte 0	HF: EM4233 SLIC/NXP SLIX2: Bit 0: Schreibschutz, Page 0 Bit 1: Schreibschutz, Page 1 Bit 2: Schreibschutz, Page 2 Bit 3: Schreibschutz, Page 3 Bit 4: Schreibschutz, Page 4 Bit 5: Schreibschutz, Page 5 Bit 6: Schreibschutz, Page 6 Bit 7: Schreibschutz, Page 7
	UHF: nicht erforderlich
Lesedaten, Byte 1	HF: EM4233 SLIC: 0 NXP SLIX2: Bit 0: Schreibschutz, Page 8 Bit 1: Schreibschutz, Page 9 Bit 2: Schreibschutz, Page 10 Bit 3: Schreibschutz, Page 11 Bit 4: Schreibschutz, Page 12 Bit 5: Schreibschutz, Page 13 Bit 6: Schreibschutz, Page 14 Bit 7: Schreibschutz, Page 15
	UHF: nicht erforderlich
Lesedaten, Byte 2	HF: EM4233 SLIC: 0 NXP SLIX2: Bit 0: Schreibschutz, Page 16 Bit 1: Schreibschutz, Page 17 Bit 2: Schreibschutz, Page 18 Bit 3: Schreibschutz, Page 19 Bit 4: reserviert Bit 5: reserviert Bit 6: reserviert Bit 7: reserviert
Landatan Data 2	UHF: nicht erforderlich
Lesedaten, Byte 3	0

Response	
Lesedaten, Byte 4	HF: EM4233 SLIC/NXP SLIX2: Bit 0: Leseschutz, Page 0 Bit 1: Leseschutz, Page 1 Bit 2: Leseschutz, Page 2 Bit 3: Leseschutz, Page 3 Bit 4: Leseschutz, Page 4 Bit 5: Leseschutz, Page 5 Bit 6: Leseschutz, Page 6 Bit 7: Leseschutz, Page 7
Lesedaten, Byte 5	UHF: nicht erforderlich HF: EM4233 SLIC: 0 NXP SLIX2: Bit 0: Leseschutz, Page 8 Bit 1: Leseschutz, Page 9 Bit 2: Leseschutz, Page 10 Bit 3: Leseschutz, Page 11 Bit 4: Leseschutz, Page 12 Bit 5: Leseschutz, Page 13 Bit 6: Leseschutz, Page 14 Bit 7: Leseschutz, Page 15 UHF: nicht erforderlich
Lesedaten, Byte 6	HF: EM4233 SLIC: 0 NXP SLIX2: Bit 0: Leseschutz, Page 16 Bit 1: Leseschutz, Page 17 Bit 2: Leseschutz, Page 18 Bit 3: Leseschutz, Page 19 Bit 4: reserviert Bit 5: reserviert Bit 6: reserviert UHF: nicht erforderlich
Lesedaten, Byte 7	0

8.8.31 Befehl: Permanente Sperre setzen (Lock)

HINWEIS

Der Befehlscode für die schnelle Bearbeitung mit dem Schleifenzähler ist 0x2105 (hex.) bzw. 8453 (dez.).

Über den Befehl **Permanente Sperre setzen (Lock)** wird mit einem direkten Befehl ein vollständiger Speicherblock des Datenträgers dauerhaft und unwiderruflich gesperrt. Beim Senden des Befehls darf sich nur ein Datenträger im Erfassungsbereich des Schreib-Lese-Geräts befinden.

Die Funktion ist in HF-Anwendungen nur im Singletag-Modus verfügbar. Bei Multitag-Anwendungen wird eine Fehlermeldung ausgegeben. Zur Fehlerbehebung den Parameter **HF: Multitag** auf **0: Multitag-Modus aus** einstellen.

Request	
Schleifenzähler	siehe Beschreibung der Ausgangsdaten
Befehlscode	0x0105 (hex.), 261 (dez.)
Schreib-Lese-Kopf-Adresse	siehe Beschreibung der Ausgangsdaten
Länge UID/EPC	0: Der Befehl wird für den Datenträger ausgeführt, der sich im Erfassungsbereich des Schreib-Lese-Geräts befindet. > 0: EPC- oder UID-Länge des Datenträgers, der gesperrt werden soll, wenn in den Schreibdaten ein EPC oder UID vorhanden ist -1: NEXT-Modus: Ein Datenträger wird immer nur dann geschützt, wenn sich der UID/EPC vom UID/EPC des zuletzt gelesenen oder beschriebenen Datenträgers unterscheidet.
Startadresse	UHF: nicht erforderlich HF: Adresse des ersten Bits im Block, der gesperrt werden soll (EEPROM-Datenträger: 0, 4, 8,, FRAM-Datenträger: 0, 8, 16,)
Speicherbereich	mögliche Werte: HF: USER memory (Speicherbereiche 14) UHF: Kill-Passwort (Speicherbereich 1), PC und EPC (Speicherbereich 1), USER memory (Speicherbereich 3), Access-Passwort (Speicherbereich 4)
	UHF: Der gesamte ausgewählte Speicherbereich wird unwiderruflich gegen Schreibzugriff gesperrt. Kill-Passwort und Access-Passwort sind zusätzlich unwiderruflich gegen Lesezugriff gesperrt. HF: Angabe des Speicherbereichs nicht erforderlich
Länge	HF: Länge des zu sperrenden Speicherbereichs in Bytes. Nur Vielfache der Blockgröße können angegeben werden. 0: 1 Block sperren UHF: nicht erforderlich
Befehls-Time-out	siehe Beschreibung der Ausgangsdaten
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Ausgangsdaten
Schreibdaten	nicht erforderlich

Response	
Schleifenzähler	siehe Beschreibung der Eingangsdaten
Antwortcode	0x0105 (hex.), 261 (dez.)
Länge	nicht erforderlich
Fehlercode	siehe Beschreibung der Eingangsdaten
Datenträger im Erfassungsbereich	siehe Beschreibung der Eingangsdaten
Daten (Bytes) verfügbar	siehe Beschreibung der Eingangsdaten
Datenträger-Zähler	siehe Beschreibung der Eingangsdaten
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Eingangsdaten
Lesedaten	nicht erforderlich

8.8.32 Befehl: Datenträger unwiderruflich deaktivieren (Kill)

HINWEIS

Der Befehl ist ausschließlich für UHF-Anwendungen verfügbar.

HINWEIS

Der Befehlscode für die schnelle Bearbeitung mit dem Schleifenzähler ist 0x2200 (hex.) bzw. 8704 (dez.).

Über den Befehl **Datenträger unwiderruflich deaktivieren (Kill)** wird der Datenträger-Speicher unbenutzbar gemacht. Nach einem Kill-Befehl kann der Datenträger weder gelesen noch beschrieben werden. Ein Kill-Befehl kann nicht rückgängig gemacht werden. Um einen Kill-Befehl ausführen zu können, muss zuvor ein Kill-Passwort gesetzt werden (s. [* 229]).

Request	
Schleifenzähler	siehe Beschreibung der Ausgangsdaten
Befehlscode	0x0200 (hex.), 512 (dez.)
Schreib-Lese-Kopf-Adresse	siehe Beschreibung der Ausgangsdaten
Länge UID/EPC	Angabe der UID- oder EPC-Größe in Bytes, wenn ein bestimmter Datenträger gelöscht werden soll. Der UID oder EPC muss in den Schreibdaten definiert werden (Startbyte: 0). Die Funktion der Länge des UID/EPC ist abhängig vom verwendeten Befehl. 0: Keine Angabe eines UID/EPC zur Ausführung des Befehls. Dabei darf sich nur ein Datenträger im Erfassungsbereich des Schreib-Lese-Geräts befinden. > 0: EPC-Länge des Datenträgers, der gelöscht werden soll, wenn in den Schreibdaten ein EPC vorhanden ist -1: NEXT-Modus: Ein Datenträger wird immer nur dann gelöscht, wenn sich der UID/EPC vom UID/EPC des zuletzt gelesenen oder beschriebenen Datenträgers unterscheidet.
Startadresse	nicht erforderlich
Länge	nicht erforderlich
Befehls-Time-out	siehe Beschreibung der Ausgangsdaten
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Ausgangsdaten
Schreibdaten, Byte 03	Passwort: ARRAY [03] OF BYTE
Schreibdaten, Byte 4127	nicht erforderlich

Response	
Schleifenzähler	siehe Beschreibung der Eingangsdaten
Antwortcode	0x0200 (hex.), 512 (dez.)
Länge	nicht erforderlich
Fehlercode	siehe Beschreibung der Eingangsdaten
Datenträger im Erfassungsbereich	siehe Beschreibung der Eingangsdaten
Daten (Bytes) verfügbar	siehe Beschreibung der Eingangsdaten
Datenträger-Zähler	siehe Beschreibung der Eingangsdaten
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Eingangsdaten
Lesedaten	nicht erforderlich

8.8.33 Befehl: Einstellungen UHF-Schreib-Lese-Kopf wiederherstellen

HINWEIS

Der Befehl ist ausschließlich für UHF-Anwendungen verfügbar.

Über den Befehl Einstellungen UHF-Schreib-Lese-Kopf wiederherstellen werden die Parameter eines angeschlossenen UHF-Readers aus einem Backup wiederhergestellt (z. B. nach einem Geräteaustausch). Typ und Firmware-Stand müssen bei beiden Readern identisch sein. Um den Befehl ausführen zu können, muss zuvor über den Befehl Backup der Einstellungen des UHF-Schreib-Lese-Kopfs ein Backup erstellt werden.

Die Beschreibung der Ausgangsdaten finden Sie auf S. [▶ 103].

Request	
Schleifenzähler	siehe Beschreibung der Ausgangsdaten
Befehlscode	0x1000 (hex.), 4096 (dez.)
Schreib-Lese-Kopf-Adresse	siehe Beschreibung der Ausgangsdaten
Länge UID/EPC	nicht erforderlich
Startadresse	nicht erforderlich
Länge	nicht erforderlich
Befehls-Time-out	siehe Beschreibung der Ausgangsdaten
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Ausgangsdaten
Schreibdaten	nicht erforderlich

Response	
Schleifenzähler	siehe Beschreibung der Eingangsdaten
Antwortcode	0x1000 (hex.), 4096 (dez.)
Länge	nicht erforderlich
Fehlercode	siehe Beschreibung der Eingangsdaten
Datenträger im Erfassungsbereich	siehe Beschreibung der Eingangsdaten
Daten (Bytes) verfügbar	siehe Beschreibung der Eingangsdaten
Datenträger-Zähler	siehe Beschreibung der Eingangsdaten
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Eingangsdaten
Lesedaten	nicht erforderlich

8.8.34 Befehl: Backup der Einstellungen des UHF-Schreib-Lese-Kopfs

HINWEIS

Der Befehl ist ausschließlich für UHF-Anwendungen verfügbar.

Der Befehl Backup der Einstellungen des UHF-Schreib-Lese-Kopfs speichert die aktuellen Einstellungen des angeschlossenen Readers im Speicher des Interface. Das Backup bleibt auch nach einem Spannungsreset des Interface erhalten. Im Fall eines Geräteaustauschs können die Backup-Daten über den Befehl UHF-Schreib-Lese-Kopf-Einstellungen wiederherstellen wiederhergestellt werden. Typ und Firmware-Stand müssen bei beiden Readern identisch sein.

Die Beschreibung der Ausgangsdaten finden Sie auf S. [▶ 103].

Request	
Schleifenzähler	siehe Beschreibung der Ausgangsdaten
Befehlscode	0x1001 (hex.), 4097 (dez.)
Schreib-Lese-Kopf-Adresse	siehe Beschreibung der Ausgangsdaten
Länge UID/EPC	nicht erforderlich
Startadresse	nicht erforderlich
Länge	nicht erforderlich
Befehls-Time-out	siehe Beschreibung der Ausgangsdaten
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Ausgangsdaten
Schreibdaten	nicht erforderlich

Response	
Schleifenzähler	siehe Beschreibung der Eingangsdaten
Antwortcode	0x1001 (hex.), 4097 (dez.)
Länge	nicht erforderlich
Fehlercode	siehe Beschreibung der Eingangsdaten
Datenträger im Erfassungsbereich	siehe Beschreibung der Eingangsdaten
Daten (Bytes) verfügbar	siehe Beschreibung der Eingangsdaten
Datenträger-Zähler	siehe Beschreibung der Eingangsdaten
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Eingangsdaten
Lesedaten	nicht erforderlich

8.8.35 Befehl: Reset

Über den Befehl **Reset** werden Schreib-Lese-Gerät und Interface zurückgesetzt. Die Eingangsdaten, die Ausgangsdaten und der Puffer werden gelöscht.

Die Beschreibung der Ausgangsdaten finden Sie auf S. [▶ 103].

Request	
Schleifenzähler	siehe Beschreibung der Ausgangsdaten
Befehlscode	0x8000 (hex.), 32768 (dez.)
Schreib-Lese-Kopf-Adresse	siehe Beschreibung der Ausgangsdaten
Länge UID/EPC	nicht erforderlich
Startadresse	0: Software-Reset
	1: Spannungsreset
Länge	nicht erforderlich
Befehls-Time-out	siehe Beschreibung der Ausgangsdaten
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Ausgangsdaten
Schreibdaten	nicht erforderlich

Response	
Schleifenzähler	siehe Beschreibung der Eingangsdaten
Antwortcode	0x8000 (hex.), 32768 (dez.)
Länge	nicht erforderlich
Fehlercode	siehe Beschreibung der Eingangsdaten
Datenträger im Erfassungsbereich	siehe Beschreibung der Eingangsdaten
Daten (Bytes) verfügbar	siehe Beschreibung der Eingangsdaten
Datenträger-Zähler	siehe Beschreibung der Eingangsdaten
Schreib-Fragment-Nr.	0
Lese-Fragment-Nr.	siehe Beschreibung der Eingangsdaten
Lesedaten	nicht erforderlich

8.9 RFID-Interfaces über den Webserver einstellen

HINWEIS

Der Webserver zeigt immer alle Einstellmöglichkeiten an. Alle Werte werden als Dezimalzahlen angezeigt.

Über den integrierten Webserver können die Geräte eingestellt und Befehle an die Geräte geschickt werden. Um den Webserver mit einem PC öffnen zu können, müssen sich das Gerät und der PC im gleichen IP-Netzwerk befinden.

8.9.1 Webserver öffnen

Der Webserver lässt sich über einen Webbrowser oder über das Turck Service Tool öffnen. Der Aufruf des Webservers über das Turck Service Tool ist im Abschnitt "Netzwerk-Einstellungen anpassen" beschrieben.

Im Auslieferungszustand ist im Gerät die IP-Adresse 192.168.1.254 hinterlegt. Um den Webserver über einen Webbrowser zu öffnen, http://192.168.1.254 in die Adressleiste des Webbrowsers eingeben.

Auf der Startseite werden Statusinformationen und Netzwerkeinstellungen angezeigt.

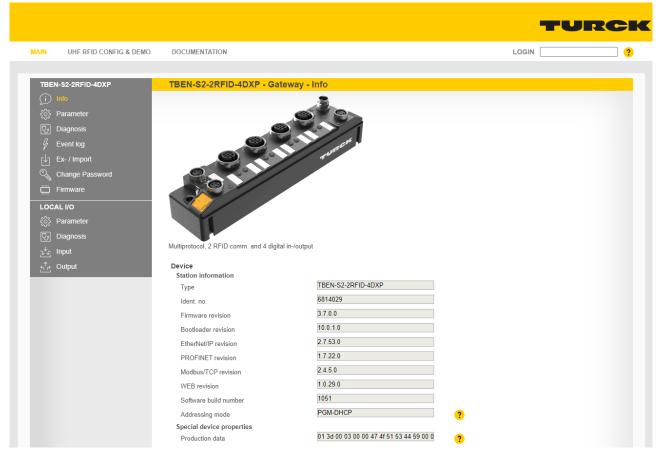


Abb. 79: Beispiel: Webserver – Startseite

8.9.2 Einstellungen im Webserver bearbeiten

Zur Bearbeitung von Einstellungen über den Webserver ist ein Login erforderlich. Im Auslieferungszustand lautet das Passwort "password".

HINWEIS

Turck empfiehlt, das Passwort aus Sicherheitsgründen nach dem ersten Login zu ändern.

- Passwort in das Login-Eingabefeld auf der Startseite des Webservers eingeben.
- ▶ **Login** klicken.

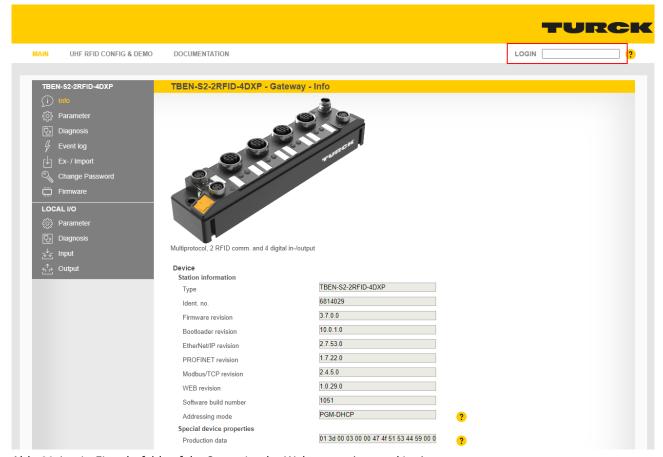


Abb. 80: Login-Eingabefeld auf der Startseite des Webservers (rot markiert)

Nach dem Login ist ein Schreibzugriff auf Ein- und Ausgangsdaten sowie Parameterdaten möglich.

Abb. 81: Webserver - Startseite nach dem Login

Beispiel: Betriebsart für Kanal 0 einstellen

Im folgenden Beispiel wird die Betriebsart von Kanal 0 auf HF Extended eingestellt.

- ▶ In der Navigationsleiste am linken Bildrand unter Local I/O → Parameter klicken.
- ▶ RFID-Kanal wählen (hier: **RFID channel 0**).

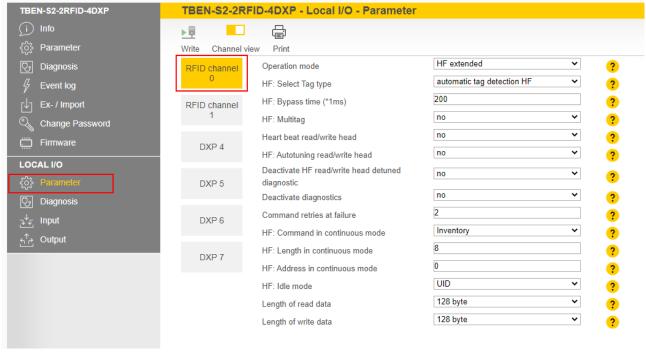


Abb. 82: Parameter im Webserver einstellen

- ▶ Betriebsart **HF extended** über das Drop-down-Menü **Operation Mode** wählen.
- ► Einstellungen speichern: Write klicken.

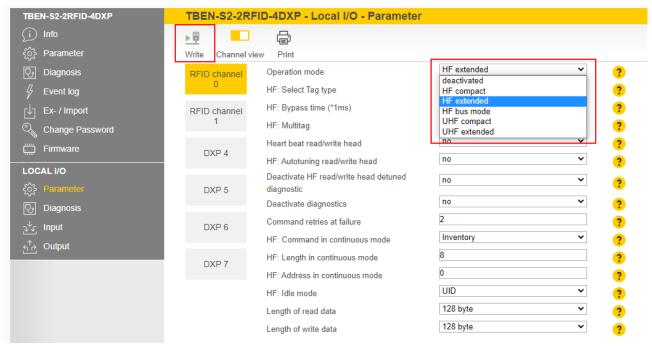
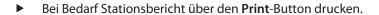



Abb. 83: Drop-down-Menü – Operation Mode

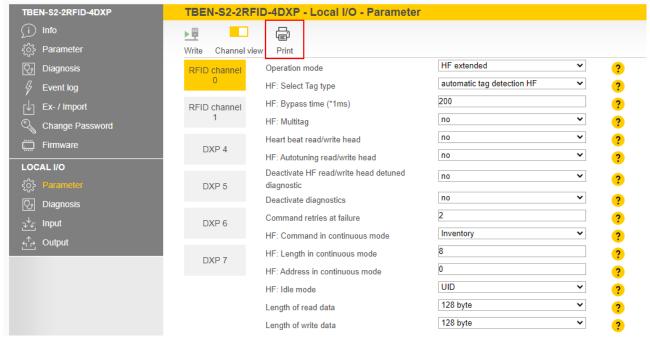


Abb. 84: Stationsbericht drucken

Beispiel: Lesebefehl ausführen

Im folgenden Beispiel werden 8 Byte von einem Datenträger durch einen Schreib-Lese-Kopf gelesen, der an Kanal 0 des Interface angeschlossen ist.

- ▶ In der Navigationsleiste am linken Bildrand Local I/O → Output klicken.
- ▶ RFID channel 0 wählen.
- Anzahl der zu lesenden Bytes in das Eingabefeld Length eintragen (hier: 8).
- Lesebefehl über das Drop-down-Menü Command code wählen: 0x0002 Read.
- ⇒ Der Lesebefehl wird gesendet.

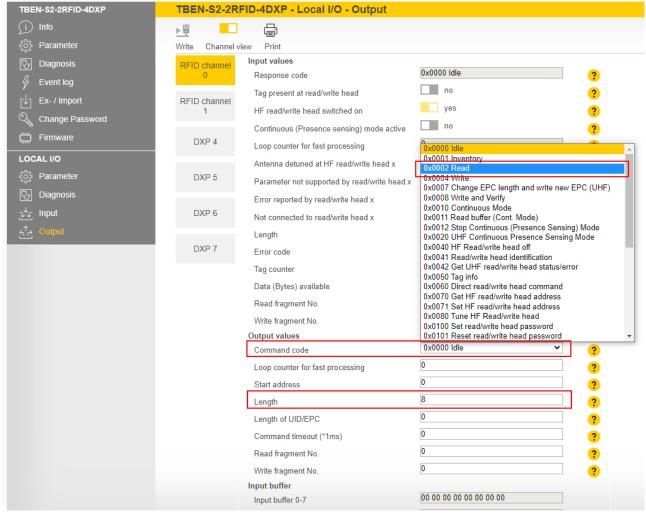


Abb. 85: Lesebefehl im Webserver einstellen

Der Empfang des Befehls wird in den Eingangsdaten unter Input values \rightarrow Response code mit 0x8002 Busy – Read bestätigt.

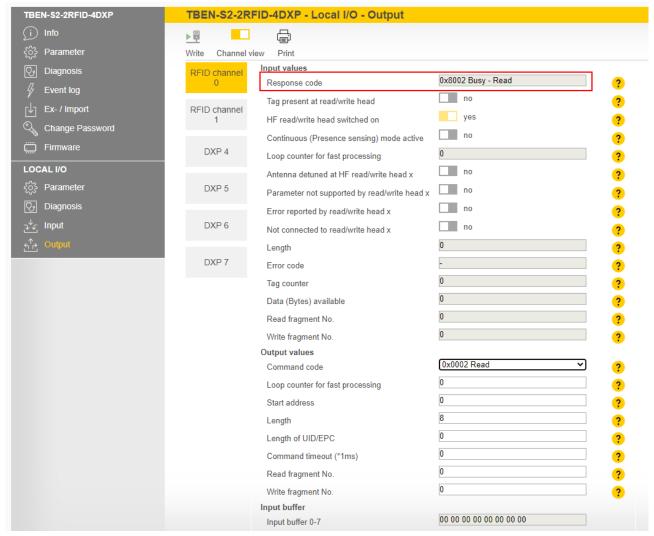


Abb. 86: Eingangsdaten

Der Lesebefehl wird ausgeführt, sobald sich ein Datenträger im Erfassungsbereich des Schreib-Lese-Kopfs befindet.

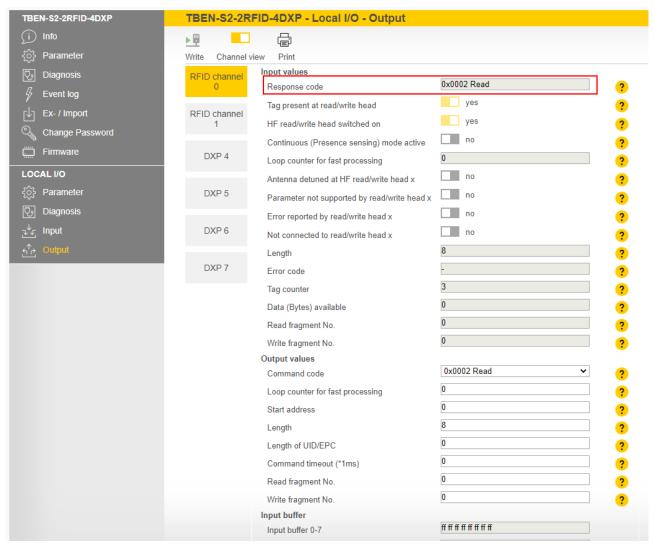


Abb. 87: Eingangsdaten bei erfolgreich ausgeführtem Lesebefehl

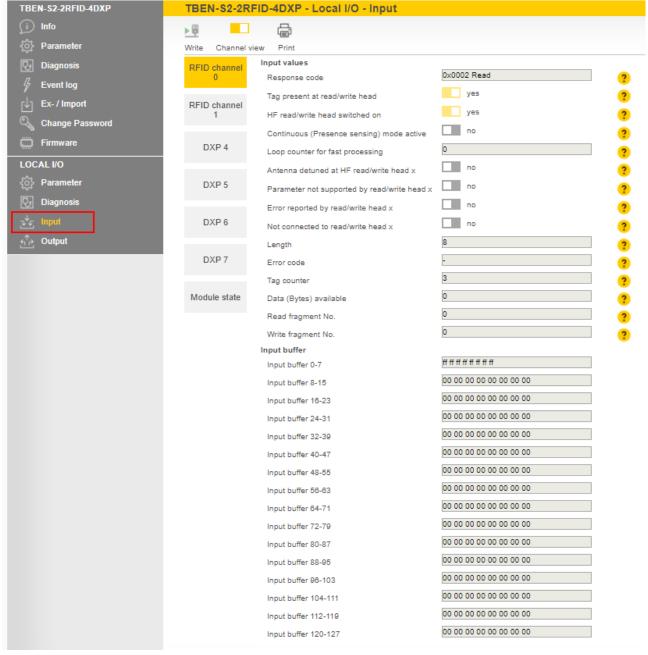


Abb. 88: Lesedaten

Beispiel: Befehl im Busmodus ausführen

Im folgenden Beispiel soll im HF-Busmodus der Schreib-Lese-Kopf mit der Adresse 2 acht Bytes von einem Datenträger lesen. An Kanal 0 des Interface sind zwei Schreib-Lese-Köpfe angeschlossen.

- ▶ In der Navigationsleiste am linken Bildrand Local I/O → Parameter anklicken.
- RFID channel 0 wählen.
- ▶ Betriebsart **HF bus mode** über das Drop-down-Menü **Operation Mode** wählen.
- ▶ Angeschlossene Schreib-Lese-Köpfe 1 und 2 aktivieren.
- ▶ Write klicken, um die eingestellten Parameter in das Gerät zu schreiben.

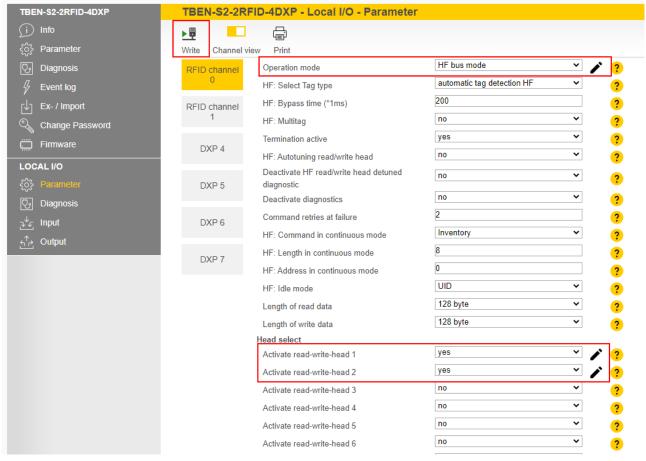


Abb. 89: Datenträger im HF-Busmodus lesen – Parameter

- ► Unter Output values im Drop-down-Menü Command code den Lesebefehl (0x002 Read) auswählen.
- ▶ Länge der Lesedaten in das Eingabefeld **Length** angeben (hier: 8).
- Schreib-Lese-Kopf-Adresse im Parameter **Read/write head address** angeben (hier: **2**).

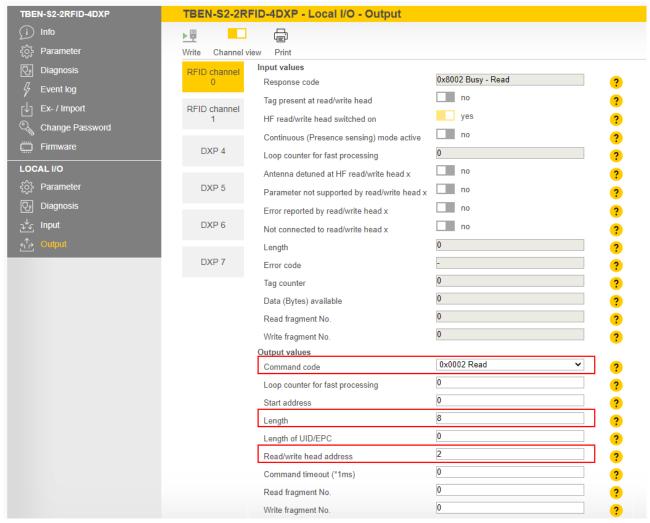


Abb. 90: Datenträger im HF-Busmodus lesen – Prozess-Ausgangsdaten

8.10 RFID-Interfaces über den DTM testen und parametrieren

Das Gerät lässt sich mit dem DTM (Device Type Manager) über PACTware testen und parametrieren.

Die verschiedenen Funktionen des DTM werden nach einem Rechtsklick auf das Gerät im Projektbaum angezeigt.

Sie können u. a. folgende Funktionen starten:

- Parameter: Parameter an die jeweilige Applikation anpassen
- Messwerte: Anzeige der vom RFID-Interface gelesenen Daten
- Simulation: Ausgangsparameter des Geräts zum Funktionstest setzen
- Diagnose: Darstellung der Diagnosemeldungen des Geräts oder des gesamten RFID-Systems

8.10.1 Gerät mit dem PC verbinden

- PACTware öffnen.
- Im Projektbaum Rechtsklick auf Host PC ausführen.
- ► Gerät hinzufügen klicken.
- ▶ BL Service Ethernet auswählen.
- ► Auswahl mit **OK** bestätigen.

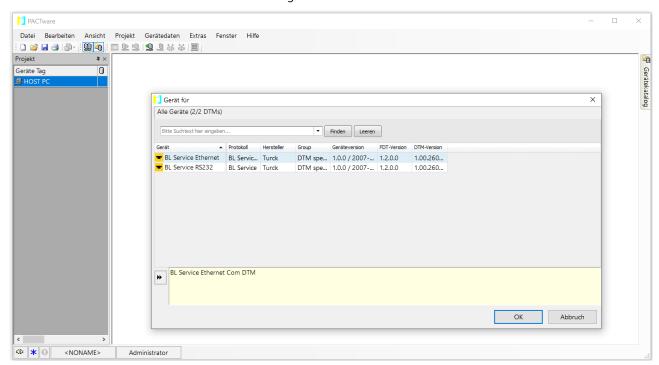


Abb. 91: Ethernet-Adapter auswählen

- Im Projektbaum Rechtsklick auf den Ethernet-Adapter ausführen.
- ► Gerät hinzufügen klicken.
- ► TBEN-S2-2RFID-4DXP auswählen.
- ► Auswahl mit **OK** bestätigen.

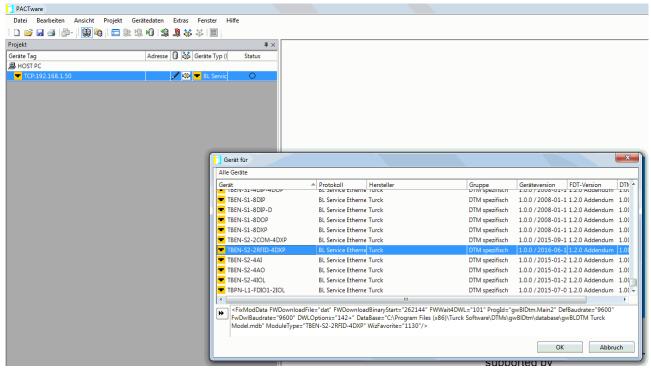


Abb. 92: TBEN-S2-2RFID-4DXP auswählen

- ▶ IP-Adresse des Geräts angeben (hier: 192.168.1.20).
- ▶ IP-Adresse des Geräts angeben (hier: 192.168.1.254).
- Optional: Bezeichnung und Gerätekurztext angeben.
- ► Eingaben mit **OK** bestätigen.

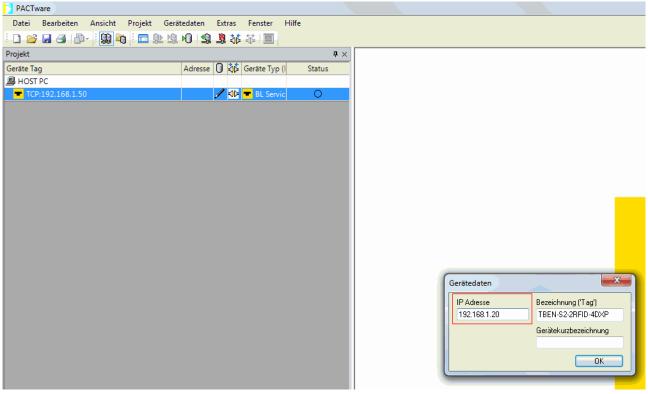


Abb. 93: IP-Adresse angeben

- ✓ Der Projektbaum ist vollständig aufgebaut.
- ▶ Im Projektbaum Rechtsklick auf das Gerät ausführen.
- ► Verbinden anklicken.
- Nach dem Verbinden ist ein Lese- und Schreibzugriff auf Ein- und Ausgangsdaten sowie Parameterdaten möglich.

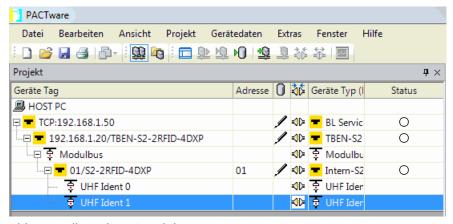


Abb. 94: Vollständiger Projektbaum

8.10.2 Parameterdaten mit dem DTM bearbeiten – Online-Parametrierung

Über die Online-Parametrierung können die Parameterdaten geändert und in das Gerät geschrieben werden.

- ▶ Im Projektbaum Rechtsklick auf das Gerät ausführen.
- ▶ Online-Parametrierung anklicken.

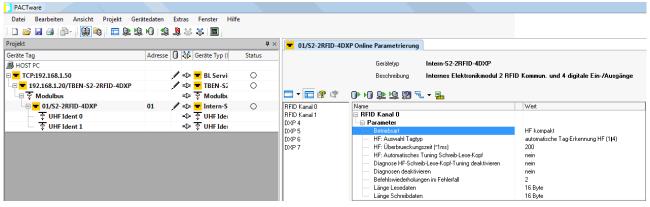


Abb. 95: Online-Parametrierung

Beispiel: Betriebsart auswählen

- Im Fenster Online-Parametrierung die Betriebsart anklicken.
- ► Gewünschte Betriebsart aus dem Drop-down-Menü auswählen.

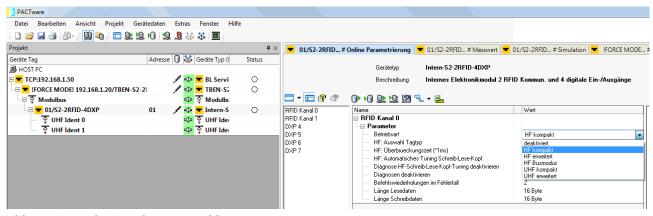


Abb. 96: Beispiel – Betriebsart auswählen

8.10.3 Prozess-Eingangsdaten mit dem DTM auslesen – Messwert

Über die Messwertfunktion des DTM können die Prozess-Eingangsdaten ausgelesen werden.

- Im Projektbaum Rechtsklick auf das Gerät ausführen.
- Messwert anklicken.
- Im mittleren Fenster den gewünschten Kanal auswählen.
- Die Prozess-Eingangsdaten werden im Fenster auf der rechten Seite angezeigt (Beispiel: Das Gerät befindet sich im Leerlauf).

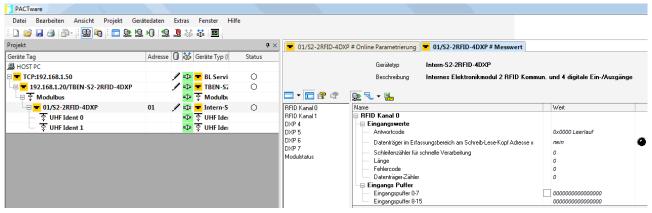


Abb. 97: Messwertfunktion des DTM

8.10.4 Prozess-Ausgangsdaten mit dem DTM ändern – Simulation

Über die Simulationsfunktion des DTM können die Prozess-Ausgangsdaten geändert werden.

- Im Projektbaum Rechtsklick auf das Gerät ausführen.
- Simulation anklicken.
- Im mittleren Fenster den gewünschten Kanal auswählen.
- Die Prozess-Ausgangsdaten werden im Fenster auf der rechten Seite angezeigt (Beispiel: Das Gerät befindet sich im Leerlauf).

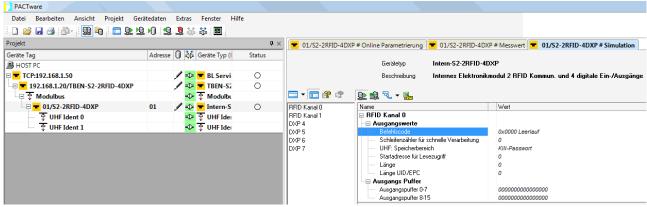


Abb. 98: Simulationsfunktion des DTM

8.10.5 Diagnosen mit dem DTM auswerten

Über die Diagnosefunktion des DTM können die Diagnosen aller Kanäle abgerufen werden.

- Im Projektbaum Rechtsklick auf das Gerät ausführen.
- ▶ **Diagnose** anklicken.
- Im mittleren Fenster den gewünschten Kanal auswählen.
- Die Prozess-Ausgangsdaten werden im Fenster auf der rechten Seite angezeigt (Beispiel: Keine Diagnosen vorhanden).

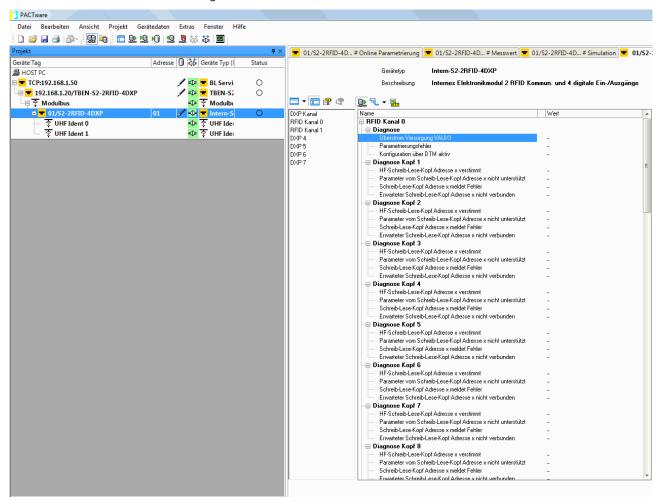


Abb. 99: Diagnosefunktion des DTM

8.10.6 Beispiel: Lesebefehl mit dem DTM ausführen

Im folgenden Beispiel werden 8 Bytes eines Datenträgers durch einen Schreib-Lese-Kopf gelesen, der an Kanal 0 des Interface angeschlossen ist.

- Im Projektbaum Rechtsklick auf das Gerät ausführen.
- ▶ **Simulation** anklicken.
- Im mittleren Fenster RFID-Kanal 0 auswählen.
- Länge einstellen: Aktuellen Wert doppelt klicken.
- ► Alle folgenden Meldungen bestätigen.
- Der DTM startet den Force Mode. Im Force Mode werden alle eingegebenen Werte direkt in das angeschlossene Gerät geschrieben.
- ▶ Länge in Bytes eintragen (Beispiel: 8).
- ▶ **Befehlscode** aus dem Drop-down-Menü auswählen (Beispiel: 0x0002 Lesen).

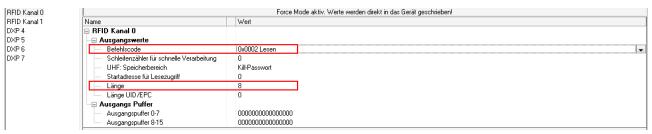


Abb. 100: Lesebefehl ausführen – Fenster: Simulation

Die gelesenen Daten werden im Fenster **Messwert** angezeigt. Das Datenformat ist hexadezimal.

Abb. 101: Lesebefehl ausführen – Fenster: Messwert

8.11 RFID-Interfaces mit der Software RFID PC Demo für Modbus TCP einstellen

Über die Software RFID PC Demo für Modbus TCP können die Geräte eingestellt und Befehle an die Geräte geschickt werden. Um die Einstellungen mit einem PC vornehmen zu können, müssen sich das Gerät und der PC im gleichen IP-Netzwerk befinden.

Die Software RFID PC Demo für Modbus TCP steht zum kostenfreien Download unter www.turck.com zur Verfügung.

8.11.1 Verbindung herstellen

- ▶ Auf der Startseite die IP-Adresse des Gerätes eingeben.
- ► Verbinden klicken.

RFID-Interfaces mit der Software RFID PC Demo für Modbus TCP einstellen

⇒ Die Verbindung wird hergestellt.

Nachdem die Verbindung hergestellt wurde, ist ein Schreibzugriff auf Ein- und Ausgangsdaten sowie Parameterdaten möglich.

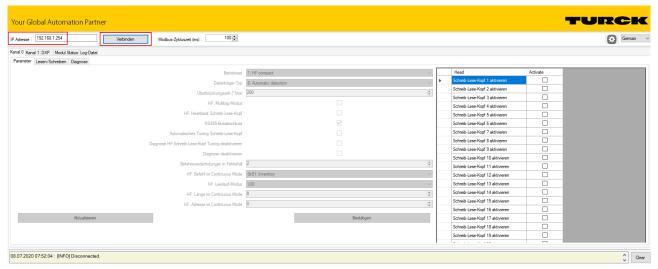


Abb. 102: RFID PC Demo für Modbus TCP starten

8.11.2 Einstellungen bearbeiten

Beispiel: Betriebsart für Kanal O einstellen

Im folgenden Beispiel wird die Betriebsart von Kanal 0 auf **HF extended** eingestellt.

- ► Kanal 0 → Parameter → Betriebsart: Über das Drop-down-Menü 2: HF extended wählen.
- **Bestätigen** klicken.
- ⇒ Die Einstellungen werden gespeichert.

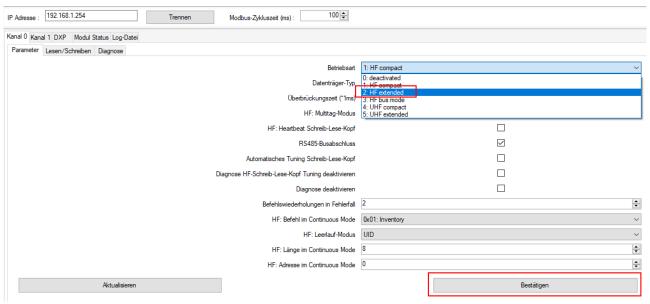


Abb. 103: Betriebsart einstellen

Beispiel: Lesebefehl ausführen

RFID-Interfaces mit der Software RFID PC Demo für Modbus TCP einstellen

Im folgenden Beispiel werden 16 Bytes von einem Datenträger durch einen Schreib-Lese-Kopf gelesen, der an Kanal 0 des Interface angeschlossen ist.

- ► Kanal 0 → Lesen/Schreiben → Befehlscode: Lesebefehl über das Drop-down-Menü auswählen (0x0002 Lesen).
- Anzahl der zu lesenden Bytes in das Eingabefeld Länge eintragen (hier: 16).
- Lesebefehl senden: Im Tab Befehl den Button Bestätigen klicken.

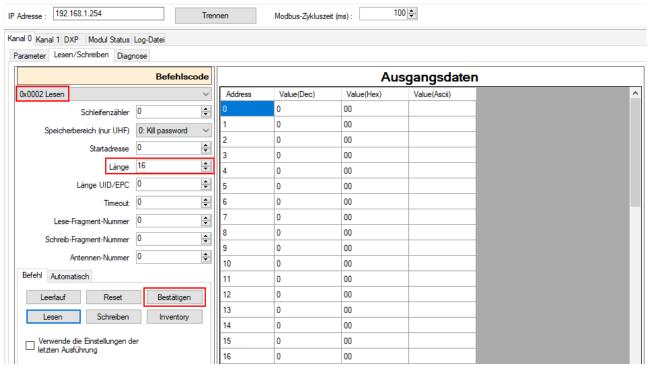


Abb. 104: Lesebefehl einstellen

⇒ Der Empfang des Befehls wird unter **Antwortcode** mit **(0x8002) Busy** bestätigt.

Abb. 105: Lesebefehl empfangen

Wenn sich ein Datenträger im Erfassungsbereich des Schreib-Lese-Kopfs befindet, wird der Lesebefehl ausgeführt. Die gelesenen Daten werden im Fenster **Eingangsdaten** dargestellt.

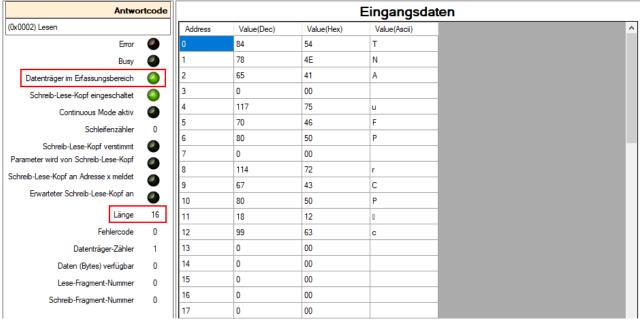


Abb. 106: Eingangsdaten bei erfolgreichem Lesebefehl

Beispiel: Befehl im Busmodus ausführen

RFID-Interfaces mit der Software RFID PC Demo für Modbus TCP einstellen

Im folgenden Beispiel soll im HF-Busmodus der Schreib-Lese-Kopf mit der Adresse 1 acht Bytes von einem Datenträger lesen. An Kanal 0 des Interface sind zwei Schreib-Lese-Köpfe angeschlossen.

- ► Kanal 0 → Parameter → Betriebsart: Über das Drop-down-Menü 3: HF bus mode wählen.
- **▶ Bestätigen** klicken.

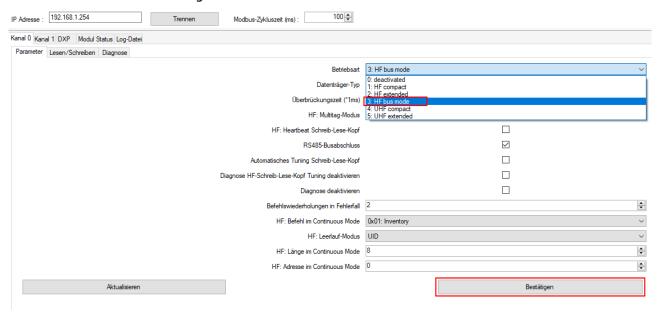


Abb. 107: HF-Busmodus einstellen

► Kanal 0 → Lesen/Schreiben → Befehlscode: Über das Drop-down-Menü den Befehl 0x0070 Abfrage HF-Schreib-Lese-Kopf-Adresse wählen.

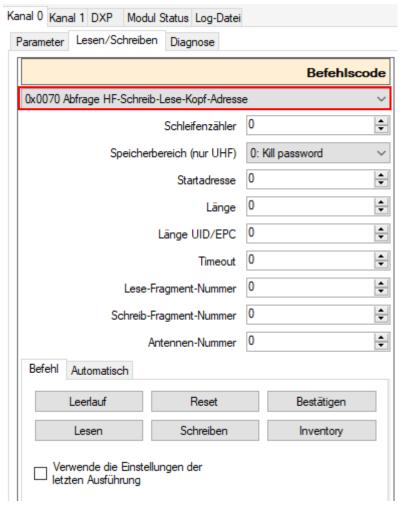
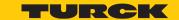



Abb. 108: HF-Schreib-Lese-Kopf-Adressen abfragen

Die Adressen der angeschlossenen Schreib-Lese-Köpfe werden in den Eingangsdaten angezeigt.

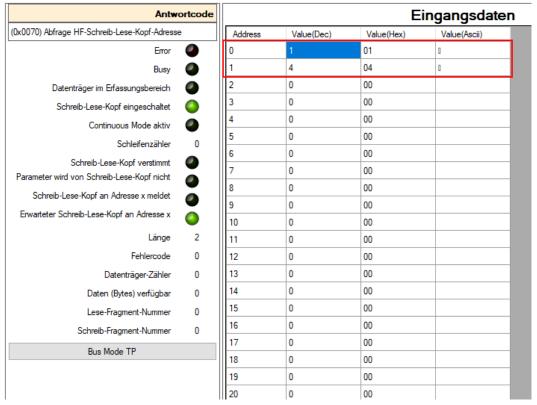


Abb. 109: HF-Schreib-Lese-Kopf-Adressen

- ► Kanal 0 → Parameter: Im rechten Fenster die angeschlossenen Schreib-Lese-Köpfe aktivieren (hier: Schreib-Lese-Köpfe 1 und 4).
- **Bestätigen** klicken.

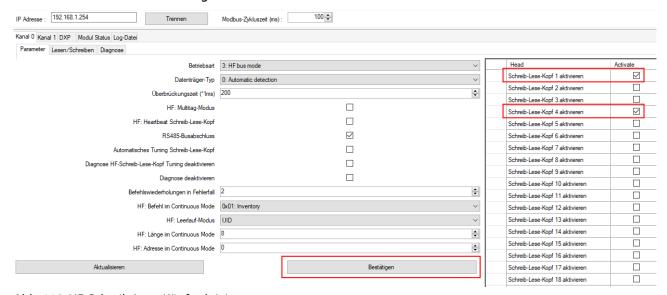


Abb. 110: HF-Schreib-Lese-Köpfe aktivieren

- **▶** Kanal $0 \rightarrow \text{Lesen/Schreiben} \rightarrow \text{Befehlscode}$: Lesebefehl auswählen (0x0002 Lesen).
- ▶ Länge der Lesedaten angeben (hier: 8).
- Schreib-Lese-Kopf-Adresse im Feld Antennen-Nummer angeben (hier: 1).
- ▶ Bestätigen klicken

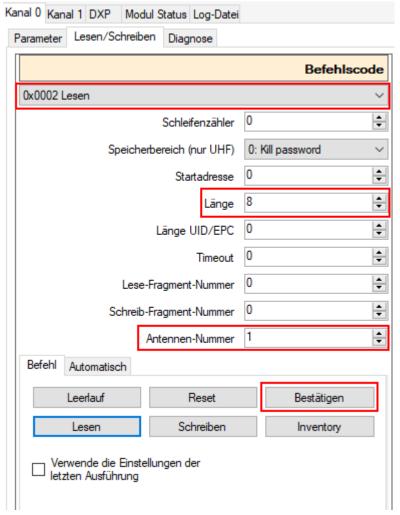


Abb. 111: HF-Busmodus – Lesebefehl einstellen

⇒ Wenn sich ein Datenträger im Erfassungsbereich des eingestellten Schreib-Lese-Kopfes befindet, leuchtet im Fenster Bus Mode – TP die virtuelle LED grün und die gelesenen Daten werden in den Eingangsdaten angezeigt.

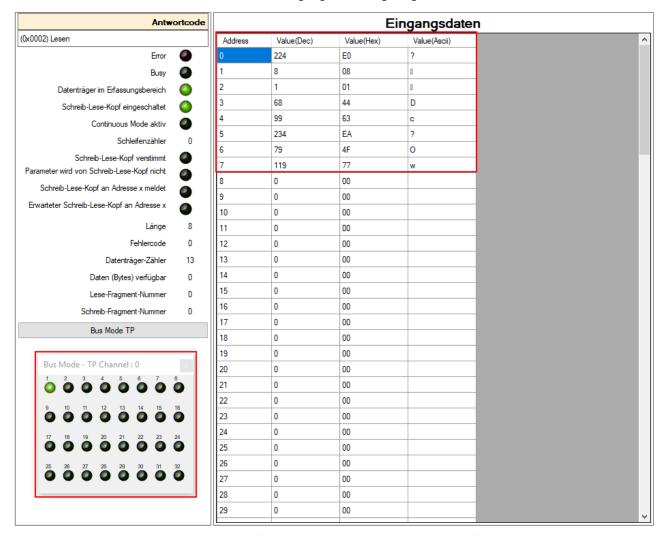


Abb. 112: HF-Busmodus – Datenträger im Erfassungsbereich von Schreib-Lese-Kopf 1

Beispiel: Automatischen Modus zur Befehlswiederholung verwenden

Im automatischen Modus werden Befehle wiederholt durch den Modbus-Master oder einen angeschlossenen DXP ausgeführt. Im folgenden Beispiel werden im automatischen Modus zyklisch 16 Bytes von Datenträgern durch ein Schreib-Lese-Gerät gelesen, das an Kanal 0 des Interface angeschlossen ist.

► Kanal 0 → Lesen/Schreiben → Automatisch → Lesen klicken

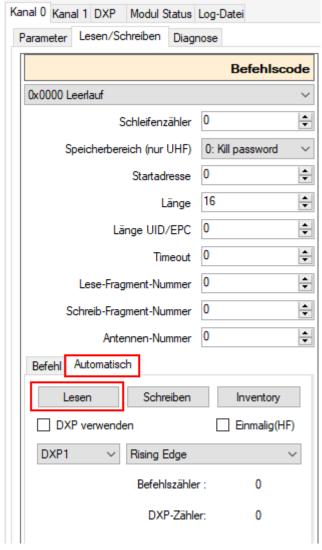


Abb. 113: Automatischer Modus – Lesen

- Der Lesebefehl wird permanent bzw. zyklisch ausgeführt in Abhängigkeit von der eingestellten Modbus-Zykluszeit.
- ⇒ Die gelesenen Daten werden in den Eingangsdaten dargestellt.

Antwortcode		Eingangsdaten				
(0x0002) Lesen		Address	Value(Dec)	Value(Hex)	Value(Ascii)	
Error	•	0	239	EF	?	
Busy	•	1	239	EF	?	
Datenträger im Erfassungsbereich		2	239	EF	?	
Schreib-Lese-Kopf eingeschaltet	0	3	239	EF	?	
Continuous Mode aktiv	ă	4	239	EF	?	
Schleifenzähler	0	5	239	EF	?	
	_	6	239	EF	?	
Schreib-Lese-Kopf verstimmt Parameter wird von Schreib-Lese-Kopf	•	7	239	EF	?	
•	•	8	239	EF	?	
Schreib-Lese-Kopf an Adresse x meldet	•	9	239	EF	?	
Erwarteter Schreib-Lese-Kopf an	•	10	239	EF	?	
Länge	16	11	239	EF	?	
Fehlercode	0	12	239	EF	?	
Datenträger-Zähler	9	13	239	EF	?	
Daten (Bytes) verfügbar	0	14	239	EF	?	
Lese-Fragment-Nummer	0	15	239	EF	?	
Schreib-Fragment-Nummer	0	16	0	00		
Solicio Fragilicia Nalillilo	Ů	17	0	00		
		18	0	00		
		19	0	00		

Abb. 114: Automatischer Modus – Eingangsdaten

► Lesebefehl stoppen: Kanal 0 → Lesen/Schreiben → Automatisch → Stop klicken

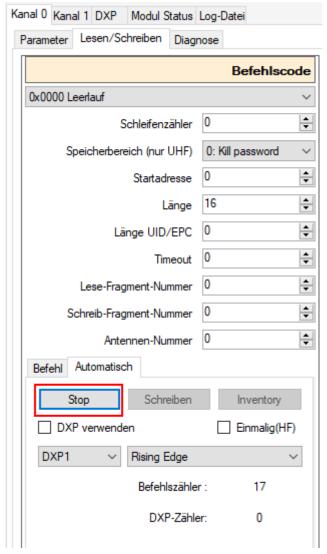


Abb. 115: Automatischer Modus – Lesebefehl stoppen

Beispiel: RFID-Befehle über einen angeschlossenen DXP triggern

- **▶** Kanal 0 → Lesen/Schreiben → Automatisch: Die Option DXP verwenden aktivieren.
- ▶ Im Drop-down-Menü gewünschten DXP-Kanal einstellen (hier: **DXP1**).
- Im Drop-down-Menü gewünschte Flankensteuerung auswählen:
 - Steigende Flanke: Wechsel des DXP-Wertes von 0 auf 1
 - DXP Wert auf 1: solange der DXP den Wert 1 hat
 - Fallende Flanke: Wechsel des DXP-Wertes von 1 auf 0

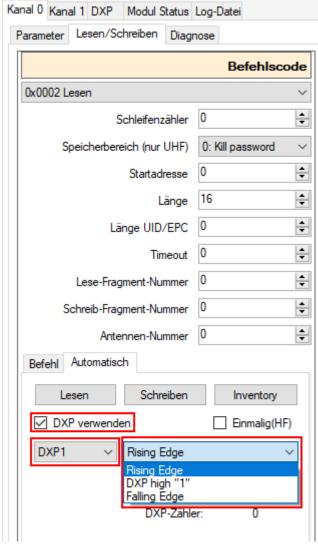


Abb. 116: Automatischer Modus – DXP-Kanal mit steigender Flanke verwenden

8.11.3 Aktionen und Daten protokollieren

Protokollierung aktivieren

- Protokoll-Button oben rechts klicken.
- ▶ Option wählen.
- ► Anwenden klicken.
- ⇒ Alle Daten werden in einer log-Datei gespeichert.

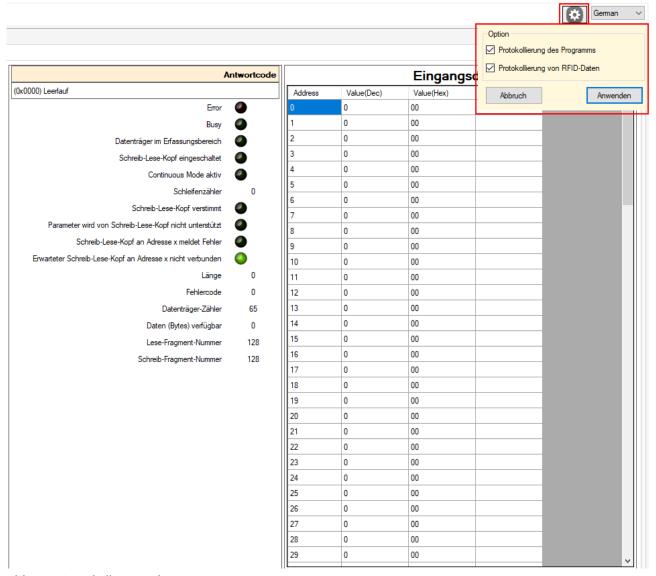


Abb. 117: Protokollierung aktivieren

Protokoll öffnen

- ▶ Auf dem Reiter **Log-Datei** den Button **Öffnen** klicken.
- Datei auswählen.
- **▶** Öffnen klicken.



Abb. 118: Log-Datei öffnen

⇒ Die Protokolldaten werden angezeigt.

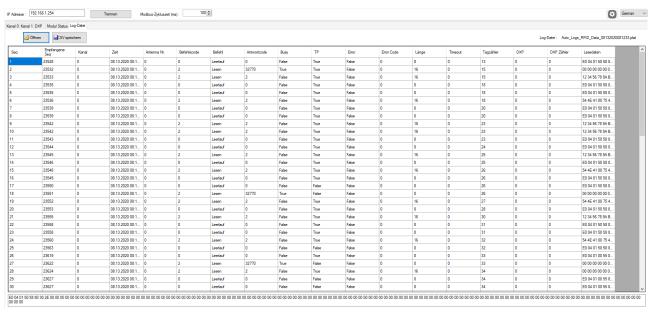


Abb. 119: Beispiel: Protokolldaten

8.12 UHF-Reader einstellen

8.12.1 UHF-Reader über den DTM einstellen

UHF-Reader lassen sich über einen DTM erweitert parametrieren. Über die Parameterdaten des Interface können keine Parameter im UHF-Reader gesetzt werden. Der gerätespezifische DTM steht zum Download unter www.turck.com zur Verfügung.

Eine umfangreiche Beschreibung der Einstellungen für UHF-Reader finden Sie in der gerätespezifischen Betriebsanleitung.

8.12.2 UHF-Reader über den Webserver einstellen

Über den Webserver können UHF-Reader eingestellt und Befehle an die Reader geschickt werden.

- Webserver öffnen und einloggen.
- ▶ UHF RFID CONFIG & DEMO anklicken, um die Geräteparameter anzuzeigen und einzustellen.

MAIN UHF RFID CONFIG & DEMO DOCU

DOCUMENTATION

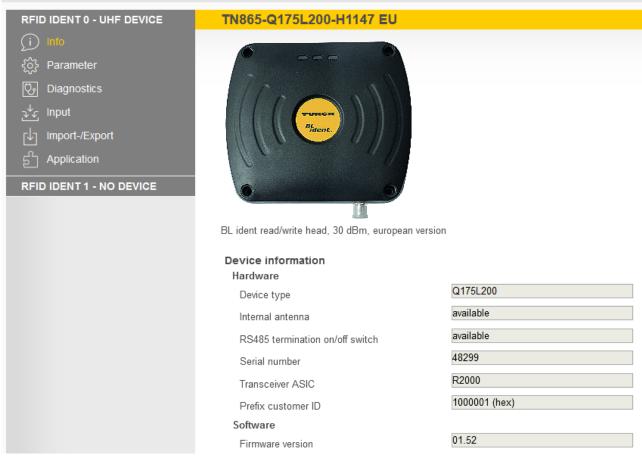


Abb. 120: Webserver - Startseite UHF-Reader

- ▶ In der Navigationsleiste am linken Bildrand **Parameter** anklicken.
- ⇒ Alle Parameter des Geräts werden angezeigt.

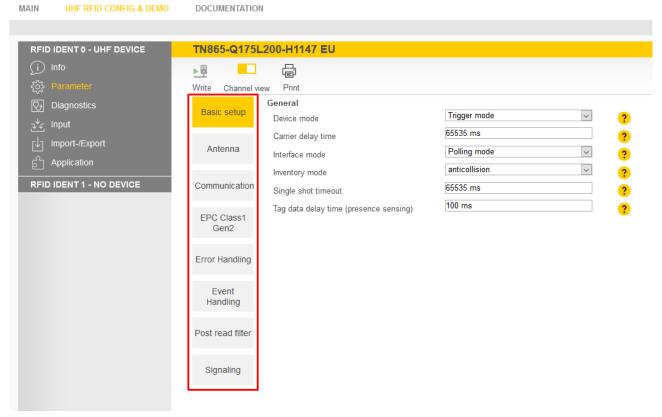


Abb. 121: Webserver - Parameter UHF-Reader

HINWEIS

Die Anordnung der Parameter im Webserver entspricht der Anordnung im UHF-DTM. Der im Webserver angezeigte Zugriffslevel entspricht dem Level "Advanced" im DTM.

8.12.3 UHF-Reader über den Webserver testen

Über die Funktion **Application** können die UHF-Reader mit dem Webserver getestet werden.

- ▶ UHF RFID CONFIG & DEMO → Application klicken.
- ⇒ Im Bereich **Application** stehen der **RFID-Test**, die **UHF-Diagnose** und der **Command builder** zur Verfügung:
 - RFID-Test: Wenn der Trigger auf ON steht, wird das RF-Feld aktiviert und Datenträger können gelesen werden.
 - UHF-Diagnose: Die Diagramme zeigen Interferenzfrequenzen aller verwendeten Kanäle.
 - Command builder: Die Verwendung des Command builders ist dem Turck Support vorbehalten und dient nicht dazu, das Gerät zu parametrieren oder zu betreiben.

MAIN UHF RFID CONFIG & DEMO DOCUMENTATION

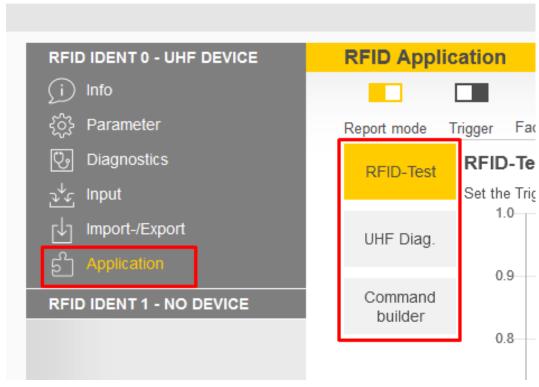


Abb. 122: Webserver - RFID Application

Über den **RFID-Test** können EPC-Informationen von Datenträgern im Singletag- und Multitag-Betrieb angezeigt und ausgelesen werden. Die empfangenen RSSI-Werte werden als Kurve mit zeitlichem Verlauf angezeigt.

Abb. 123: Beispiel RFID-Test: Erfassen eines Datenträgers mit zeitlichem Verlauf der empfangenen RSSI-Werte und der Anzahl der Lesungen

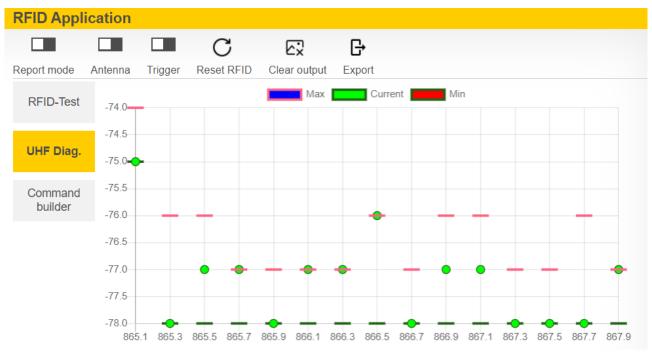


Abb. 124: Beispiel UHF-Diagnose: empfangener Leistungspegel pro Kanal

9 Betreiben

HINWEIS

Nach einem Spannungsreset werden die im Modul gespeicherten Lese- und Schreibdaten zurückgesetzt.

9.1 Befehl ausführen und Daten abrufen

HINWEIS

Ein Befehl ist erfolgreich, wenn der Antwortcode gleich dem Befehlscode ist.

- ▶ Parameter für den Befehl einstellen.
- Befehlscode einstellen.
- Der Befehl wurde erfolgreich ausgeführt, wenn der Antwortcode gleich dem Befehlscode ist und keine Fehlermeldung vorliegt.

9.1.1 Typische Zeiten für die Befehlsverarbeitung durch eine Steuerung

Bei den in den folgenden Tabellen angegebenen Werten handelt es sich um Näherungswerte. Die typischen Zeiten zur Befehlsausführung sind u. a. von den folgenden Faktoren abhängig:

- Hardware-Konfiguration
- Software-Konfiguration
- Anzahl der Busteilnehmer
- Buszykluszeiten

HF-Anwendungen

Befehl	System-Zykluszeit	Erforderliche Zeit	Abhängigkeit von Faktoren wie Protokoll, System etc.
8 Byte lesen	4 ms	10 ms	≤ 20 %
8 Byte schreiben	4 ms	10 ms	≤ 20 %
8 Byte lesen	20 ms	60 ms	≤ 20 %
8 Byte schreiben	20 ms	60 ms	≤ 20 %
128 Byte lesen	4 ms	40 ms	≤ 20 %
128 Byte schreiben	4 ms	50 ms	≤ 20 %
1 kByte lesen	4 ms	700 ms	≤ 20 %
1 kByte schreiben	4 ms	800 ms	≤ 20 %
Inventory (4 Datenträger)	4 ms	300 ms	≤ 10 %

HF-Busmodus

Die zur zyklischen Bearbeitung eines Befehls erforderliche Zeit ist abhängig von der Zeit, in der sich der Datenträger im Erfassungsbereich des Schreib-Lese-Kopfs befindet (Bypass-Zeit). Standardmäßig sind als Bypass-Zeit 48 ms eingestellt. Die Bypass-Zeit kann durch den Anwender eingestellt werden. Wenn die Bypass-Zeit anders eingestellt ist, muss die Differenz zur Zeit für die Befehlsverarbeitung hinzugerechnet oder davon abgezogen werden.

Die Zeit, in der alle Schreib-Lese-Köpfe einmal vom Interface angesprochen werden können, errechnet sich wie folgt:

Anzahl Schreib-Lese-Köpfe × Bypass-Zeit

Diese Zeit entspricht der Aktualisierungsrate für das Bit **Datenträger im Erfassungsbereich** und muss bei der Berechnung der Gesamtzeit für die Befehlsverarbeitung ebenfalls berücksichtigt werden.

Der Inventory-Befehl muss für alle Schreib-Lese-Köpfe separat ausgeführt werden.

Befehl	System-Zykluszeit	Erforderliche Zeit	Abhängigkeit von Faktoren wie Protokoll, System etc.
UID an einem Schreib-Lese- Kopf bei steigender Flanke an TP lesen, Datenträger im Erfassungsbereich	4 ms	24 ms	Abhängig von der System- Zykluszeit muss die Bypass- Zeit hinzugerechnet werden.
UID an einem Schreib-Lese- Kopf bei steigender Flanke an TP lesen, Datenträger im Erfassungsbereich	20 ms	80 ms	
112 Byte von unterschied- lichen Schreib-Lese-Köpfen nacheinander lesen, Default- Bypass-Zeit (48 ms)	4 ms	180 ms pro Schreib-Lese- Kopf	Die Dauer der Zugriffe auf die einzelnen Schreib-Lese-Köpfe variiert.

UHF-Anwendungen

Befehl	System-Zykluszeit	Erforderliche Zeit	Abhängigkeit von Faktoren wie Protokoll, System etc.
12 Byte EPC lesen	4 ms	120220 ms	nicht erkennbar
12 Byte EPC schreiben	4 ms	260400 ms	nicht erkennbar
1 kByte lesen	4 ms	2500 ms	≤ 20 %
1 kByte schreiben	4 ms	7300 ms	≤ 20 %
Inventory (100 Datenträger, Schreib-Lese-Kopf im Re- port Mode, dynamische Applikation)	4 ms	5500 ms	≤ 20 %

9.2 Fragmentierung nutzen

Wenn mehr Daten gelesen werden als die eingestellte Größe des Daten-Interface, erhöht sich automatisch der Fragmentzähler in den Eingangsdaten.

- ▶ Um weitere Daten auszulesen: Fragmentzähler in den Ausgangsdaten erhöhen.
- ▶ Vorgang wiederholen, bis die Lese-Fragment-Nr. oder die Schreib-Fragment-Nr. in den Eingangsdaten gleich 0 ist.

Wenn weniger Daten gelesen werden als die eingestellte Größe des Daten-Interface, bleibt der Fragmentzähler auf 0.

9.2.1 Beispiel: Fragmentierung im Webserver nutzen – Lesen

Das folgende Beispiel beschreibt das Lesen von 500 Bytes in Fragmenten zu jeweils 128 Bytes.

- Webserver des Geräts öffnen.
- ► Als Administrator auf dem Gerät einloggen.
- ► Local I/O → Parameter → Operation mode : Gewünschten Kanal (hier: RFID channel 0) auf HF extended stellen.
- ▶ Zum Speichern Write klicken.

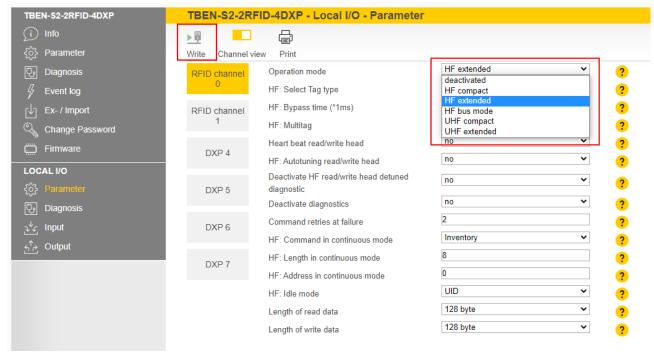


Abb. 125: Fragmentierung – Betriebsart wählen

- ▶ In der Navigationsleiste am linken Bildrand Local I/O \rightarrow Output klicken.
- ► Output values → Length: Anzahl der insgesamt zu lesenden Bytes eintragen (hier: 500). Dabei die Größe des Datenträgers beachten.
- ▶ Lesebefehl über das Drop-down-Menü Command code wählen: 0x0002 Read.
- Der Lesebefehl wird ausgeführt, sobald sich ein Datenträger im Erfassungsbereich des Schreib-Lese-Kopfs befindet.

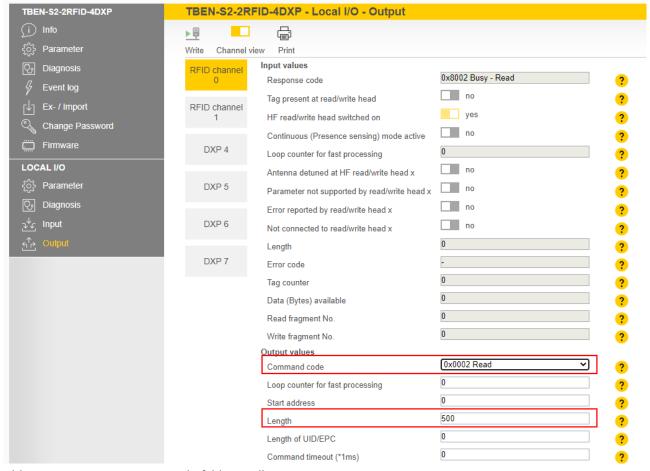


Abb. 126: Fragmentierung – Lesebefehl einstellen

In den Eingangsdaten (Input values) werden die folgenden Informationen angezeigt:

- Response code: Lesebefehl erfolgreich ausgeführt
- Data (Bytes) available: Anzahl Bytes, die noch auf dem TBEN-Modul gespeichert sind und noch nicht in den Lesedaten angezeigt werden (hier: 372)
- Read fragment No.: laufende Nummer des nächsten zu lesenden Fragments (hier: 1)

Die ersten 128 Bytes der Eingangsdaten werden unter Input buffer angezeigt.

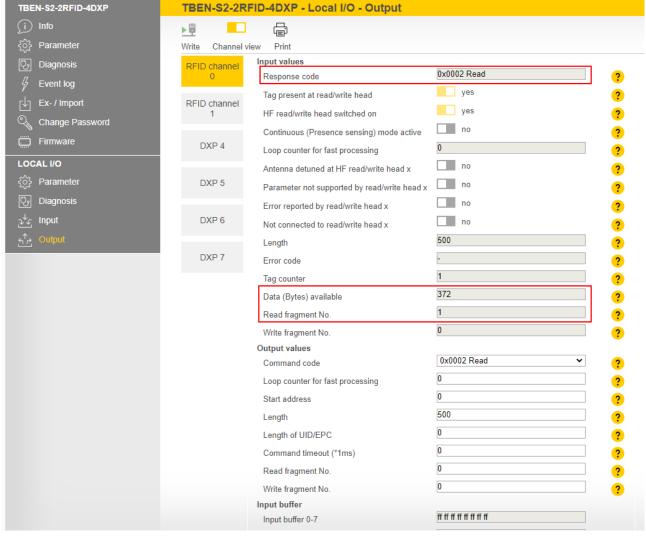


Abb. 127: Fragmentierung – Eingangsdaten

▶ Unter **Read fragment No.** die laufende Nummer des nächsten zu lesenden Fragments eintragen (hier: 1).

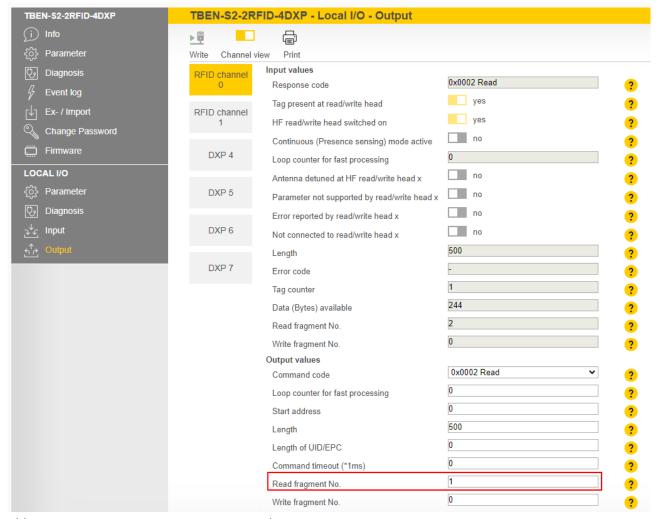


Abb. 128: Fragmentierung – Zweites Fragment lesen

In den Eingangsdaten (Input values) werden die folgenden Informationen angezeigt:

- Response code: Lesebefehl erfolgreich ausgeführt
- Data (Bytes) available: Anzahl Bytes, die noch auf dem TBEN-Modul gespeichert sind und noch nicht in den Lesedaten angezeigt werden (hier: 244)
- Read fragment No.: laufende Nummer des nächsten zu lesenden Fragments (hier: 2)

Die zweiten 128 Bytes der Eingangsdaten werden unter Input buffer angezeigt.

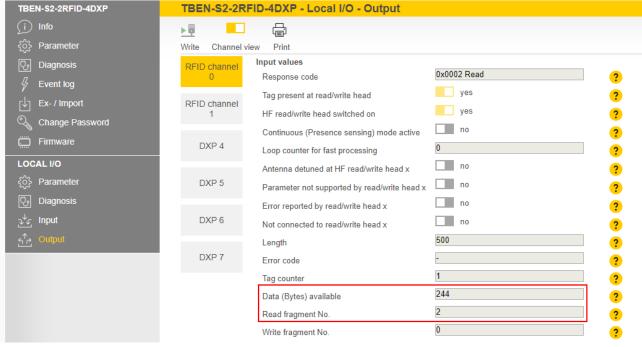


Abb. 129: Fragmentierung – Eingangsdaten des zweiten Fragments

- Vorgang so lange wiederholen, bis keine Daten mehr auf dem TBEN-Modul vorhanden sind
- ⇒ Wenn keine Daten mehr auf dem TBEN-Modul vorhanden sind, wird unter **Read frag**ment No. der Wert **0** angezeigt.

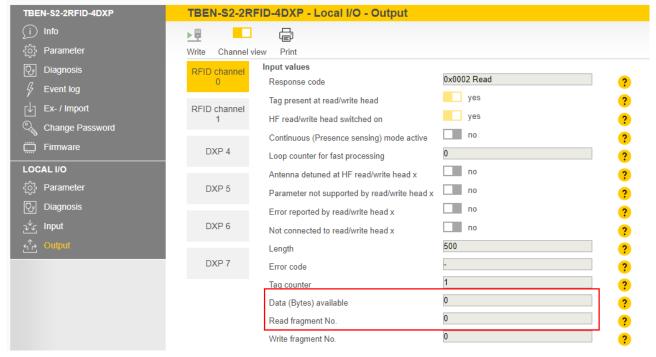


Abb. 130: Fragmentierung – keine Daten mehr vorhanden

9.2.2 Beispiel: Fragmentierung im Webserver nutzen – Schreiben

Das folgende Beispiel beschreibt das Schreiben von 500 Bytes in Fragmenten zu jeweils 128 Bytes.

- ▶ Webserver des Geräts öffnen.
- ► Als Administrator auf dem Gerät einloggen.
- ► Local I/O → Parameter → Operation mode: Gewünschten Kanal (hier: RFID channel 0) auf HF extended stellen.
- ▶ Eingestellte Betriebsart mit Klick auf **Write** speichern.

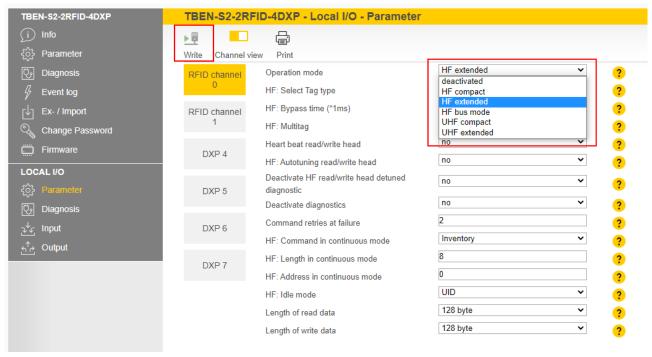


Abb. 131: Fragmentierung – Betriebsart wählen

HINWEIS

Während des Schreibvorgangs darf der Datenträger den Erfassungsbereich des Schreib-Lese-Kopfs nicht verlassen.

Die Schreib-Fragment-Nr. muss immer mit 1 beginnen.

- ▶ Die ersten 128 Bytes der Schreibdaten unter **Output buffer** eintragen.
- ► In der Navigationsleiste am linken Bildrand Local I/O → Output klicken.
- ▶ Output values → Length: Anzahl der insgesamt zu schreibenden Bytes eintragen (hier:
 500). Dabei die Größe des Datenträgers beachten.
- ▶ Unter **Write fragment No.** die laufende Nummer des Fragments mit den Schreibdaten eintragen (hier: 1 zur Aktivierung der Fragmentierung der Schreibdaten).
- Schreibbefehl über das Drop-down-Menü Command code wählen: 0x0004 Write.
- Der Schreibbefehl wird ausgeführt, sobald sich ein Datenträger im Erfassungsbereich des Schreib-Lese-Kopfs befindet. Wenn sich bereits ein Datenträger im Erfassungsbereich des Schreib-Lese-Kopfs befindet, werden die Daten direkt geschrieben und nicht auf dem TBEN-Modul gespeichert.

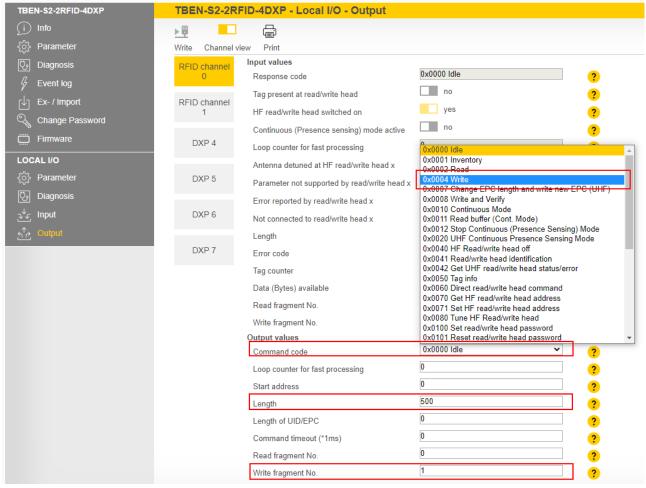


Abb. 132: Fragmentierung – Schreibbefehl ausführen

In den Eingangsdaten (Input values) werden die folgenden Informationen angezeigt:

- Response code: 0x8004 Busy Write (Schreibbefehl aktiv)
- Data (Bytes) available: Anzahl Bytes, die auf dem TBEN-Modul gespeichert sind und noch nicht auf den Datenträger geschrieben wurden
- Write fragment No.: laufende Nummer des Fragments mit den Schreibdaten (hier: 1)

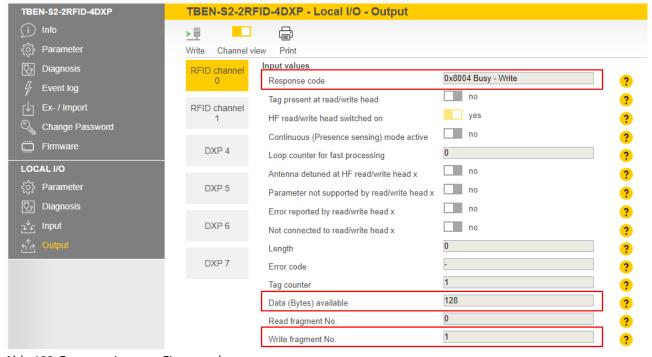


Abb. 133: Fragmentierung – Eingangsdaten

- ▶ Die zweiten 128 Bytes der Schreibdaten unter **Output buffer** eintragen.
- ▶ Unter Write fragment No. die laufende Nummer des nächsten Fragments mit den Schreibdaten eintragen (hier: 2).

Wenn sich ein Datenträger im Erfassungsbereich befindet, wird er direkt beschrieben. Wenn sich kein Datenträger im Erfassungsbereich befindet, werden die Daten im TBEN-Modul gespeichert.

Der Datenträger muss im Erfassungsbereich bleiben, bis der Befehl vollständig ausgeführt ist. Wenn der Datenträger vor Beenden des Befehls aus dem Erfassungsbereich entfernt wird, gibt das Gerät eine Fehlermeldung aus.

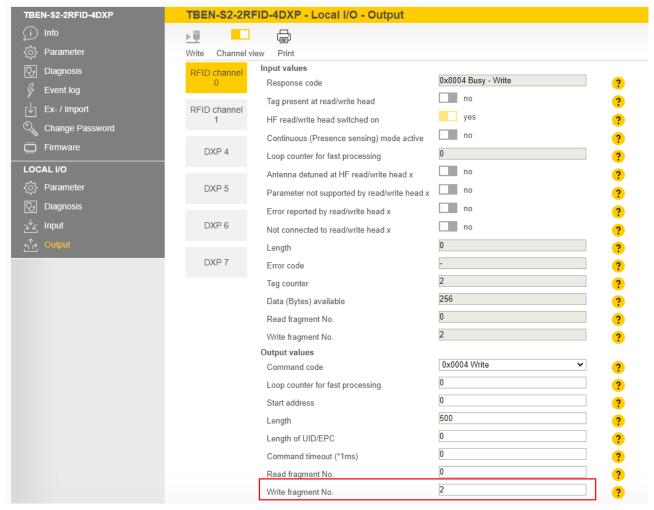


Abb. 134: Fragmentierung – zweites Fragment schreiben

- ▶ Den Vorgang so lange wiederholen, bis alle Daten auf dem TBEN-Modul vorhanden sind.
- ⇒ Wenn die Daten erfolgreich auf den Datenträger geschrieben wurden, ändert sich der Response code auf 0x0004 Write.

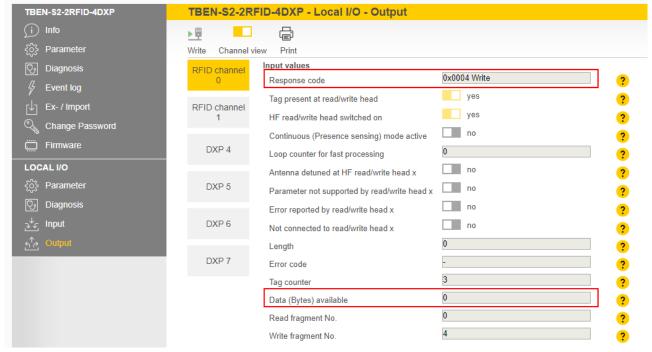


Abb. 135: Fragmentierung – keine Daten mehr auf dem TBEN-Modul vorhanden

9.3 Befehle mit Schleifenzähler-Funktion nutzen

HINWEIS

Der Schleifenzähler wird nur für die Befehle mit schneller Ausführung unterstützt.

- ▶ Befehl setzen: Befehlscode angeben.
- ► Schleifenzähler auf 1 setzen.
- ⇒ Wenn in den Prozess-Eingangsdaten derselbe Befehlscode wie in den Prozess-Ausgangsdaten erscheint, wurde der Befehl erfolgreich ausgeführt. Die RFID-Daten werden im Puffer des Interface gespeichert.
- ▶ Befehl wiederholen: Schleifenzähler in den Ausgangsdaten um 1 erhöhen.
- ⇒ Wenn in den Prozess-Eingangsdaten derselbe Schleifenzähler-Wert wie in den Prozess-Ausgangsdaten erscheint, wurde der Befehl erfolgreich ausgeführt. Die RFID-Daten werden im Puffer des Interface gespeichert.
- Neuen Befehl setzen: Neuen Befehlscode angeben und Schleifenzähler auf 0 setzen.

9.4 HF-Anwendungen – Continuous Mode nutzen

Im Continuous Mode (HF) kann der Schreib-Lese-Kopf max. 64 Byte lesen oder schreiben (siehe Tabelle Nutzdatenbereiche der HF-Datenträger).

Im Continuous Mode müssen die folgenden Parameter eingestellt werden:

- Datenträger-Typ
- Befehl im Continuous Mode
- Länge im Continuous Mode
- Startadresse
- Optional: Startadresse in den Prozess-Ausgangsdaten zum Aktivieren der Gruppierung
- ▶ Bei Lese- oder Schreibbefehl: Datenträger-Typ angeben. Automatische Erkennung ist nicht möglich.
- ▶ Befehl im Continuous Mode (CCM) auswählen: Möglich sind Inventory, Lesen, Datenträger-Info und Schreiben).
- Länge im Continuous Mode (LCM) eintragen: Länge der zu lesenden Daten in Bytes angeben. Die Länge muss ein Vielfaches der Blockgröße des verwendeten Datenträgers sein. Die Adressierung eines ungeraden Bytes ist nicht möglich.
- Startadresse für den Befehl im Continuous Mode (ACM) angeben. Die Startadresse muss ein Vielfaches der Blockgröße des verwendeten Datenträgers sein. Die Adressierung eines ungeraden Bytes ist nicht möglich.
- ▶ Bei einem Schreibbefehl die zu schreibenden Daten in den Schreibdatenbereich eintragen.
- ▶ Befehl Continuous Mode ausführen.
- Der eingestellte Befehl wird bei allen aktiven Schreib-Lese-Köpfen vorgespannt und ausgeführt, sobald ein Datenträger im Feld ist.
- ▶ Die vom Schreib-Lese-Kopf empfangenen Daten werden zyklisch abgefragt und im FIFO-Speicher des Interfaces abgelegt.
- ▶ Befehl **Leerlauf** (0x0000) ausführen.
- ▶ Um Daten aus dem FIFO-Speicher des Interfaces an die Steuerung weiterzugeben, Befehl Puffer auslesen (Cont. Mode) (0x0011) ausführen. Die Länge der Daten muss dabei gleich dem Wert der verfügbaren Datenbytes (BYFI) sein.
- Um den Continuous Mode zu beenden, Befehl Continuous Mode beenden (0x0012) ausführen.

oder

► Um den Continuous Mode zu beenden und den FIFO-Speicher des Interface zu löschen, Befehl Reset (0x0800) senden.

9.5 HF-Busmodus nutzen

9.5.1 Befehle im HF-Busmodus ausführen

Parameterdaten einstellen:

- ▶ Betriebsart **HF Bus Mode** auswählen.
- ► Angeschlossene Schreib-Lese-Köpfe aktivieren.

Ausgangsdaten einstellen:

- Startadresse für den Befehl einstellen.
- ► Gewünschte Schreib-Lese-Kopf-Adresse einstellen.
- ▶ Befehlscode angeben.
- ▶ Befehl an den Schreib-Lese-Kopf senden.

9.5.2 Busfähige Schreib-Lese-Köpfe austauschen

- ▶ Defekten Schreib-Lese-Kopf entfernen.
- ► Neuen Schreib-Lese-Kopf mit der Default-Adresse 68 bzw. 0 (Auslieferungszustand .../ C53) anbinden.
- Wenn mehrere Schreib-Lese-Köpfe ausgetauscht werden: Schreib-Lese-Köpfe in der Reihenfolge des Anschlusses austauschen, d. h. den Schreib-Lese-Kopf mit der niedristen Adresse zuerst anschließen.
- ⇒ Die Schreib-Lese-Köpfe erhalten ihre Adresse automatisch aufsteigend in der Reihenfolge des Anschlusses. Die niedrigste Adresse wird automatisch an den nächsten angeschlossenen Schreib-Lese-Kopf mit der Default-Adresse 68 vergeben.
- ⇒ Wenn die LED des Schreib-Lese-Kopfs dauerhaft leuchtet, ist die Adressierung erfolgreich abgeschlossen.

9.5.3 HF-Continuous-Busmodus – Datenabfrage und Geschwindigkeit

Innerhalb einer Zeitspanne von Bypass-Zeit + Wartezeit werden alle aktivierten Schreib-Lese-Köpfe getriggert. Der Befehl wird dabei einmalig in den aktivierten Schreib-Lese-Köpfen fest hinterlegt. Innerhalb der genannten Zeitspanne wird der eingestellte Befehl (z. B. Inventory, Lesen, Schreiben) im Continuous Mode verarbeitet. Während der Befehlsausführung aller aktivierten Schreib-Lese-Köpfe sendet immer nur ein Schreib-Lese-Kopf Daten an das RFID-Interface. Die weiteren Schreib-Lese-Köpfe speichern die gelesenen Daten für eine spätere Abfrage innerhalb des Bus-Zyklus des Continuous Modes. Bei der Erfassung eines neuen Datenträgers durch denselben Schreib-Lese-Kopf werden die Daten im Puffer des Schreib-Lese-Kopfs überschrieben, wenn die Daten noch nicht an das RFID-Interface übertragen wurden. Daher muss die Zeit eingehalten werden, bis die Daten von allen Schreib-Lese-Köpfen abgeholt wurden. Die maximal benötigte Zeit für diesen Vorgang berechnet sich nach der Formel (Bypass-Zeit + Wartezeit) × Anzahl aktivierter Schreib-Lese-Köpfe.

Möglichkeiten zur Optimierung der Geschwindigkeit des HF-Continuous-Busmodus:

- Reduzierung der Bypass-Zeit passend zur Applikation
- Aufteilung der Schreib-Lese-Köpfe auf zwei Kanäle oder auf mehrere Module
- Reduzierung der Daten auf den relevanten Teil

HINWEIS

Das wiederholte Lesen des gleichen Datenträgers erfolgt zeitgesteuert. Um das mehrfache Speichern der gleichen UID oder User-Daten zu verhindern, kann die Gruppierung in den Prozess-Ausgangsdaten aktiviert werden.

Zwischen zwei Abfragen und beim Senden von Daten an das RFID-Interface erkennen die Schreib-Lese-Köpfe keine Datenträger. Die folgende Tabelle beschreibt die erforderlichen Wartezeiten:

Befehl	Wartezeit
Inventory	15 ms
Lesen	25 ms
Schreiben	35 ms

Die Bypass-Zeit im HF-Continuous-Busmodus beträgt standardmäßig 48 ms.

Die folgende Tabelle zeigt, wann Befehle ausgeführt (CMD) und Daten ausgetauscht (DATA) werden.

- CMD: Befehl wird ausgeführt.
- DATA: Datenaustausch
- DATA oder CMD: Wenn Daten auf dem Schreib-Lese-Kopf gespeichert sind, werden die Daten an das RFID-Modul geschickt. Wenn keine Daten auf dem Schreib-Lese-Kopf gespeichert sind, wird der Befehl ausgeführt.

Schreib- Lese-Kopf	Durchlauf 1		Durchlauf 2		Durchlauf 3		Durchlauf n	
Adresse 1	DATA oder CMD	keine Aktion	CMD	keine Aktion	CMD	keine Aktion	CMD	keine Aktion
Adresse 2	CMD	keine Aktion	DATA oder CMD	keine Aktion	CMD	keine Aktion	CMD	keine Aktion
Adresse 3	CMD	keine Aktion	CMD	keine Aktion	DATA oder CMD	keine Aktion	CMD	keine Aktion
Adresse n	CMD	keine Aktion	CMD	keine Aktion	CMD	keine Aktion	DATA oder CMD	keine Aktion
Zeit	Bypass-Zeit	Wartezeit	Bypass-Zeit	Wartezeit	Bypass-Zeit	Wartezeit	Bypass-Zeit	Wartezeit

9.6 HF-Anwendungen – HF-Continuous-Busmodus nutzen

Im HF-Continuous-Busmodus kann der Schreib-Lese-Kopf max. 64 Byte lesen oder schreiben (siehe Tabelle Nutzdatenbereiche der HF-Datenträger).

Im Continuous Mode müssen die folgenden Parameter eingestellt werden:

- Datenträger-Typ
- Befehl im Continuous Mode
- Länge im Continuous Mode
- Startadresse für den Befehl im Continuous Mode
- Optional: Startadresse in den Prozess-Ausgangsdaten zum Aktivieren der Gruppierung
- ▶ Bei Lese- oder Schreibbefehl: Datenträger-Typ angeben. Automatische Erkennung ist nicht möglich.
- ▶ Befehl im Continuous Mode (CCM) auswählen: Möglich sind Inventory, Lesen, Datenträger-Info und Schreiben.
- ▶ Länge im Continuous Mode (LCM) eintragen: Länge der zu lesenden Daten in Bytes angeben. Die Länge muss ein Vielfaches der Blockgröße des verwendeten Datenträgers sein. Ungerade Bytes können nicht adressiert werden.
- Startadresse für den Befehl im Continuous Mode (ACM) angeben. Die Startadresse muss ein Vielfaches der Blockgröße des verwendeten Datenträgers sein. Die Blockgröße der Datenträger entnehmen Sie der untenstehenden Tabelle. Ungerade Bytes können nicht adressiert werden.
- ▶ Optional die Gruppierung über den Parameter Startadresse in den Prozess-Ausgangsdaten einstellen: Wert für den Parameter Startadresse auf 1 setzen. Wenn die Gruppierung aktiviert ist und noch ein UID oder User-Daten im FIFO-Speicher des Moduls abgelegt sind, werden ein UID oder dieselben User-Daten nach dem ersten Lesen nicht mehr als neuer Lesevorgang gespeichert. Bei nachfolgenden Lesevorgängen werden nur die Adresse des Schreib-Lese-Kopfs, der den Datenträger zuletzt gelesen hat, und die Anzahl der Lesevorgänge aktualisiert.
- ▶ Bei einem Schreibbefehl die zu schreibenden Daten in den Schreibdatenbereich eintragen.
- ▶ Befehl **Continuous Mode** ausführen.
- Der eingestellte Befehl wird bei allen aktiven Schreib-Lese-Köpfen vorgespannt und ausgeführt, sobald ein Datenträger im Feld ist.
- Beim Befehl Lesen und bei der Abfrage von UIDs werden die vom Schreib-Lese-Kopf empfangenen Daten zyklisch abgefragt und wie folgt im FIFO-Speicher des Interface abgelegt:

Тур	Name	Bedeutung
uint8_t	data[8]	uint8_t UID [8]
uint8_t	reserviert	
uint8_t	Adresse	Schreib-Lese-Kopf-Adresse
uint16_t		Anzahl Lesevorgänge (nur bei aktivierter Gruppierung)

▶ Befehl **Leerlauf** (0x0000) ausführen. Der Befehl **Leerlauf** beendet nicht den Continuous Mode.

Um Daten aus dem FIFO-Speicher des Interface an die Steuerung weiterzugeben, Befehl Puffer auslesen (Cont. Mode) (0x0011) ausführen. Neben den Lesedaten wird auch die Adresse des verwendeten Schreib-Lese-Kopfs übertragen. Die Länge der verfügbaren Daten im FIFO-Speicher wird in den Eingangsdaten unter Daten (Bytes) verfügbar (BYFI) angezeigt. Die Länge der Daten muss dabei konsistent sein. Beispiel: Wenn pro Datenträger UID, reserviertes Byte und Schreib-Lese-Kopf-Adresse in den FIFO-Speicher geschrieben werden, müssen mindestens 10 Byte Daten aus dem Puffer gelesen werden.

HINWEIS

Daten im FIFO-Speicher werden nicht überschrieben, bis sie an die Steuerung übertragen wurden. Neue Lesungen werden im FIFO-Speicher angefügt.

Um den Continuous Mode zu beenden, Befehl Continuous Mode beenden (0x0012) ausführen.

oder

► Um den Continuous Mode zu beenden und den FIFO-Speicher des Interface zu löschen, Befehl **Reset** (0x0800) senden.

HINWEIS

Die Daten müssen regelmäßig vom Gerät an die übergeordnete Ebene weitergegeben werden. Wenn der 16-KByte-Ringspeicher voll ist, können keine weiteren Daten gespeichert werden. Das Gerät gibt eine Fehlermeldung aus.

Nutzdatenbereiche der HF-Datenträger

Die jeweiligen Chip-Typen sind in den Datenblättern der Datenträger zu finden.

Chip-Typ	Nutzdatenbereich			Zugriff	Byte pro Block
	Erster Block	Letzter Block	Gesamtspeicher in Byte		
NXP SLIX2	0x00	0x4E	316	lesen/schreiben	4
NXP Icode SLIX	0x00	0x1B	112	lesen/schreiben	4
NXP Icode SLIX-S	0x00	0x27	160	lesen/schreiben	4
NXP Icode SLIX-L	0x00	0x07	32	lesen/schreiben	4
Fujitsu MB89R118 Fujitsu MB89R118B	0x00	0xF9	2000	lesen/schreiben	8
Fujitsu MB89R112	0x00	0xFF	8192	lesen/schreiben	32
TI Tag-it HF-I Plus	0x00	0x3F	256	lesen/schreiben	4
TI Tag-it HF-I	0x00	0x07	32	lesen/schreiben	4
Infineon SRF55V02P	0x00	0x37	224	lesen/schreiben	4
Infineon SRF55V10P	0x00	0xF7	992	lesen/schreiben	4
EM4233	0x00	0x33	208	lesen/schreiben	4
EM4233 SLIC	0x00	0x1F	128	lesen/schreiben	4

9.7 Möglichkeiten zur Befehlsausführung im HF-Busmodus

Um Befehle im HF-Busmodus abzufragen, bestehen drei Möglichkeiten.

- HF-Busmodus im Leerlauf nutzen
- HF-Busmodus mit beliebigem Befehl nutzen
- HF-Continuous-Busmodus mit Inventory, Lesen oder Schreiben nutzen

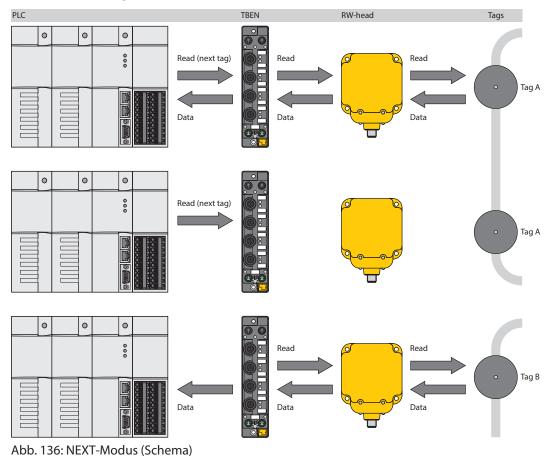
Die folgenden Tabellen beschreiben Vorteile der jeweiligen Anwendungen.

Anwendung	Funktionen	Hinweise
HF-Busmodus im Leerlauf nutzen Inventory und/ oder Lesen	 Kein Befehl durch die Steuerung erforderlich UID und/oder Daten werden mit der Schreib-Lese-Kopf-Adresse automatisch in den Eingangsdaten angezeigt. 	 Wenn die Zykluszeit der Steuerung länger ist als die Zeit, bis ein neuer Datenträger im Erfassungsbereich eines Schreib-Lese-Kopfs ist: Datenverlust möglich. Gruppierung von UIDs oder User-Daten nur über die Steuerung möglich Schreib-Lese-Köpfe sind nacheinander aktiv
HF-Busmodus mit beliebigem Befehl nutzen	 Befehle müssen einzeln an einen Schreib- Lese-Kopf geschickt werden. UID oder Daten werden in den Eingangs- daten angezeigt. 	 Nur für statische Applikationen nutzbar, weil nur ein Schreib-Lese-Kopf einen Befehl ausführen kann. Gruppierung von UIDs oder User-Daten nur über die Steuerung möglich Kein Überschreiben von Daten: Nur ein Schreib-Lese-Kopf führt den jeweiligen Befehl aus. Fragmentierung der Daten möglich (max. 128 Byte pro Fragment)
HF-Continuous- Busmodus mit Inventory, Lesen oder Schreiben nutzen	 Der Befehl muss einmalig durch die Steuerung aktiviert werden. Die Schreib-Lese-Köpfe führen den Befehl anschließend gleichzeitig und kontinuierlich aus. Die gelesenen Daten werden mit der Schreib-Lese-Kopf-Adresse im 16-kB-Ringspeicher des RFID-Moduls hinterlegt Der Befehl Puffer auslesen (Cont. Mode) überträgt die Daten an die Steuerung. 	 Die Buszykluszeit im Continuous Mode muss kürzer sein als die Zeit, bis ein neuer Datenträger im Erfassungsbereich des selben Schreib-Lese-Kopfs ist. Wenn ein Datenträger in den Erfassungsbereich eines anderen Schreib-Lese-Kopfs eintritt, hat dies keine Auswirkungen. Gruppierung im RFID-Interface möglich, solange die Daten noch nicht an die Steuerung gesendet wurden Alle Schreib-Lese-Köpfe werden aktiviert und speichern Daten (max. 64 Byte pro Schreib-Lese-Kopf.

9.8 NEXT-Modus nutzen

Der NEXT-Modus ist nur in HF-Singletag-Anwendungen verfügbar. Ein HF-Datenträger wird immer nur dann gelesen, beschrieben oder geschützt, wenn sich der UID vom UID des zuletzt gelesenen oder beschriebenen Datenträgers unterscheidet.

9.8.1 Beispiel: NEXT-Modus für einen Lesebefehl nutzen


- ✓ Voraussetzung: Datenträger A und Datenträger B haben einen unterschiedlichen UID.
- Lesebefehl in den Prozess-Ausgangsdaten setzen.
- ► NEXT-Modus setzen: In den Prozessausgangsdaten unter Länge UID/EPC den Wert -1 angeben.

Datenträger A befindet sich im Erfassungsbereich des Schreib-Lese-Kopfs. Die Steuerung sendet einen Lesebefehl im NEXT-Modus an das RFID-Interface.

Der Lesebefehl wird vom Interface an den Schreib-Lese-Kopf übertragen. Der Schreib-Lese-Kopf liest einmalig Daten von Datenträger A.

Die Steuerung sendet einen zweiten Lesebefehl im NEXT-Modus an das RFID-Interface. Der Lesebefehl wird vom Interface nicht an den Schreib-Lese-Kopf übertragen, solange sich Datenträger A im Erfassungsbereich des Schreib-Lese-Kopfs befindet.

Der Lesebefehl wird vom Interface an den Schreib-Lese-Kopf übertragen, wenn sich Datenträger B im Erfassungsbereich des Schreib-Lese-Kopfs befindet. Der Schreib-Lese-Kopf liest Daten von Datenträger B.

9.9 UHF-Passwortfunktion nutzen

Mit einem Access-Passwort kann ein Schreibschutz für EPC oder USER-Speicherbereich gesetzt werden. Wenn ein Kill-Passwort gesetzt wird, kann der UHF-Datenträger mit einem Kill-Befehl mechanisch zerstört werden. Das Access-Passwort und das Kill-Passwort können zusätzlich gegen Lese- oder Schreibzugriffe geschützt werden.

9.9.1 Access-Passwort setzen

Mit einem Access-Passwort kann ein temporärer oder ein permanenter Schreibschutz für EPC oder USER-Speicherbereich gesetzt werden.

Temporären Schreibschutz für EPC und USER-Speicherbereich setzen

- Access-Passwort mit folgenden Parametern auf den Datenträger schreiben:
 - Befehlscode 0x0102 (Datenträger-Passwort setzen)
 - Passwort: 4 Byte in den Ausgangsdaten
- Access-Passwort mit den folgenden Parametern in den UHF-Reader setzen:
 - Befehlscode 0x0100 (Schreib-Lese-Kopf-Passwort setzen)
 - Passwort: 4 Byte in den Ausgangsdaten
- ▶ Einzelne Speicherbereiche mit folgenden Parametern schützen:
 - Befehlscode 0x0103 (Datenträger-Schutz setzen)
 - Speicherbereich: EPC oder USER
- ► Access-Passwort vor Lesezugriff schützen:
 - Befehlscode 0x0105 (Permanente Sperre setzen (Lock))
 - Speicherbereich: Access

HINWEIS

Wenn bei Schreibversuchen ein falsches Access-Passwort genutzt wird, kann der entsprechende Bereich nicht beschrieben werden, da der Datenträger nicht auf den Schreibbefehl reagiert. Das Gerät gibt keine Fehlermeldung aus.

Permanenten Schreibschutz für EPC und USER-Speicherbereich setzen

- Access-Passwort mit folgenden Parametern auf den Datenträger schreiben:
 - Befehlscode 0x0102 (Datenträger-Passwort setzen)
 - Passwort: 4 Byte in den Ausgangsdaten
- Access-Passwort mit den folgenden Parametern in den UHF-Reader setzen:
 - Befehlscode 0x0100 (Schreib-Lese-Kopf-Passwort setzen)
 - Passwort: 4 Byte in den Ausgangsdaten
- ▶ EPC oder USER-Speicher mit folgenden Parametern permanent schützen:

HINWEIS

Nach dem Setzen des Befehls **Permanente Sperre setzen (Lock)** (0x0105) auf den EPC oder USER-Speicherbereich können die Daten nicht mehr verändert werden.

- Befehlscode 0x0105 (Permanente Sperre setzen (Lock))
- Speicherbereich: EPC oder USER
- Access-Passwort vor Lesezugriff schützen:
 - Befehlscode 0x0105 (Permanente Sperre setzen (Lock))
 - Speicherbereich: Access

9.9.2 Kill-Passwort setzen

Über den Befehl **Datenträger unwiderruflich deaktivieren (Kill)** wird der Datenträger unbenutzbar gemacht. Nach einem Kill-Befehl kann der Datenträger weder gelesen noch beschrieben werden. Ein Kill-Befehl kann nicht rückgängig gemacht werden. Um einen Kill-Befehl ausführen zu können, muss zuvor ein Kill-Passwort gesetzt werden.

- Kill-Passwort in den entsprechenden Speicherbereich des Datenträgers übertragen:
 - Passwort: Schreibdaten (0...3) mit 4 Byte
 - Befehlscode 0x0004 (Schreiben)
 - Speicherbereich: Kill-Passwort
- ► Datenträger unwiderruflich zerstören:
 - Befehlscode 0x0200 (Datenträger unwiderruflich deaktivieren (Kill))

HINWEIS

Der Datenträger kann mit einem Access-Passwort zusätzlich geschützt werden [

228], sodass ein Kill-Befehl nur mit gültigem Access-Passwort in Datenträger und Reader ausgeführt werden kann.

9.10 HF-Passwortfunktion nutzen

Mit einem Passwort kann ein Schreib- oder Leseschutz für den USER-Speicher gesetzt werden.

- ▶ Default-Passwort (0000) in den Schreib-Lese-Kopf setzen:
 - Befehlscode 0x0100 (Schreib-Lese-Kopf-Passwort setzen)
 - Passwort: 0000
- Passwort mit folgenden Parametern auf den Datenträger schreiben:
 - Befehlscode 0x0102 (Datenträger-Passwort setzen)
 - Passwort: 4 Byte in den Ausgangsdaten
- Passwort mit den folgenden Parametern in den Schreib-Lese-Kopf setzen:
 - Befehlscode 0x0100 (Schreib-Lese-Kopf-Passwort setzen)
 - Passwort: 4 Byte in den Ausgangsdaten
- ► Einzelne Pages des Speicherbereichs über Byte 0...7 der Schreibdaten auswählen und mit folgenden Parametern schützen:
 - Befehlscode 0x0103 (Datenträger-Schutz setzen)
 - Speicherbereich: USER

9.11 CODESYS-Funktionsbausteine nutzen

Zur vereinfachten Intergration in (bestehende) CODESYS-Programme stehen drei Funktionsbausteine zur Verfügung:

- FB_Compact
- FB_Extended
- FB_BusMode

Funktionsbaustein	Betriebsart
FB_Compact	HF Kompakt UHF Kompakt
FB_Extended	HF Erweitert UHF Erweitert
FB_BusMode	HF-Busmodus

Die Funktionsbausteine sind Bestandteil des CODESYS-Packages.

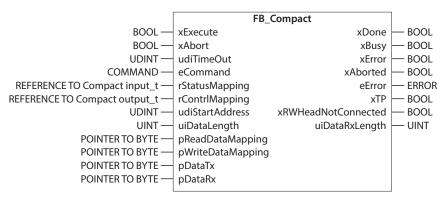


Abb. 137: Funktionsbaustein FB_Compact

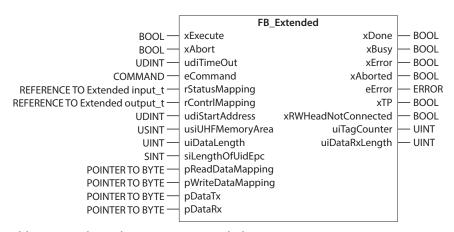


Abb. 138: Funktionsbaustein FB_Extended

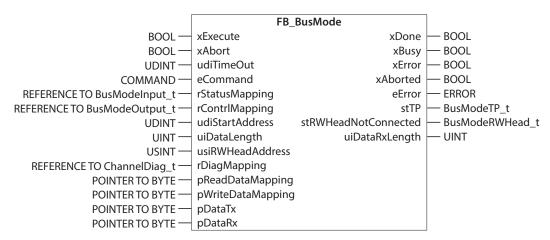


Abb. 139: Funktionsbaustein FB_BusMode

Funktionsbausteine – Eingangsvariablen

Benennung	Datentyp	Bedeutung
xExecute	BOOL	0 → 1 → 0: Befehl ausführen 1 → 0 → 1: Ausgänge zurücksetzen Die Ausgänge lassen sich nur zurücksetzen, wenn zuvor eine Aktion beendet oder vom An- wender abgebrochen wurde oder wenn ein Fehler aufgetreten ist.
xAbort	BOOL	0 → 1 → 0: Befehlsausführung abbrechen. Alle Ausgänge werden auf den Initialwert zurückgesetzt.
udiTimeOut	UDINT	Zeit in µS, nach der der Funktionsbaustein die Befehlsausführung automatisch beendet
eCommand	COMMAND	Befehlscode im Format hexadezimal, [▶ 107]
rStatusMapping	REFERENCE TO Compact Input_t oder Extended Input_t oder BusMode Input_t	Startadresse der Prozesseingangsdaten
rContrlMapping	REFERENCE TO Compact Out- put_t oder Extended Out- put_t oder BusMode Out- put_t	Startadresse der Prozessausgangsdaten
udiStartAddress	UDINT	Startadresse für den ausgewählten Befehl, z.B. Startadresse im Speicher des Datenträgers

Benenung Datentyp Bedeutung usiUHFMemoryArea USINT HF-Anwendungen:	_		- 1 .
■ Domain 05: User-Bereich des Datenträgers ■ andere: reserviert UHF-Anwendungen: ■ Domain 1: Kill-Passwort ■ Domain 1: EPC ■ Domain 3: User-Memory ■ Domain 3: User-Memory ■ Domain 3: PC (Größe des EPC) ■ andere: reserviert uiDataLength UINT Länge für den ausgewählten Befehl, z. B. Länge der Daten, die gelesen oder geschrieben werden sollen usiRWHeadAdress USINT Adresse des Schreib-Lese-Kopfs, der den Befehl ausführt siLengthOfUidEpc SINT Angabe der EPC- oder UID-Länge zur Adressierung eines bestimmten Datenträgers, der gelesen oder beschrieben werden soll. Der UID oder EPC muss in den Schreibdaten definiert werden. 0: Größe des EPC oder UID wird nicht überprüft -1: NEXT-Modus: Ein Datenträger wird immer nur dann gelesen, wenn sich der UID oder EPC vom UID oder EPC des zuletzt gelesenen oder beschriebenen Datenträgers unterscheidet. In HF-Anwendungen sind nur die Werte 0, -1 und 8 möglich. rDiagMapping REFERENCE TO ChannelDiag_t PReadDataMapping POINTER TO BYTE Startadresse in den Eingangsdaten (ARRAY[] OF BYTE) pDataTx POINTER TO BYTE Schreibdaten (ARRAY[] OF BYTE)	-		-
Domain 0: Kill_Passwort Domain 1: EPC Domain 3: User-Memory Domain 4: Access-Passwort Domain 5: PC (Größe des EPC) andere: reserviert uiDataLength UINT Länge für den ausgewählten Befehl, z. B. Länge der Daten, die gelesen oder geschrieben werden sollen usiRWHeadAdress USINT Adresse des Schreib-Lese-Kopfs, der den Befehl ausführt siLengthOfUidEpc SINT Angabe der EPC- oder UID-Länge zur Adressierung eines bestimmten Datenträgers, der gelesen oder beschrieben werden soll. Der UID oder EPC muss in den Schreibdaten definiert werden. 0: Größe des EPC oder UID wird nicht überprüft -1: NEXT-Modus: Ein Datenträger wird immer nur dann gelesen, wenn sich der UID oder EPC vom UID oder EPC town UID oder EPC des zuletzt gelesenen oder beschriebenen Datenträgers unterscheidet. In HF-Anwendungen sind nur die Werte 0, -1 und 8 möglich. rDiagMapping REFERENCE TO ChannelDiag_t PReadDataMapping POINTER TO BYTE Startadresse in den Eingangsdaten (ARRAY[] OF BYTE) pWriteDataMx POINTER TO BYTE Schreibdaten (ARRAY[] OF BYTE)	usi UHF Memory Area	USINT	Domain 05: User-Bereich des Daten- trägers
der Daten, die gelesen oder geschrieben werden sollen usiRWHeadAdress USINT Adresse des Schreib-Lese-Kopfs, der den Befehl ausführt siLengthOfUidEpc SINT Angabe der EPC- oder UID-Länge zur Adressierung eines bestimmten Datenträgers, der gelesen oder beschrieben werden soll. Der UID oder EPC muss in den Schreibdaten definiert werden. 0: Größe des EPC oder UID wird nicht überprüft -1: NEXT-Modus: Ein Datenträger wird immer nur dann gelesen, wenn sich der UID oder EPC vom UID oder EPC des zuletzt gelesenen oder beschriebenen Datenträgers unterscheidet. In HF-Anwendungen sind nur die Werte 0, -1 und 8 möglich. rDiagMapping REFERENCE TO ChannelDiag_t POINTER TO BYTE Startadresse in den Eingangsdaten (ARRAY[] OF BYTE) pDataTx POINTER TO BYTE Schreibdaten (ARRAY[] OF BYTE)			 Domain 0: Kill-Passwort Domain 1: EPC Domain 2: TID Domain 3: User-Memory Domain 4: Access-Passwort Domain 5: PC (Größe des EPC)
Befehl ausführt siLengthOfUidEpc SINT Angabe der EPC- oder UID-Länge zur Adressierung eines bestimmten Datenträgers, der gelesen oder beschrieben werden soll. Der UID oder EPC muss in den Schreibdaten definiert werden. 0: Größe des EPC oder UID wird nicht überprüft -1: NEXT-Modus: Ein Datenträger wird immer nur dann gelesen, wenn sich der UID oder EPC vom UID oder EPC des zuletzt gelesenen oder beschriebenen Datenträgers unterscheidet. In HF-Anwendungen sind nur die Werte 0, -1 und 8 möglich. rDiagMapping REFERENCE TO ChannelDiag_t PReadDataMapping POINTER TO BYTE Startadresse in den Eingangsdaten (ARRAY[] OF BYTE) pDataTx POINTER TO BYTE Schreibdaten (ARRAY[] OF BYTE)	uiDataLength	UINT	der Daten, die gelesen oder geschrieben
rung eines bestimmten Datenträgers, der gelesen oder beschrieben werden soll. Der UID oder EPC muss in den Schreibdaten definiert werden. 0: Größe des EPC oder UID wird nicht überprüft -1: NEXT-Modus: Ein Datenträger wird immer nur dann gelesen, wenn sich der UID oder EPC vom UID oder EPC des zuletzt gelesenen oder beschriebenen Datenträgers unterscheidet. In HF-Anwendungen sind nur die Werte 0, -1 und 8 möglich. rDiagMapping REFERENCE TO ChannelDiag_t PReadDataMapping POINTER TO BYTE Startadresse in den Eingangsdaten (ARRAY[] OF BYTE) POINTER TO BYTE Startadresse in den Ausgangsdaten (ARRAY[] OF BYTE) PDataTx POINTER TO BYTE Schreibdaten (ARRAY[] OF BYTE)	usiRWHeadAdress	USINT	
ChannelDiag_t pReadDataMapping POINTER TO BYTE Startadresse in den Eingangsdaten (ARRAY[] OF BYTE) pWriteDataMapping POINTER TO BYTE Startadresse in den Ausgangsdaten (ARRAY[] pDataTx POINTER TO BYTE Schreibdaten (ARRAY[] OF BYTE)		SINT	rung eines bestimmten Datenträgers, der gelesen oder beschrieben werden soll. Der UID oder EPC muss in den Schreibdaten definiert werden. 0: Größe des EPC oder UID wird nicht überprüft -1: NEXT-Modus: Ein Datenträger wird immer nur dann gelesen, wenn sich der UID oder EPC vom UID oder EPC des zuletzt gelesenen oder beschriebenen Datenträgers unterscheidet. In HF-Anwendungen sind nur die Werte 0, -1 und 8 möglich.
pWriteDataMapping POINTER TO BYTE Startadresse in den Ausgangsdaten (AR-RAY[] OF BYTE) pDataTx POINTER TO BYTE Schreibdaten (ARRAY[] OF BYTE)	rDiagMapping		RFID-Diagnosedaten
POINTER TO BYTE Schreibdaten (ARRAY[] OF BYTE)	pReadDataMapping	POINTER TO BYTE	
<u> </u>	pWriteDataMapping	POINTER TO BYTE	
pDataRx POINTER TO BYTE Lesedaten (ARRAY [] OF BYTE)	pDataTx	POINTER TO BYTE	Schreibdaten (ARRAY[] OF BYTE)
	pDataRx	POINTER TO BYTE	Lesedaten (ARRAY [] OF BYTE)

Funktions bausteine-Ausgangs variablen

Benennung	Datentyp	Bedeutung
xDone	BOOL	1: Befehl erfolgreich ausgeführt 0: Befehl nicht ausgeführt
xBusy	BOOL	1: Befehl aktiv, aber noch nicht abgeschlossen; System wartet auf Ausführung, z.B. auf Daten- träger im Erfassungsbereich 0: kein Befehl aktiv
xError	BOOL	1: Fehler erkannt, Befehlsausführung abgebro- chen 0: kein Fehler erkannt

Benennung	Datentyp	Bedeutung
xAborted	BOOL	1: Befehlsausführung durch Anwender abgebrochen 0: Befehlsausführung nicht abgebrochen
eError	ERROR	Fehlercode, [▶ 251]
хТР	BOOL	1: Datenträger im Erfassungsbereich 0: kein Datenträger im Erfassungsbereich
stTP	BusModeTP_t	1: Datenträger im Erfassungsbereich 0: kein Datenträger im Erfassungsbereich Jedes Bit entspricht einem Datenträger an einem einzelnen Schreib-Lese-Kopf (max. 32 Datenträger gleichzeitig).
xRWHeadNotConnected	BOOL	1: kein Schreib-Lese-Kopf angeschlossen 0: Schreib-Lese-Kopf angeschlossen
stRWHeadNotConnected	BusModeR- WHead_t	1: kein Schreib-Lese-Kopf angeschlossen 0: Schreib-Lese-Kopf angeschlossen Jedes Bit entspricht einem Schreib-Lese-Kopf (max. 32 Schreib-Lese-Köpfe gleichzeitig).
uiTagCounter	UINT	Zeigt die Anzahl der erkannten Datenträger an. In HF-Multitag-Anwendungen und in UHF-Anwendungen werden Datenträger nur bei einem Inventory-Befehl gezählt. In HF-Singletag-Anwendungen werden alle vom Schreib-Lese-Kopf erkannten Datenträger gezählt. Der Datenträger-Zähler wird nach folgenden Befehlen zurückgesetzt: Inventory (Ausnahme: Singletag-Anwendungen) Continuous Mode Continuous Presence Sensing Mode Reset
uiDataRxLength	UINT	Länge für den ausgewählten Befehl, z.B. Länge der Daten, die gelesen oder geschrieben wurden
siLengthOfUidEpc	SINT	Angabe der EPC- oder UID-Länge zur Adressierung eines bestimmten Datenträgers, der gelesen oder beschrieben werden soll. Der UID oder EPC muss in den Schreibdaten definiert werden. 0: Größe des EPC oder UID wird nicht überprüft -1: NEXT-Modus: Ein Datenträger wird immer nur dann gelesen, wenn sich der UID oder EPC vom UID oder EPC des zuletzt gelesenen oder beschriebenen Datenträgers unterscheidet. In HF-Anwendungen sind nur die Werte 0, -1 und 8 möglich.
pReadDataMapping	POINTER TO BYTE	Startadresse in den Eingangsdaten (ARRAY[] OF BYTE)
pWriteDataMapping	POINTER TO BYTE	Startadresse in den Ausgangsdaten (AR-RAY[] OF BYTE)
pDataTx	POINTER TO BYTE	Schreibdaten (ARRAY[] OF BYTE)

Beispiel: Funktionsbaustein einbinden

Um den Funktionsbaustein ausführen zu können, muss die Package-Datei für RFID-Interfaces installiert werden.

▶ Package-Manager in CODESYS aufrufen: **Tools** → **Package Manager** klicken.

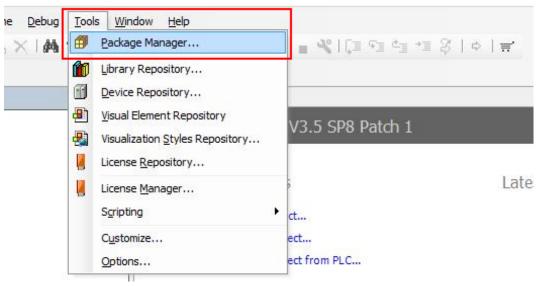


Abb. 140: Package-Manager öffnen

▶ Package-Datei für RFID-Interfaces auswählen und installieren.

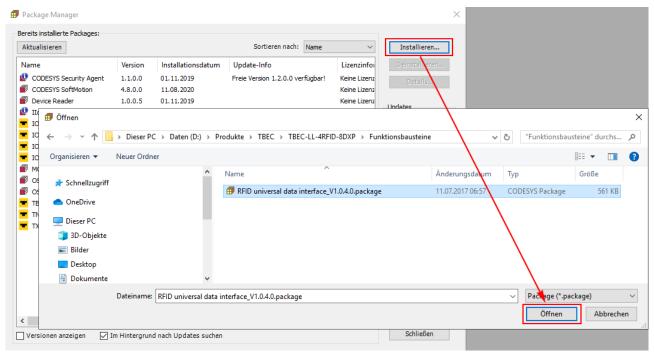


Abb. 141: Package-Datei installieren

Nach erfolgreicher Installation wird die Package-Datei wie folgt im Package-Manager angezeigt:

Abb. 142: Anzeige der Package-Datei im Package-Manager

- ► CODESYS-Bibliothek hinzufügen: **Bibliothek hinzufügen** → **Turck** → **Application** → **RFID** → **RFID universal data interface** auswählen.
- **OK** klicken, um die Bibliothek dem Projekt hinzuzufügen.

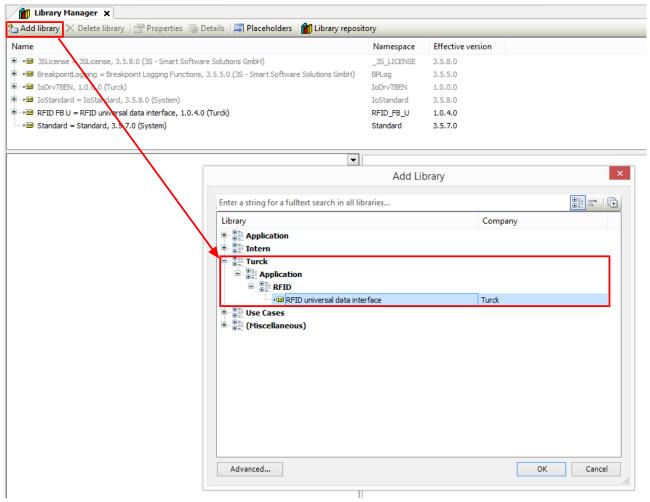


Abb. 143: CODESYS-Bibliothek installieren

- Programm erstellen, in dem der Funktionsbaustein aufgerufen werden kann.
- **Box** aus der CODESYS-ToolBox zum Projekt hinzufügen.
- ► Funktionsbaustein FB_BusMode, FB_Compact oder FB_Extended hinzufügen.

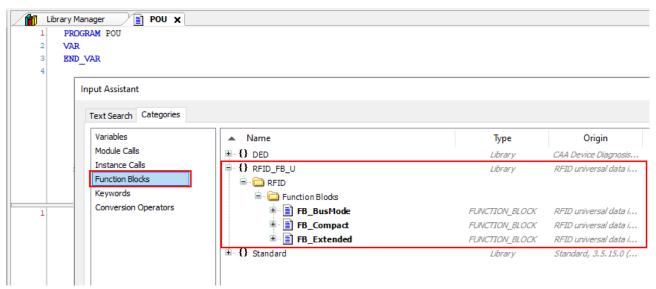


Abb. 144: CODESYS-Funktionsbaustein aufrufen

Beispiel: Funktionsbaustein FB_Extended beschalten (Ch0, 128 Byte lesen oder schreiben)

- ► Erforderliche Instanzen für den Funktionsbaustein erstellen: Ein- und Ausgänge direkt auf die Adressen der entsprechenden Modulregister mappen.
- ► Funktionsbaustein beschalten.

In diesem Beispiel können von Ch0 über den Funktionsbaustein 128 Byte gelesen oder geschrieben werden. Die Ein- und Ausgangsdaten und die Schreib- bzw. Lesedaten sind im Beispiel wie folgt belegt:

Byte	Bedeutung
IB100	Startadresse der Prozesseingangsdaten
QB100	Startadresse der Prozessausgangsdaten
IB116	Adresse der Lesedaten als Array
QB116	Adresse der Schreibdaten als Array

```
PRG_RFID_CH0 x
 1
     PROGRAM PRG RFID CHO
 2
 3
              // initialise object of function block
 4
              fb Ch0 RFID U
                                          : FB Extended;
 5
             fb_Ch0_RFID_Error
                                         : fbRfidErrCodeMessage;
 6
 7
              //create arrays for read/write data
 8
              abyCh0_ReadData : ARRAY[0..127] OF BYTE;
 9
              abyCh0_WriteData
                                          : ARRAY[0..127] OF BYTE;
10
11
             //create mapping to the I/O data of the corresponding channel
12
             stCh0_ExtendedInputMapping AT %IB100 : ExtendedInput_t;
             stCh0_ExtendedOutputMapping AT %QB100 : ExtendedOutput_t;
abyCh0_RxDataMapping AT %IB116 : ARRAY[0..127] OF BYTE;
13
14
15
             abyCh0_TxDataMapping
                                             AT %QB116 : ARRAY[0..127] OF BYTE;
16
17
     END VAR
18
```

Abb. 145: Funktionsbaustein FB_Extended beschalten (Beispiel: Ch0, 128 Byte lesen oder schreiben)

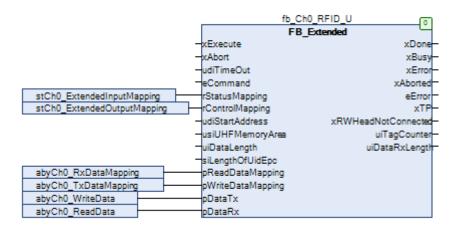


Abb. 146: Funktionsbaustein FB_Extended – Übersicht der Ein-und Ausgänge

HINWEIS

Bei der Verwendung von Funktionsbausteinen wird der UID im Leerlauf nicht automatisch angezeigt. Zwischen zwei gleichen Befehlen ist ein Zurücksetzen des Gerätes in den Leerlauf-Modus nicht erforderlich.

Die Funktionsbausteine FB_BusMode und FB_Compact müssen in ähnlicher Weise beschaltet werden wie der Funktionsbaustein FB_Extended. Weitere Informationen sind in der Dokumentation im CODESYS-Package zu finden.

9.12 Funktionsbausteine für Siemens TIA-Portal nutzen

Zur vereinfachten Intergration in (bestehende) Programme im TIA-Portal stehen drei Funktionsbausteine zur Verfügung:

- RFID_COMPACT_Mode
- RFID_EXTENDED_Mode
- RFID_HF_Busmode

Funktionsbaustein	Betriebsart
RFID_COMPACT_Mode	HF Kompakt UHF Kompakt
RFID_EXTENDED_Mode	HF Erweitert UHF Erweitert
RFID_HF_Busmode	HF-Busmodus

Die Funktionsbausteine stehen als Bestandteile von Beispiel-Programmen unter www.turck.com als kostenfreier Download zur Verfügung. Die Beispielprogramme sind erhältlich für TIA V15 und TIA V16 und die Siemens-Steuerungen S7-1200 und S7-1500.

Der gewünschte Befehl kann über die Funktionen FC10 und FC20 ausgewählt werden. Weitere Parameter sind an den Funktionsbausteinen FB10 (Kompakt), FB11 (Erweitert) und FB12 (HF-Busmodus) einstellbar.

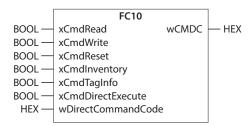


Abb. 147: Funktionsbaustein FC10

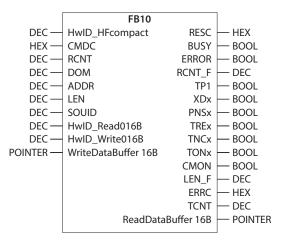


Abb. 148: Funktionsbaustein FB10

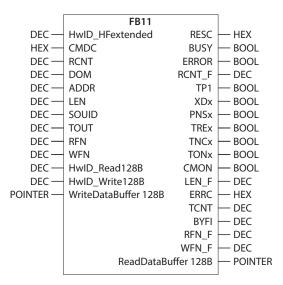


Abb. 149: Funktionsbaustein FB11

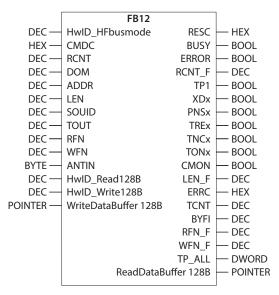


Abb. 150: Funktionsbaustein FB12

Eingangsvariablen – FC10 und FC11

Benennung	Datentyp	Bedeutung
xCmdRead	BOOL	$0 \rightarrow 1 \rightarrow 0$: Lesebefehl ausführen
xCmdWrite	BOOL	$0 \rightarrow 1 \rightarrow 0$: Schreibbefehl ausführen
xCmdReset	BOOL	$0 \rightarrow 1 \rightarrow 0$: Befehl zurücksetzen
xCmdInventory	BOOL	$0 \rightarrow 1 \rightarrow 0$: Inventory-Befehl ausführen
xCmdTagInfo	BOOL	0 → 1 → 0: Befehl Datenträger-Info ausführen
xCmdDirectExecute	BOOL	$0 \rightarrow 1 \rightarrow 0$: direkten Befehl ausführen
wDirectCommandCode	HEX	Befehlscode des direkten Befehls

Eingangsvariablen – FB10, FB11 und FB12

Benennung	Datentyp	Bedeutung
HwlD_HFcompact HwlD_HFextended HwlD_HFbusmode	DEC	Hardware-Identifier des Moduls
CMDC	HEX	Befehlscode, siehe Beschreibung der Ausgangsdaten, [> 103]
RCNT	DEC	Schleifenzähler für schnelle Bearbeitung, siehe Beschreibung der Ausgangsdaten, [> 103]
DOM	DEC	Speicherbereich (nur bei UHF-Anwendungen nutzbar), siehe Beschreibung der Ausgangs- daten, [> 103]
ADDR	DEC	Startadresse in Byte, siehe Beschreibung der Ausgangsdaten, [▶ 103]
LEN	DEC	Länge in Byte, siehe Beschreibung der Ausgangsdaten, [▶ 103]
SOUID	DEC	Länge UID/EPC in Byte, siehe Beschreibung der Ausgangsdaten, [▶ 103]
TOUT	DEC	Time-out, siehe Beschreibung der Ausgangsdaten, [▶ 103]
RFN	DEC	Lese-Fragment-Nr., siehe Beschreibung der Ausgangsdaten, [> 103]
WFN	DEC	Schreib-Fragment-Nr., siehe Beschreibung der Ausgangsdaten, [▶ 103]
ANTIN (RFID_HF_Busmode)	BYTE	Schreib-Lese-Kopf-Adresse des anzusprechenden Kopfes, [▶ 103]
HwID_Read016B (RFID_COMPACT_Mode) HwID_Read128B (RFID_EXTENDED_Mode) (RFID_HF_Busmode)	DEC	Hardware-Identifier für Lesedaten
HwID_Write016B (RFID_COMPACT_Mode) HwID_Write128B (RFID_EXTENDED_Mode) (RFID_HF_Busmode)	DEC	Hardware-Identifier für Schreibdaten
WriteDataBuffer16B (RFID_COMPACT_Mode) WriteDataBuffer128B (RFID_EXTENDED_Mode) (RFID_HF_Busmode)	POINTER	Schreibdaten

Ausgangsvariablen – FB10 und FB11

Benennung	Datentyp	Bedeutung
RESC	HEX	Antwortcode, siehe Beschreibung der Eingangsdaten, [> 98]
BUSY	BOOL	Status der Befehlsausführung, siehe Beschreibung der Eingangsdaten, [> 98]
ERROR	BOOL	Fehler, siehe Beschreibung der Eingangsdaten, [> 98]
RCNT_F	DEC	Schleifenzähler für schnelle Bearbeitung, siehe Beschreibung der Eingangsdaten, [> 98]
TP1	BOOL	Datenträger vorhanden, siehe Beschreibung der Eingangsdaten, [▶ 98]
XDx	BOOL	HF-Schreib-Lese-Kopf an Adresse x verstimmt, siehe Beschreibung der Eingangsdaten, [> 98]
PNSx	BOOL	Parameter vom Schreib-Lese- Kopf an Adresse x nicht unterstützt, siehe Beschreibung der Eingangsdaten, [98]
TREx	BOOL	Schreib-Lese-Kopf an Adresse x meldet Fehler, siehe Beschreibung der Eingangsdaten, [> 98]
TNCx	BOOL	Erwarteter Schreib-Lese-Kopf mit Adresse x nicht verbunden, siehe Beschreibung der Eingangsdaten, [> 98]
TONx	BOOL	HF-Schreib-Lese-Kopf eingeschaltet, siehe Beschreibung der Eingangsdaten, [▶ 98]
CMON	BOOL	Continuous (Presence Sensing Mode) aktiv, siehe Beschreibung der Eingangsdaten, [▶ 98]
LEN_F	DEC	Länge, siehe Beschreibung der Eingangsdaten, [▶ 98]
ERRC	HEX	Fehlercode, siehe Beschreibung der Eingangsdaten, [> 98]
TCNT	DEC	Datenträger-Zähler, siehe Beschreibung der Eingangsdaten, [> 98]
BYFI (RFID_EXTENDED_Mode)	DEC	Daten (Bytes) verfügbar, siehe Beschreibung der Eingangsdaten, [▶ 98]
RFN_F (RFID_EXTENDED_Mode)	DEC	Lese-Fragment-Nr., siehe Beschreibung der Eingangsdaten, [> 98]
WFN_F (RFID_EXTENDED_Mode)	DEC	Schreib-Fragment-Nr., siehe Beschreibung der Eingangsdaten, [> 98]
TP_ALL (RFID_HF_Busmode)	DWORD	Datenträger im Erfassungsbereich des angeschlossenen Schreib-Lese-Kopfs, [98]
ReadDataBuffer 16B (RFID_COMPACT_Mode) ReadDataBuffer 128B (RFID_EXTENDED_Mode) (RFID_HF_Busmode)	DEC	Lesedaten

9.13 Inventory-Befehl und Continuous (Presence Sensing) Mode nutzen

Inventory-Befehl und der Continuous (Presence Sensing) Mode unterscheiden sich hinsichtlich der Datenübertragung an die SPS. Der Continuous Mode ist für schnelle Applikationen geeignet, in denen ein Befehl (z. B. Lesen oder Schreiben) wiederholt ausgeführt werden soll. Eine wiederholte Ausführung desselben Befehls durch die Steuerung ist nicht erforderlich.

Im Folgenden sind die wichtigsten Unterschiede zwischen einem Inventory-Befehl und dem Continuous Mode aufgelistet:

Inventory	Continuous Mode	Continuous Presence Sensing Mode
getriggertes Lesen von UIDs oder EPCs	 wiederholtes Lesen von UIDs oder EPCs automatische Wiederho- lung desselben Befehls (z. B. Inventory, Lesen, Schreiben) 	 UHF-Reader schaltet sich ein, sobald ein Datenträger erkannt wird wiederholtes Lesen von UIDs oder EPCs automatische Wiederholung desselben Befehls (z. B. Inventory, Lesen, Schreiben)
Daten werden nach Beenden des Befehls in den Lesedaten angezeigt.	Daten müssen über separaten Befehl aus dem Speicher des Interface ausgelesen werden.	Daten müssen über separaten Befehl aus dem Speicher des Interface ausgelesen werden.
Gruppierung von EPCs möglich	Gruppierung von EPCs möglich	Gruppierung von EPCs möglich
keine Pufferung am Schreib- Lese-Gerät	keine Pufferung am Schreib- Lese-Gerät	keine Pufferung am Schreib- Lese-Gerät
Befehl beenden:	Befehl beenden:	Befehl beenden:
1. Time-out	1. Time-out	1. Time-out
automatisch nach Befehlsausführung	 Befehl Continuous (Pre- sence Sensing) Mode be- enden oder Reset 	 Befehl Continuous (Pre- sence Sensing) Mode be- enden oder Reset

9.14 LED-Anzeigen

Das Gerät verfügt über folgende LED-Anzeigen:

- Versorgungsspannung
- Sammel- und Busfehler
- Status
- Diagnose

LED PWR	Bedeutung
aus	keine Spannung oder Unterspannung an V1
grün	Spannung an V1 bzw. an V1 und V2 ok
rot	keine Spannung oder Unterspannung an V2

LED BUS	Bedeutung
aus	keine Spannung vorhanden
grün	Verbindung zu einem Master aktiv
blinkt 3 × grün in 2 s	ARGEE aktiv
blinkt grün (1 Hz)	Gerät betriebsbereit
rot	IP-Adresskonflikt, Restore-Modus aktiv, F_Reset aktiv oder Modbus- Verbindungs-Time-out
blinkt rot	Wink-Kommando aktiv
rot/grün (1 Hz)	Autonegotiation und/oder Warten auf IP-Adresszuweisung in DHCP-oder BootP-Modus

LED ERR	Bedeutung
aus	keine Spannung vorhanden
grün	keine Diagnose
rot	Diagnose liegt vor

LEDs ETH1 und ETH2	Bedeutung
aus	keine Ethernet-Verbindung
grün	Ethernet-Verbindung hergestellt, 100 Mbit/s
blinkt grün	Datentransfer, 100 Mbit/s
gelb	Ethernet-Verbindung hergestellt, 10 Mbit/s
blinkt gelb	Datentransfer, 10 Mbit/s

Bedeutung
Schreib-Lese-Gerät aus
Schreib-Lese-Gerät ein
BUSY (Befehl aktiv)
Interface-Speicher voll
Fehler im Dateninterface

LEDs TP0 und TP1	Bedeutung	
aus	kein Datenträger im Erfassungbereich	
grün	Datenträger im Erfassungbereich	
blinkt grün	Datenträger im Erfassungbereich, Befehl wird bearbeitet	
blinkt (1 Hz) rot/grün	Verbindung mit DTM. Keine Verbindung zur Steuerung aktiv.	
rot	Diagnose liegt vor	

RFID-Kanal-LEDs	Bedeutung
TP und CMD blin- ken gleichzeitig	Überlast der Hilfsspannung
TP und CMD blin- ken abwechselnd	Parameter-Fehler

DXP-Kanal-LEDs	Bedeutung (Eingang)	Bedeutung (Ausgang)
aus	kein Eingangssignal	Ausgang nicht aktiv
grün	Eingangssignal liegt an	Ausgang aktiv (max. 0,5 A)
rot	_	Aktuator-Überlast
blinkt rot (1 Hz)	Überlast der Hilfsspannung	

blinkt weiß (nur DXP7) Wink-Kommando aktiv

9.15 Software-Diagnosemeldungen

9.15.1 Diagnosemeldungen – Gateway-Funktionen

Byte-Nr.	Bit								
	7	6	5	4	3	2	1	0	
0		FCE				СОМ	V1		
1	V2						ARGEE	DIAG	

Bedeutung der Diagnose-Bits

Bezeichnung	Bedeutung		
V2	Unterspannung V2		
ARGEE	ARGEE-Programm aktiv		
DIAG	Moduldiagnose liegt an		
FCE	DTM im Force Mode aktiv		
COM	Interner Fehler		
V1	Unterspannung V1		

9.15.2 Diagnosemeldungen – RFID-Kanäle

Byte-Nr.	Bit							
	7	6	5	4	3	2	1	0
0	VAUX	PRMER	DTM	FIFO				
1	reserviert							
2	reserviert	reserviert						
3	reserviert	reserviert						
4	TNC1	TRE1	PNS1	XD1				
5	TNC2	TRE2	PNS2	XD2				
6	TNC3	TRE3	PNS3	XD3				
35	TNC32	TRE32	PNS32	XD32				

Bedeutung der Diagnose-Bits

Bezeichnung	Bedeutung			
VAUX	Überspannung VAUX			
PRMER	Parametrierungsfehler			
DTM	Konfiguration über DTM aktiv			
FIFO	Puffer voll			
TNC	Erwarteter Schreib-Lese-Kopf nicht verbunden (funktioniert nur im Busmodus oder bei aktiviertem Parameter HF: Heartbeat Schreib-Lese-Kopf)			
TRE	Schreib-Lese-Kopf meldet Fehler			
PNS	Parameter vom Schreib-Lese-Kopf nicht unterstützt			
XD	HF-Schreib-Lese-Kopf verstimmt			

9.15.3 Diagnosemeldungen – digitale Kanäle

Byte-Nr.	Bit								
	7	6	5	4	3	2	1	0	
0					VAUX	VAUX			
1	ERR7	ERR6	ERR5	ERR4					

Bedeutung der Diagnose-Bits

Bezeichnung	Bedeutung
VAUX	Überspannung VAUX
ERR	Fehler an Kanal x

9.15.4 Diagnosemeldungen – Modulstatus

Byte-Nr.	Bit								
	7	6	5	4	3	2	1	0	
0	V2						ARGEE	DIAG	
1		FCE				COM	V1		

Bedeutung der Diagnose-Bits

Bezeichnung	Bedeutung
V2	Unterspannung V2
ARGEE	ARGEE-Programm aktiv
DIAG	Moduldiagnose liegt an
FCE	DTM im Force Mode aktiv
COM Interner Fehler	
V1	Unterspannung V1

9.16 Beispiel: Diagnosen über die Steuerungssoftware aktivieren

Das folgende Beispiel beschreibt das Aktivieren von Diagnosemeldungen mit CODESYS 3 in PROFINET.

- ▶ Das Gerät in ein bestehendes Projekt einfügen und mit der Steuerung verbinden (hier: HMI-Bedienterminal Turck TX510-P3CV01).
- Rechtsklick auf einen leeren Steckplatz ausführen.
- ► Gerät einstecken anklicken.

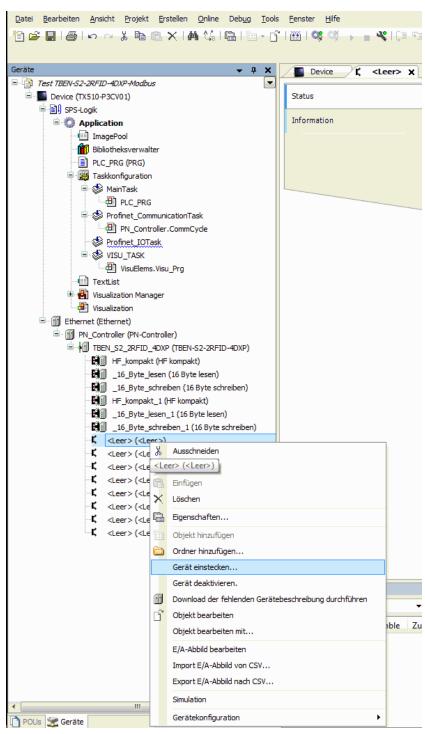


Abb. 151: Leeren Steckplatz für Diagnosen auswählen

▶ **RFID-Diagnosen** anklicken.

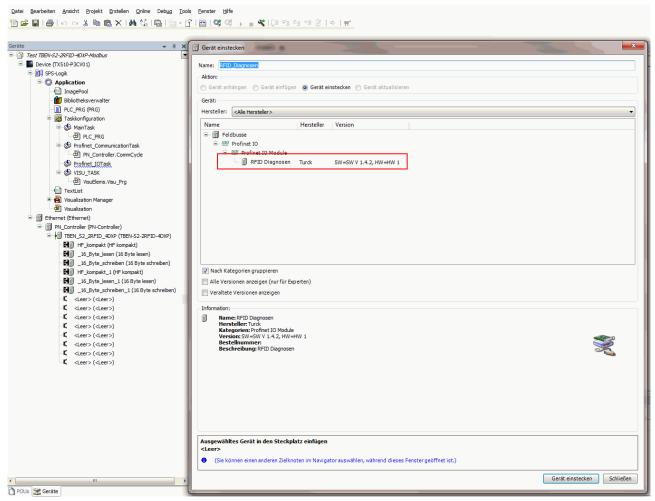
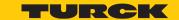



Abb. 152: RFID-Diagnosen auswählen

- ► Fenster nicht schließen.
- Nächsten freien Steckplatz auswählen.
- ▶ **DXP-Diagnosen** auswählen und mit **Gerät einstecken** bestätigen.

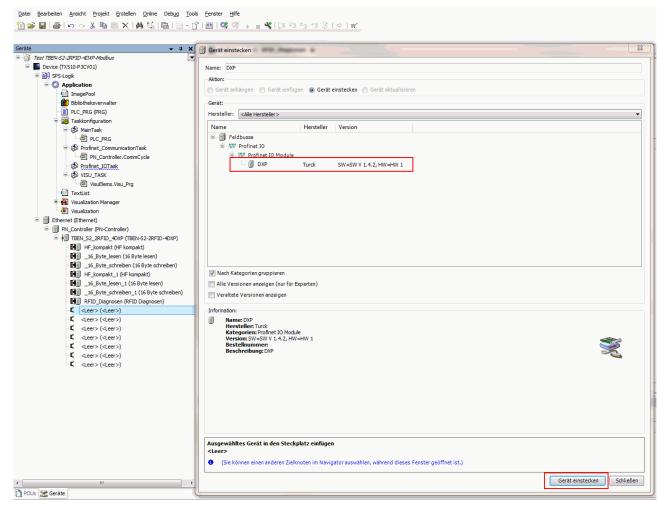


Abb. 153: DXP-Diagnosen auswählen

Die Diagnosen können über das Steuerungsprogramm ausgelesen werden.

9.17 Fehlercodes auslesen

Die Fehlercodes sind Bestandteil der Prozess-Eingangsdaten.

Fehlercode (hex.)	Fehlercode (dez.)	Bedeutung
0x8000	32768	Kanal nicht aktiv
0x8001	32769	Schreib-Lese-Kopf nicht verbunden
0x8002	32770	Speicher voll
0x8003	32771	Blockgröße des Datenträgers nicht unterstützt
0x8004	32772	Länge überschreitet Größe des Lesefragments
0x8005	32773	Länge überschreitet Größe des Schreibfragments
0x8006	37774	Schreib-Lese-Kopf unterstützt HF-Busmodus nicht
0x8007	32775	Bei Adressvergabe darf nur ein Schreib-Lese-Kopf angeschlossen sein.
0x8008	32776	Fragmentierung muss mit Schreib-Fragment-Nr. 1 beginnen
0x8009	32777	Fragmentierung unvollständig. Schreib-Fragment-Nr. > 0 erwartet
0x8100	33024	Parameter undefiniert
0x8101	33025	Parameter Betriebsart außerhalb des erlaubten Bereichs
0x8102	33026	Parameter Datenträger-Typ außerhalb des erlaubten Bereichs
0x8103	33027	Parameter Betriebsart im Continuous Mode außerhalb des erlaubten Bereichs
0x8104	33028	Parameter Länge im Continuous Mode außerhalb des erlaubten Bereichs
0x8105	33029	Größe des Schreibfragments außerhalb des erlaubten Bereichs
0x8106	33030	Größe des Lesefragments außerhalb des erlaubten Bereichs
0x8107	33031	Parameter Überbrückungszeit außerhalb des erlaubten Bereichs
0x8108	33032	Parameter Adresse im Continuous Mode außerhalb des erlaubten Bereichs
0x8200	33280	Befehlscode unbekannt
0x8201	33281	Befehl nicht unterstützt
0x8202	33282	Befehl in HF-Anwendungen nicht unterstützt
0x8203	33283	Befehl in UHF-Anwendungen nicht unterstützt
0x8204	33284	Befehl für Multitag-Anwendung mit automatischer Datenträger-Erken- nung nicht unterstützt
0x8205	33285	Befehl für Anwendungen mit automatischer Datenträger-Erkennung nicht unterstützt
0x8206	33286	Befehl nur für Anwendungen mit automatischer Datenträger-Erkennung unterstützt
0x8207	33287	Befehl für Multitag-Anwendung nicht unterstützt
0x8208	33288	Befehl im HF-Busmodus nicht unterstützt
0x8209	33289	Länge außerhalb des erlaubten Bereichs
0x820A	33290	Adresse außerhalb des erlaubten Bereichs
0x820B	33291	Länge und Adresse außerhalb des erlaubten Bereichs
0x820C	33292	kein Datenträger gefunden
0x820D	33293	Time-out
0x820E	33294	Next-Kommando im Multitag-Modus nicht unterstützt

Fehlercode (hex.)	Fehlercode (dez.)	Bedeutung	
0x820F	33295	Länge des UID außerhalb des erlaubten Bereichs	
0x8210	33296	Länge außerhalb der Datenträger-Spezifikation	
0x8211	33297	Adresse außerhalb der Datenträger-Spezifikation	
0x8212	33298	Länge und Adresse außerhalb der Datenträger-Spezifikation	
0x8213	33299	Speicherbereich des Datenträgers außerhalb des erlaubten Bereichs	
0x8214	33300	Schreib-Lese-Kopf-Adresse außerhalb des erlaubten Bereichs	
0x8215	33301	Wert für Time-out außerhalb des erlaubten Bereichs	
0x8216	33302	Befehl nur im HF-Busmodus möglich	
0x8217	33303	HF-Schreib-Lese-Kopf-Adresse ungültig	
0x8300	33536	Befehl Continuous Mode nicht aktiviert	
0x8301	33537	Gruppierung in HF-Anwendungen nicht unterstützt	
0x8302	33538	Gruppierung bei Lesebefehlen nicht unterstützt	
0x8304	33540	Gruppierung bei Schreibbefehlen nicht unterstützt	
0x8305	33541	HF: Länge im Continuous Mode verletzt die Blockgrenzen	
0x8306	33542	HF: Adresse im Continuous Mode verletzt die Blockgrenzen	
0x8307	33543	HF: Länge im Continuous Mode außerhalb des erlaubten Bereichs	
0x0801	2049	Schreib- oder Lesefehler	
0x2000	8192	Kill-Befehl nicht erfolgreich	
0x2200	8704	automatisches Tuning aktiv	
0x2201	8705	automatisches Tuning fehlgeschlagen	
0x2202	8706	Schreib-Lese-Kopf verstimmt	
0x2500	9472	Passwort-Funktion vom Datenträger nicht unterstützt	
0x2501	9473	Passwort-Funktion vom Schreib-Lese-Kopf nicht unterstützt	
0x2502	9474	Bitmuster für Datenträger-Schutz nicht unterstützt	
0x2900	10496	Adresse außerhalb der Blockgrenzen	
0x2901	10497	Länge außerhalb der Blockgrenzen	
0xC000	49152	interner Fehler (Antwort des Schreib-Lese-Kopfs zu kurz)	
0xC001	49153	Befehl nicht von Schreib-Lese-Kopf-Version unterstützt	
0xB0	45	HF-Schreib-Lese-Kopf meldet Fehler	
0xB048	45128	Fehler beim Einschalten des HF-Schreib-Lese-Kopfs	
0xB049	45129	Fehler beim Ausschalten des HF-Schreib-Lese-Kopfs	
0xB060	45152	Fehler bei der erweiterten Parametrierung des HF-Schreib-Lese-Kopfs	
0xB061	45153	Fehler bei der Parametrierung des HF-Schreib-Lese-Kopfs	
0xB062	45154	Schreib-Lese-Kopf-Fehler bei der Ausführung eines Inventory-Befehls	
0xB067	45159	Schreib-Lese-Kopf-Fehler bei der Ausführung eines Lock-Block-Befehls	
0xB068	45160	Schreib-Lese-Kopf-Fehler bei der Ausführung eines Read-Multiple-Block Befehls	

Fehlercode (hex.)	Fehlercode (dez.)	Bedeutung	
0xB069	45161	Schreib-Lese-Kopf-Fehler bei der Ausführung eines Write-Multiple-Blocks- Befehls	
0xB06A	45162	Fehler beim Auslesen der Systeminformationen	
0xB06B	45163	Fehler beim Auslesen des Schutzstatus der Datenträger	
0xB0AD	45229	Fehler beim Setzen der Schreib-Lese-Kopf-Adresse	
0xB0BD	45245	Fehler beim Setzen der Übertragungsrate	
0xB0DA	45274	Fehler bei der Funktion "Datenträger im Erfassungsbereich"	
0xB0E0	45280	Fehler beim Auslesen der Schreib-Lese-Kopf-Version	
0xB0E1	45281	Fehler beim Auslesen der erweiterten Schreib-Lese-Kopf-Version	
0xB0F1	45297	Fehler beim automatischen Schreib-Lese-Kopf-Tuning	
0xB0F8	45304	Fehler beim Zurücksetzen eines Kommandos im Continuous Mode	
0xB0FA	45306	Fehler bei der Ausgabe des Response-Codes	
0xB0FF	45311	Fehler beim Zurücksetzen des Schreib-Lese-Kopfs	
0xB0B3	45235	Fehler beim Setzen des Datenträger-Passworts	
0xB0B6	45238	Fehler beim Setzen des Schreib- oder Leseschutzes	
0xB0B8	45240	Fehler beim Auslesen des Schutzstatus eines Speicherbereichs auf dem Datenträger	
0xB0C3	45251	Fehler beim Setzen des Passworts in den Schreib-Lese-Kopf	
0xD0	53	UHF-Schreib-Lese-Kopf meldet Fehler	
0xD001	53249	Fehler beim Zurücksetzen des UHF-Schreib-Lese-Kopfs	
0xD002	53250	Fehler beim Auslesen der Schreib-Lese-Kopf-Version	
0xD003	53251	Fehler beim Auslesen der Schreib-Lese-Kopf-Version, wenn sich ein Datenträger im Erfassungsbereich befindet	
0xD004	53252	Fehler beim Setzen der Schreib-Lese-Kopf-Adresse	
0xD009	53257	Fehler bei der Parametrierung des UHF-Schreib-Lese-Kopfs	
0xD00A	53258	Fehler bei der Einstellung von Übertragungsgeschwindigkeit und Betriebsart des UHF-Schreib-Lese-Kopfs	
0xD00B	53259	Fehler beim Polling	
0xD00D	53261	Fehler beim Auslesen des Gerätestatus	
0xD00E	53262	Fehler beim Zurücksetzen der internen Status-Bits	
0xD00F	53263	Fehler beim Setzen der Schreib-Lese-Kopf-Ausgänge und/oder LEDs	
0xD011	53265	Fehler beim Auslesen der internen Störungen	
0xD014	53268	Diagnose-Fehler	
0xD016	53270	Fehler bei Heartbeat-Nachricht	
0xD017	53271	Fehler bei der Ausgabe der Benutzer-Einstellungen	
0xD01B	53275	Fehler beim Leeren des Nachrichtenspeichers im Polling-Modus	
0xD081	53377	Fehler beim Ein- oder Ausschalten des UHF-Datenträgers	
0xD083	53379	Fehler beim Lesen von einem Datenträger	
0xD084	53380	Fehler beim Schreiben auf einen Datenträger	
0xD085	53381	Fehler Software-Trigger	
0xD088	53384	Fehler bei der Ausgabe eines Befehls nach EPC Class1 Gen2	
0xD100	53504	Fehler bei der Backup-Funktion	

Fehlercode (hex.)	Fehlercode (dez.)	Bedeutung	
0xD101	53505	Fehler bei der Backup-Funktion (erforderlicher Speicher nicht vorhanden)	
0xD102	53506	Fehler beim Wiederherstellen eines Backups	
0xD103	53507	Fehler beim Wiederherstellen eines Backups (kein Backup vorhanden)	
0xD104	53508	Fehler beim Wiederherstellen eines Backups (Backup-Daten beschädigt)	
0xD105	53509	Fehler beim Wiederherstellen der Default-Einstellungen	
0xD106	53510	Fehler bei der Datenträger-Funktion	
0xF0	61	ISO-15693-Fehler	
0xF001	61441	ISO-15693-Fehler: Befehl nicht unterstützt	
0xF002	61442	ISO-15693-Fehler: Befehl nicht erkannt, z.B. falsches Eingabeformat	
0xF003	61443	ISO-15693-Fehler: Befehlsoption nicht unterstützt	
0xF00F	61455	ISO-15693-Fehler: undefinierter Fehler	
0xF010	61456	ISO-15693-Fehler: angesprochener Speicherbereich nicht verfügbar	
0xF011	61457	ISO-15693-Fehler: angesprochener Speicherbereich gesperrt	
0xF012	61458	ISO-15693-Fehler: angesprochener Speicherbereich gesperrt und nicht beschreibbar	
0xF013	61459	ISO-15693-Fehler: Schreibvorgang nicht erfolgreich	
0xF014	61460	ISO-15693-Fehler: angesprochener Speicherbereich konnte nicht gesperrt werden	
0xF0A00xF0DF	6160061663	Luftschnittstellen-Fehler	
2.5101		6 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
0xF101	61697	Luftschnittstellen-Fehler: CRC-Fehler	
0xF102	61698	Luftschnittstellen-Fehler: Time-out	
0xF104	61699	Luftschnittstellen-Fehler: HF-Datenträger-Fehler	
0xF108	61704	Luftschnittstellen-Fehler: HF-Datenträger außerhalb des Erfassungs- bereichs, bevor alle Befehle ausgeführt werden konnten	
0xF110	61712	Luftschnittstellen-Fehler: Datenträger hat nicht den erwarteten UID.	
0xF201	61953	HF-Schreib-Lese-Kopf defekt	
0xF202	61954	HF-Schreib-Lese-Kopf: Fehler bei der Befehlsausführung	
0xF204	61956	HF-Schreib-Lese-Kopf: Übertragungsfehler, Syntax überprüfen	
0xF208	61960	Versorgungsspannung des HF-Schreib-Lese-Kopfs zu niedrig	
0xF20A	61962	HF-Schreib-Lese-Kopf: Befehlscode unbekannt	
0xF8	63	UHF-Schreib-Lese-Kopf-Fehler	
0xF820	63520	UHF-Schreib-Lese-Kopf: Befehl nicht unterstützt	
0xF821	63521	UHF-Schreib-Lese-Kopf: unspezifizierter Fehler	
0xF822	63522	UHF-Schreib-Lese-Kopf: Ein gültiges Passwort wird erwartet, bevor der Befehl akzeptiert wird.	
0xF824	63524	UHF-Schreib-Lese-Kopf: Lesevorgang nicht möglich (z.B. ungültiger Datenträger)	
0xF825	63525	UHF-Schreib-Lese-Kopf: Schreibvorgang nicht möglich (z. B. Datenträger ausschließlich lesbar)	

Fehlercode (hex.)	Fehlercode (dez.)	Bedeutung
0xF827	63527	UHF-Schreib-Lese-Kopf: Zugriff auf unbekannte Adresse (z. B. Speicherbereich außerhalb des Bereichs)
0xF828	63528	UHF-Schreib-Lese-Kopf: Die zu sendenden Daten sind nicht gültig.
0xF82A	63530	UHF-Schreib-Lese-Kopf: Der Befehl braucht eine lange Zeit zum Ausführen.
0xF82C	63532	UHF-Schreib-Lese-Kopf: Das angeforderte Objekt befindet sich nicht im persistenten Speicher.
0xF82D	63533	UHF-Schreib-Lese-Kopf: Das angeforderte Objekt befindet sich nicht im flüchtigen Speicher.
0xF835	63541	UHF-Schreib-Lese-Kopf: Der Befehl ist vorübergehend nicht erlaubt.
0xF836	63542	UHF-Schreib-Lese-Kopf: Der Opcode ist für diese Art von Konfigurationsspeicher nicht gültig.
0xF880	63616	UHF-Schreib-Lese-Kopf: kein Datenträger im Feld
0xF881	63617	UHF-Schreib-Lese-Kopf: Der EPC des Befehls passt nicht zum EPC im Erfassungsbereich.
0xF882	63618	UHF-Schreib-Lese-Kopf: falscher Datenträgertyp im Befehl angegeben
0xF883	63619	Schreiben auf einen Block fehlgeschlagen
0xFFFE	65534	Time-out auf der RS485-Schnittstelle
0xFFFF	65535	Befehl wurde abgebrochen

9.18 Erweiterte Diagnosen nutzen – RFID-Kanäle

Die erweiterten Diagnosen im Webserver dienen zur spezifischen Fehlersuche für Turck-Service-Techniker.

Erweiterte Diagnosen im Webserver anzeigen:

- ▶ Webserver öffnen und auf dem Gerät einloggen.
- ▶ LOCAL I/O \rightarrow Diagnosis \rightarrow RFID-Kanal auswählen (hier: RFID channel 0).

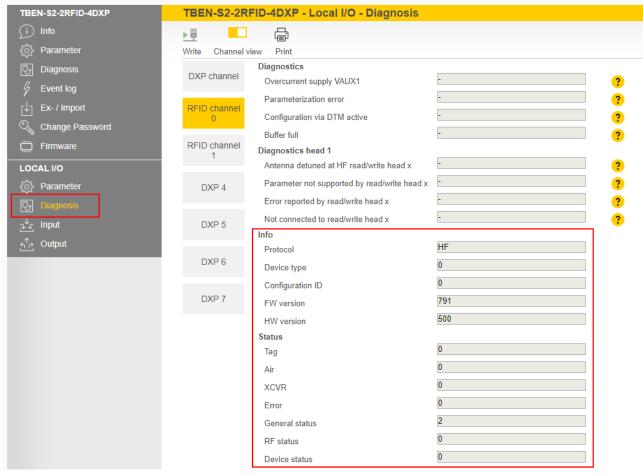


Abb. 154: Beispiel: erweiterte Diagnosen RFID-Kanal 0

Info	Beschreibung
Protocol	Technologie des angeschlossenen Schreib-Lese-Geräts (HF oder UHF)
Device type	Kennnummer für den Gerätetyp des angeschlossenen Schreib-Lese-Geräts
Configuration ID	Kennnummer für die Konfiguration des angeschlossenen Schreib-Lese- Geräts
FW version	Firmware-Version des angeschlossenen Schreib-Lese-Geräts
HW version	Hardware-Version des angeschlossenen Schreib-Lese-Geräts

Status	Beschreibung	Werte
Tag	Fehlercode HF-Daten- träger	1: Befehl nicht unterstützt 2: Befehl nicht erkannt, z. B. falsches Eingabeformat 3: Befehlsoption nicht unterstützt 15: undefinierter Fehler 16: angesprochener Speicherbereich nicht verfügbar 17: angesprochener Speicherbereich gesperrt 18: angesprochener Speicherbereich gesperrt und nicht beschreibbar 19: Schreibvorgang nicht erfolgreich 20: angesprochener Speicherbereich konnte nicht gesperrt werden 160223: benutzerspezifischer Fehlercode
Air	Fehlercode HF-Luftschnittstelle	1: CRC-Fehler 2: Timeout 4: HF-Datenträger-Fehler 8: HF-Datenträger außerhalb des Erfassungsbereichs, bevor alle Befehle ausgeführt werden konnten 16: Datenträger hat nicht den erwarteten UID.
XCVR	Fehlercode HF-Schreib-Lese-Kopf	1: HF-Schreib-Lese-Kopf defekt 2: Fehler bei der Befehlsausführung 4: Übertragungsfehler, Syntax überprüfen 8: Versorgungsspannung des HF-Schreib-Lese-Kopfs zu niedrig 16: Befehlscode unbekannt
Error	Fehlercode UHF-Reader	32: Befehl nicht unterstützt 33: unspezifizierter Fehler 34: Ein gültiges Passwort wird erwartet, bevor der Befehl akzeptiert wird. 36: Lesevorgang nicht möglich (z. B. ungültiger Datenträger) 37: Schreibvorgang nicht möglich (z. B. Datenträger ausschließlich lesbar) 38: Schreib- oder Lesefehler 39: Zugriff auf unbekannte Adresse (z. B. Speicherbereich außerhalb des Bereichs) 40: Die zu sendenden Daten sind nicht gültig. 42: Der Befehl braucht eine lange Zeit zum Ausführen. 44: Das angeforderte Objekt befindet sich nicht im persistenten Speicher. 45: Das angeforderte Objekt befindet sich nicht im flüchtigen Speicher. 53: Der Befehl ist vorübergehend nicht erlaubt. 54: Der Opcode ist für diese Art von Konfigurationsspeicher nicht gültig. 128: kein Datenträger im Feld 129: Der EPC des Befehls passt nicht zum EPC im Erfassungsbereich. 130: falscher Datenträgertyp im Befehl angegeben 131: Schreiben auf einen Block fehlgeschlagen
General status	allgemeiner Status UHF-Reader	Die angezeigten Werte ergeben sich aus folgender Bitstruktur: Bit 1: Datenträger vorhanden Bit 5: Testmodus aktiv Bit 6: Schreib-Lese-Kopf-Konfiguration beschädigt, Default-Einstellungen werden genutzt. Bit 7: Schreib-Lese-Kopf wurde zurückgesetzt (nach Reset).
RF status	Status des RF-Moduls UHF-Reader	Die angezeigten Werte ergeben sich aus folgender Bitstruktur: Bit 0: PLL nicht gesperrt Bit 1: Rückleistung zu hoch Bit 2: Antennenwiderstand zu hoch oder zu niedrig Bit 3: kein freier Kanal vorhanden Bit 4: Grenzwert für abgestrahlte Leistung überschritten

Status	Beschreibung	Werte
Device status	gerätespezifische Statusinformationen	Die angezeigten Werte ergeben sich aus folgender Bitstruktur: Bit 0: Konfiguration ungültig. Ausführung des Kommandos nicht möglich. Bit 1: Kommunikationsfehler Bit 2: Temperatur zu hoch Bit 3: Temperaturwarnung Bit 4: Fehler bei der Nachrichtengenerierung (im Polling-Modus außerhalb des Speicherbereichs)

9.18.1 Erweiterte Diagnosen nutzen – Zeitmessung für die Inbetriebnahme einer Applikation

Bei der Zeitmessung wird die Zeit der Übertragung vom Datenträger bis zum Interface gemessen. Die Übertragung der Daten an eine Steuerung wird nicht berücksichtigt.

Wenn im Parameter **HF: Auswahl Datenträger-Typ** ein bestimmter Datenträger ausgewählt ist, wird die Zeitmessung für den Schreibefehl bereits mit dessen Aktivierung gestartet. Die Zeitmessung ist unabhängig davon, ob sich ein Datenträger im Erfassungsbereich befindet. Die Zeitmessung ist für Schreib-Lese-Köpfe ab Firmware-Version Vx.91 verfügbar.

Zur erweiterten Diagnose und für Systemtests können die folgenden Werte angezeigt werden. Verfügbar sind aktuelle sowie minimale und maximale Werte.

- Zeit, in der das Bit Datenträger vorhanden gesetzt ist
- Dauer eines Inventory-Befehls
- Dauer eines Lesebefehls
- Dauer eines Schreibbefehls
- Zykluszeit des HF-Busmodus
- Zykluszeit des HF-Continuous-Busmodus

Beispiel: Erweiterte Diagnosen mit der FDT/DTM-Rahmenapplikation PACTware öffnen

- ▶ Diagnosen in PACTware öffnen.
- ► RFID-Kanal auswählen (hier: Kanal 0).
- Der Button **Expertenmodus ein-/ausschalten** wird in der Menüleiste angezeigt.
- Expertenmodus einschalten.
- ▶ Die Zeitmessung wird eingeblendet.

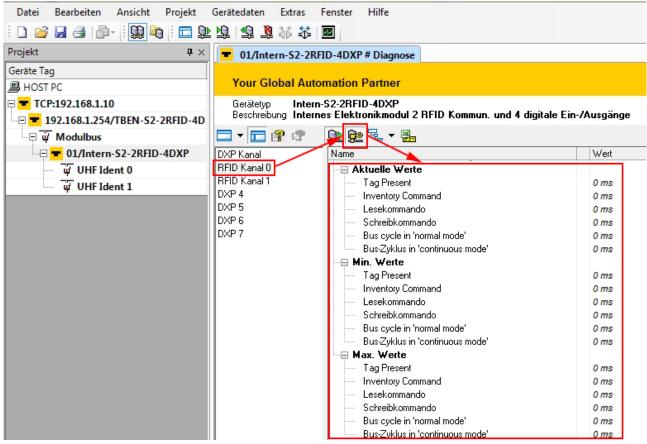


Abb. 155: Zeitmessung im DTM

Beispiel: Erweiterte Diagnosen im Webserver öffnen

- ▶ Webserver öffnen.
- ► Auf dem Gerät einloggen.
- ► LOCAL I/O → Diagnosis → RFID-Kanal auswählen (hier: RFID channel 0).
- ⇒ Die Zeitmessung wird eingeblendet.

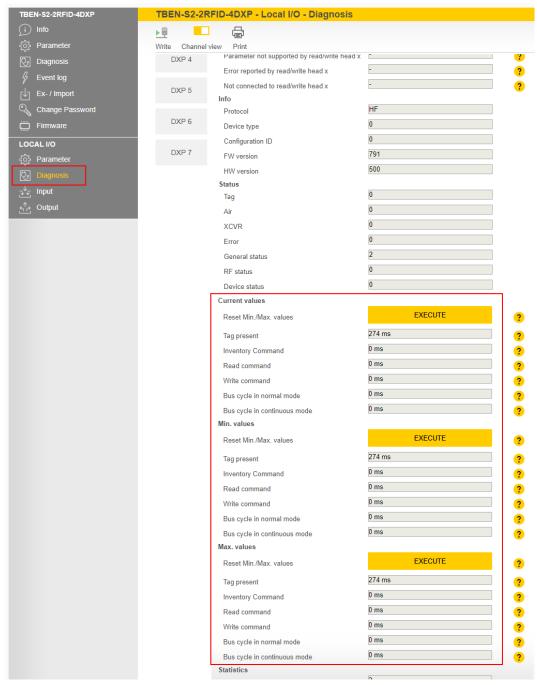


Abb. 156: Zeitmessung im Webserver

- HF-Anwendungen Firmware-Update angeschlossener HF-Schreib-Lese-Köpfe 9.19 über den Webserver
- Firmware-Update vorbereiten 9.19.1

HINWEIS

Um das Firmware-Update über PC und Webserver durchführen zu können, müssen sich das Gerät und der PC im gleichen IP-Netzwerk befinden und der Speicherort der neuen Firmware-Datei bekannt sein.

9.19.2 Webserver öffnen

Der Webserver lässt sich über einen Webbrowser oder über das Turck Service Tool öffnen. Der Aufruf des Webservers über das Turck Service Tool ist im Abschnitt "Netzwerk-Einstellungen anpassen" beschrieben.

Im Auslieferungszustand ist im Gerät die IP-Adresse 192.168.1.254 hinterlegt. Um den Webserver über einen Webbrowser zu öffnen, http://192.168.1.254 in die Adressleiste des Webbrowsers eingeben.

Auf der Startseite werden Statusinformationen und Netzwerkeinstellungen angezeigt.

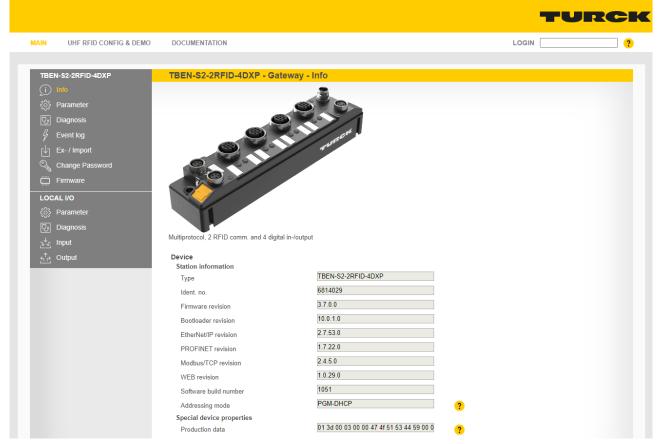


Abb. 157: Beispiel: Webserver – Startseite

9.19.3 Firmware-Update durchführen

ACHTUNG

Unterbrechung der Spannungsversorgung während des Firmware-Updates Geräteschäden durch fehlerhaftes Firmware-Update

- ► Spannungsversorgung des Geräts während des Firmware-Updates nicht unterbrechen.
- ▶ Während des Firmware-Updates keinen Spannungsreset durchführen.

Zur Durchführung des Firmware-Updates gehen Sie vor wie im Folgenden beschrieben:

Webserver aufrufen

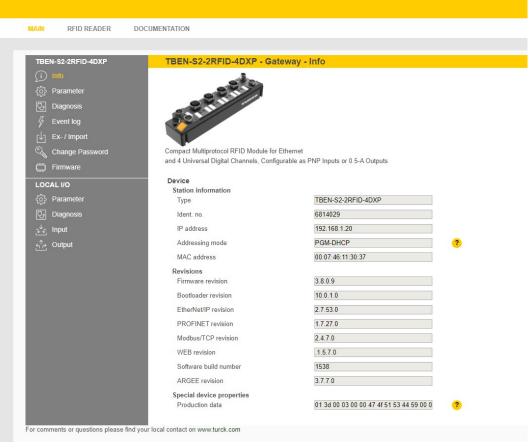


Abb. 158: Startseite Webserver

Bereich RFID Reader wählen und anschließend in der linken Spalte den Punkt Firmware des Geräts, an dem Sie das Firmware-Update durchführen möchten

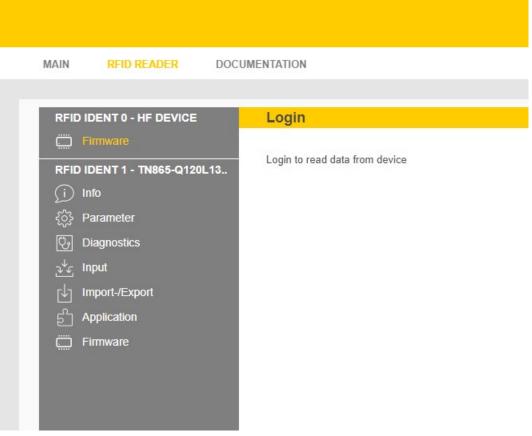


Abb. 159: RFID Reader

In das Gerät einloggen, falls noch nicht geschehen

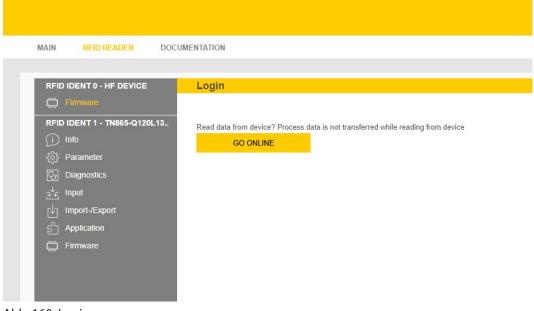


Abb. 160: Login

Passende Firmware-Datei über die Schaltfläche Select Firmware File auswählen

Abb. 161: Firmware auswählen

⇒ Firmware-Datei wird geladen

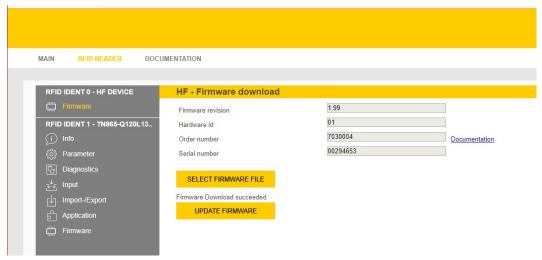


Abb. 162: Download der Firmware

Update über die Schaltfläche Update Firmware starten

Abb. 163: Firmware-Datei ausgewählt

Mit **OK** bestätigen

Abb. 164: Update starten

\Rightarrow Firmware-Update startet

Abb. 165: Update läuft

Nach erfolgreichem Update erhalten Sie eine entsprechende Meldung.

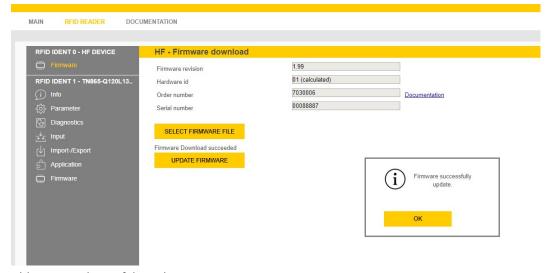


Abb. 166: Update erfolgreich

10 Störungen beseitigen

Wenn das Gerät nicht wie erwartet funktioniert, gehen Sie wie folgt vor:

- ▶ Umgebungsstörungen ausschließen.
- Anschlüsse des Geräts auf Fehler untersuchen.
- ► Gerät auf Parametrierfehler überprüfen.

Wenn die Fehlfunktion weiterhin besteht, liegt eine Gerätestörung vor. In diesem Fall nehmen Sie das Gerät außer Betrieb und ersetzen Sie es durch ein neues Gerät des gleichen Typs.

10.1 Parametrierfehler beheben

DXP-Kanäle

Fehler	Mögliche Ursachen	Maßnahme
DXP-Ausgang schaltet nicht	Der Ausgang ist in der Default-Einstellung des Geräts deaktiviert.	 Ausgangsfunktion über den Parameter Ausgang aktivieren (DXP_EN_DO = 1) freischalten.

11 Instand halten

Der ordnungsgemäße Zustand der Verbindungen und Kabel muss regelmäßig überprüft werden.

Die Geräte sind wartungsfrei, bei Bedarf trocken reinigen.

11.1 Firmware-Update durchführen

Die Firmware des Geräts lässt sich über FDT/DTM aktualisieren. Die FDT-Rahmenapplikation PACTware, der DTM für das Gerät und die aktuelle Firmware stehen unter www.turck.com zum kostenlosen Download zur Verfügung.

ACHTUNG

Unterbrechung der Spannungsversorgung während des Firmware-Updates Geräteschäden durch fehlerhaftes Firmware-Update

- ► Spannungsversorgung des Geräts während des Firmware-Updates nicht unterbrechen.
- ▶ Während des Firmware-Updates keinen Spannungsreset durchführen.

HINWEIS

Vor dem Update der Firmware-Version \leq 3.6.1.0 auf die Version \geq 3.7.0.0 muss der Bootloader auf die Version \geq 10.0.1.0 aktualisiert werden.

Beispiel: Firmware mit der FDT-Rahmenapplikation PACTware aktualisieren

- PACTware starten.
- ► Rechtsklick auf **HOST PC** ausführen → **Gerät hinzufügen**.



Abb. 167: Gerät in PACTware hinzufügen

▶ BL Service Ethernet auswählen und mit OK bestätigen.

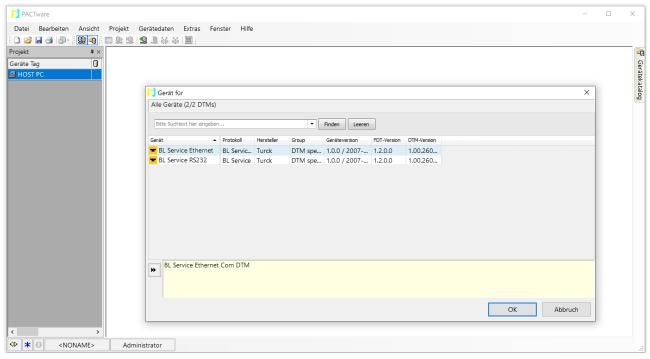


Abb. 168: Ethernet-Schnittstelle auswählen

- ▶ Doppelklick auf das angeschlossene Gerät ausführen.
- ⇒ PACTware öffnet das Busadressen-Management.

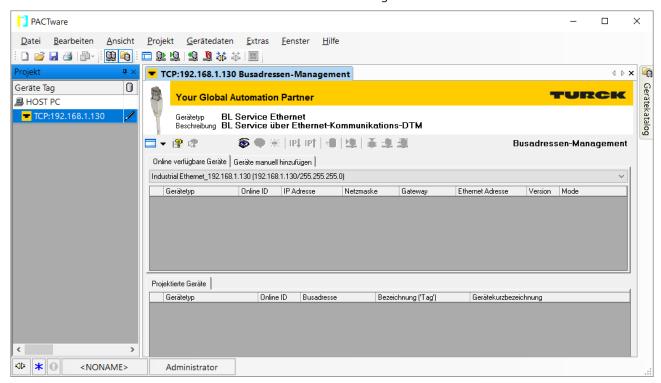


Abb. 169: Busadressen-Management öffnen

- Angeschlossene Ethernet-Geräte suchen: **Suchen**-Icon klicken.
- Gewünschtes Gerät markieren.

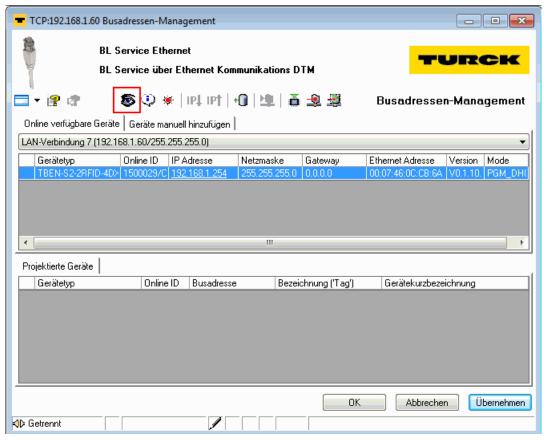


Abb. 170: Gerät auswählen

ACHTUNG

Fehlerhaftes Firmware-Update

Einschränkung der Gerätefunktionen durch fehlenden Webserver

▶ Bootloader auf Version ≥ 10.0.1.0 aktualisieren.

Bootloader-Version prüfen

- ▶ Webserver über einen Webbrowser oder das Turck Service Tool öffnen.
- In den Statusinformationen auf der Startseite die aktuelle Bootloader-Version prüfen.

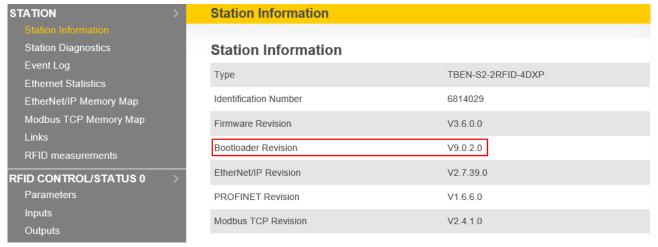


Abb. 171: Bootloader-Version im Webserver prüfen

- Wenn die Bootloader-Version < 10.0.1.0 ist, muss vor dem Firmware-Update der Bootloader aktualisiert werden.
- Wenn die Bootloader-Version ≥ 10.0.1.0 ist, mit dem Firmware-Update fortfahren (s. [> 273]).

Bootloader aktualisieren

- ▶ Button Firmware-Download klicken.
- ▶ Den angezeigten Bootloader auswählen und Öffnen klicken.

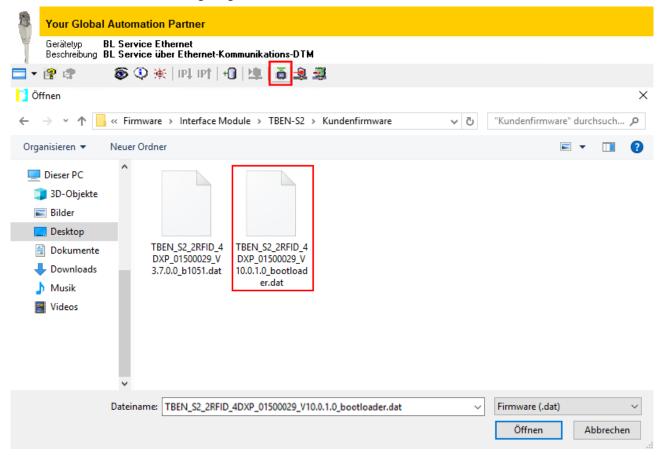


Abb. 172: Bootloader auswählen

⇒ PACTware zeigt den Verlauf des Bootloader-Updates mit einem grünen Balken am unteren Bildrand an.

Firmware aktualisieren

- ▶ Button Firmware-Download klicken.
- ▶ Die Firmware auswählen und Öffnen klicken.

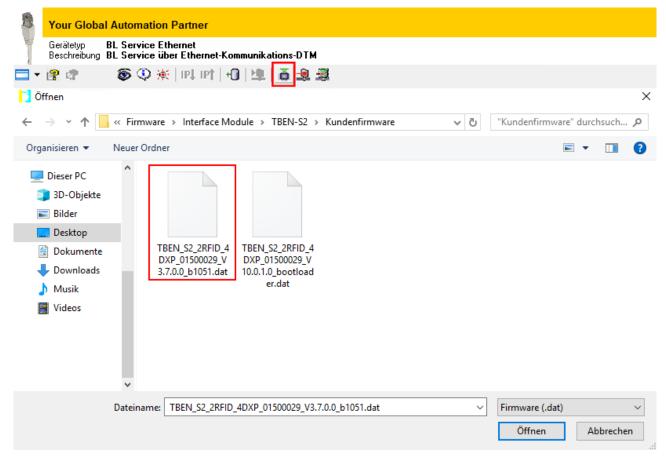


Abb. 173: Firmware-Update starten

PACTware zeigt den Verlauf des Firmware-Updates mit einem grünen Balken am unteren Bildrand an.

Abb. 174: Laufendes Firmware-Update

12 Reparieren

Das Gerät ist nicht zur Reparatur durch den Benutzer vorgesehen. Sollte das Gerät defekt sein, nehmen Sie es außer Betrieb. Bei Rücksendung an Turck beachten Sie unsere Rücknahmebedingungen.

12.1 Geräte zurücksenden

Rücksendungen an Turck können nur entgegengenommen werden, wenn dem Gerät eine Dekontaminationserklärung beiliegt. Die Erklärung steht unter http://www.turck.de/de/produkt-retoure-6079.php

zur Verfügung und muss vollständig ausgefüllt, wetter- und transportsicher an der Außenseite der Verpackung angebracht sein.

13 Entsorgen

Die Geräte müssen fachgerecht entsorgt werden und gehören nicht in den normalen Hausmüll.

14 Technische Daten

Technische Daten	
Versorgung	
Versorgungsspannung	24 VDC
Zulässiger Bereich	1830 VDC Gesamtstrom max. 4 A pro Spannungsgruppe Gesamtstrom V1 + V2 max. 5,5 A bei 70°C pro Modul
Anschlusstechnik Spannungsversorgung	$2 \times M8$, 4-polig
Betriebsstrom	V1: max. 120 mA V2: max. 30 mA
RFID-Versorgung	Steckplätze C0C1 aus V1 kurzschlussfest, 1,2 A \leq 55 °C, 55 °C $<$ 0,5 A \leq 70 °C pro Kanal
Sensor-/Aktuatorversorgung	Steckplätze C2C3 aus V2 kurzschlussfest, 0,14 A $<$ 55 °C, 55 °C $<$ 0,05 A $<$ 70 °C
Potenzialtrennung	galvanische Trennung von V1- und V2-Span- nungsgruppe spannungsfest bis 500 VDC
Systemdaten	
Übertragungsrate Ethernet	10 Mbit/s / 100 Mbit/s
Anschlusstechnik Ethernet	$2 \times M8$, 4-polig, D-codiert
Protokollerkennung	automatisch
Webserver	Default: 192.168.1.254
Service-Schnittstelle	Ethernet via P1 oder P2
Field Logic Controller (FLC)	
ARGEE Firmware-Version	3.3.5.0
ARGEE Engineering-Version	2.0.26.0
Modbus TCP	
Adressierung	Static IP, BOOTP, DHCP
Unterstützte Function Codes	FC1, FC2, FC3, FC4, FC5, FC6, FC15, FC16, FC23
Anzahl TCP-Verbindungen	8
Input Register Startadresse	0 (0x0000)
Output Register Startadresse	2048 (0x0800)
EtherNet/IP	
Adressierung	gemäß EtherNet/IP-Spezifikation
Quick Connect (QC)	< 500 ms
Device Level Ring (DLR)	unterstützt
Class-3-Verbindungen (TCP)	3
Class-1-Verbindungen (CIP)	10
Input Assembly Instance	103
Output Assembly Instance	104
Configuration Assembly Instance	106

Technische Daten	
PROFINET	
Adressierung	DCP
Konformitätsklasse	B (RT)
MinCycleTime	1 ms
	< 500 ms
Fast Start-Up (FSU)	
Diagnose Tanalagiaarkannung	gemäß PROFINET Alarm Handling unterstützt
Topologieerkennung	
Automatische Adressierung	unterstützt unterstützt
Media Redundancy Protocol (MRP)	S2
Systemredundanz RFID	52
Kanalanzahl	2
Anschlusstechnik	M12
Versorgung	1,2 A \leq 55 °C, 55 °C $<$ 0,5 A \leq 70 °C pro Kanal, kurzschlussfest
Betrieb pro Kanal	1 × HF-Schreib-Lese-Kopf oder UHF-Reader, bis zu 32 busfähige HF-Schreib-Lese-Köpfe mit En- dung /C53 (ggf. zusätzliche Spannungseinspei- sung erforderlich)
RFID-Dateninterface	HF und UHF
Leitungslänge	max. 50 m
Digitale Eingänge	
Kanalanzahl	4
Anschlusstechnik Eingänge	M12, 5-polig
Eingangstyp	PNP
Art der Eingangsdiagnose	Kanaldiagnose
Schaltschwelle	EN 61131-2 Typ 3, PNP
Signalspannung Low-Pegel	< 5 V
Signalspannung High-Pegel	> 11V
Signalstrom Low-Pegel	< 1,5 mA
Signalstrom High-Pegel	> 2 mA
Eingangsverzögerung	0,05 ms
Potenzialtrennung	galvanische Trennung zum Feldbus, spannungsfest bis 500 VDC
Digitale Ausgänge	
Kanalanzahl	4
Anschlusstechnik Ausgänge	M12, 5-polig
Ausgangstyp	PNP
Art der Eingangsdiagnose	Kanaldiagnose
Ausgangsspannung	24 VDC aus Potenzialgruppe V2
Ausgangsstrom pro Kanal	0,5 A, kurzschlussfest
Gleichzeitigkeitsfaktor	1 (0,03 > 55 °C)
Lastart	EN 60947-5-1: DC-13
Kurzschlusschutz	ja
Naizaciiuaaciiutz	

Technische Daten		
Potenzialtrennung	galvanische Trennung zum Feldbus, spannungsfest bis 500 VDC	
Norm-/Richtlinienkonformität		
Schwingungsprüfung	gemäß EN 60068-2-6, Beschleunigung bis 20 g	
Schockprüfung	gemäß EN 60068-2-27	
Kippfallen und Umstürzen	gemäß IEC 60068-2-31/IEC 60068-2-32	
Elektromagnetische Verträglichkeit	gemäß EN 61131-2	
Zulassungen und Zertifikate	CE FCC UV-beständig nach DIN EN ISO 4892-2A (2013)	
UL-Zertifikat	cULus LISTED 21 W2, Encl.Type 1 IND.CONT.EQ.	
Allgemeine Information		
Abmessungen (B \times L \times H)	32 × 144 × 31 mm	
Betriebstemperatur	-40+70 °C	
Lagertemperatur	-40+70 °C	
Einsatzhöhe	max. 5000 m	
Schutzart	IP65/IP67/IP69K	
MTTF	179 Jahre nach SN 29500 (Ed. 99) 20 °C	
Gehäusematerial	PA6-GF30	
Gehäusefarbe	schwarz	
Material Label	Polycarbonat	
Halogenfrei	ja	
Montage	2 Befestigungslöcher, Ø 4,6 mm	

Hinweis zu FCC

HINWEIS

Dieses Gerät entspricht den Grenzwerten für ein digitales Gerät der Klasse A gemäß Teil 15 der FCC-Bestimmungen. Der Betrieb dieses Geräts in einem Wohngebiet kann zu schädlichen Störungen führen. In diesem Fall muss der Benutzer die Störungen auf eigene Kosten beheben.

- Anhang: Ablaufdiagramme zur Funktionsweise des Geräts

 Die Ablaufdiagramme erläutern die Funktionsweise des Geräts sowie die Befehlsverarbeitung.
- 15.1 Ablaufdiagramm: Befehlsverarbeitung

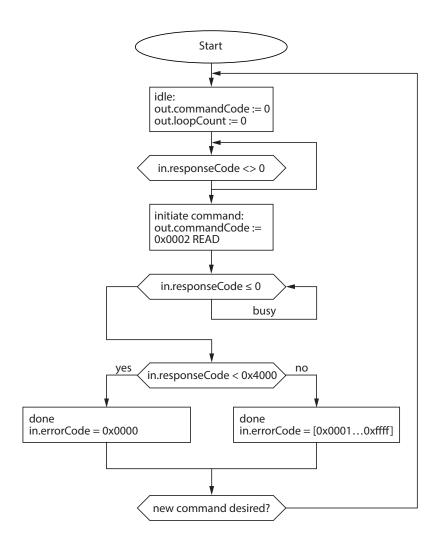
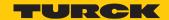



Abb. 175: Ablaufdiagramm zur Befehlsverarbeitung

15.1.1 Handling der Befehlsausführung mit Busy und Error - Beispielcode in CODESYS Im Folgenden finden Sie einen Beispielcode für die Auswertung im SPS-Programm.

```
commandCode : INT;
responseCode : INT;
responseCodePrevious : INT;
commandCode:= 0x0002; (* READ *)
(* ... PLC cycle ... *)
IF (responseCode <> responseCodePrevious) THEN
IF (responseCode < 0) THEN</pre>
(* BUSY *)
ELSE
IF (responseCode == commandCode) THEN
(* success *)
ELSIF (0x8000 == commandCode) AND (0x0000 == responseCode) THEN
(* reset success *)
ELSE
(* error *)
END IF;
END IF;
responseCodePrevious:= responseCode;
END IF;
```


15.2 Ablaufdiagramm: Schnelle Befehlsverarbeitung mit Schleifenzähler

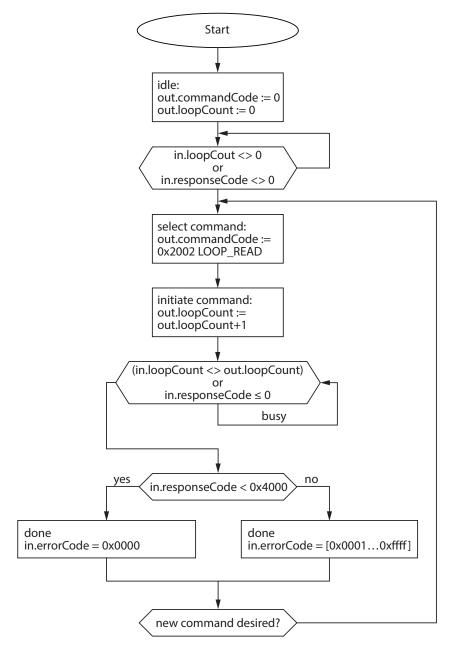


Abb. 176: Ablaufdiagramm zur schnellen Befehlsverarbeitung mit Schleifenzähler

15.3 Ablaufdiagramm: Befehlsverarbeitung mit Fragmentierung

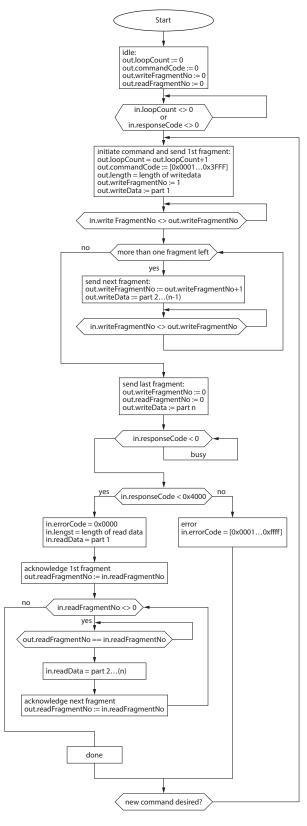


Abb. 177: Ablaufdiagramm zur Befehlsverarbeitung mit Fragmentierung

15.4 Ablaufdiagramm: Continuous Mode mit Unterbrechung vor dem Auslesen von Daten

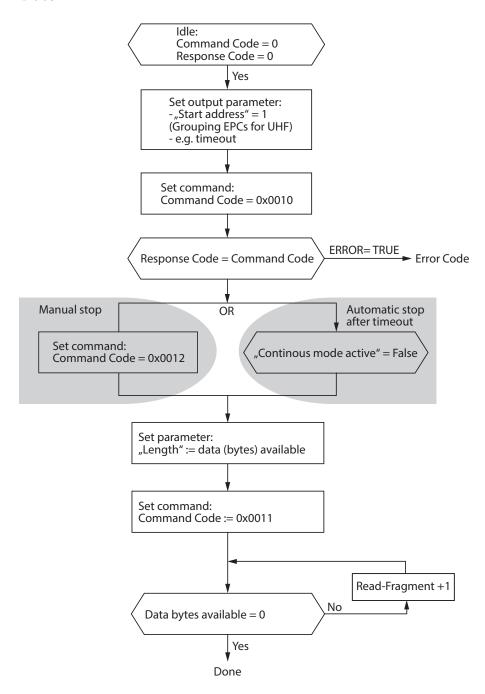
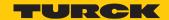
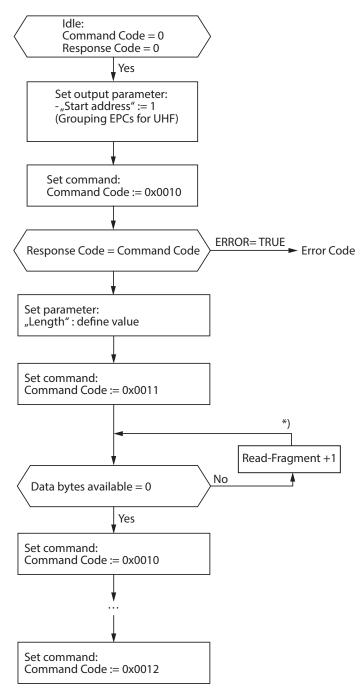
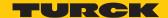




Abb. 178: Ablaufdiagramm zum Continuous Mode mit Unterbrechung vor dem Auslesen von Daten



15.5 Ablaufdiagramm: Continuous Mode ohne Unterbrechung vor dem Auslesen von Daten

^{*)} After increasing the Read Fragment No., the new data will be shown in the read data input.

Abb. 179: Ablaufdiagramm zum Continuous Mode ohne Unterbrechung vor dem Auslesen von Daten

15.6 Ablaufdiagramm: Datenträger mit Passwort programmieren

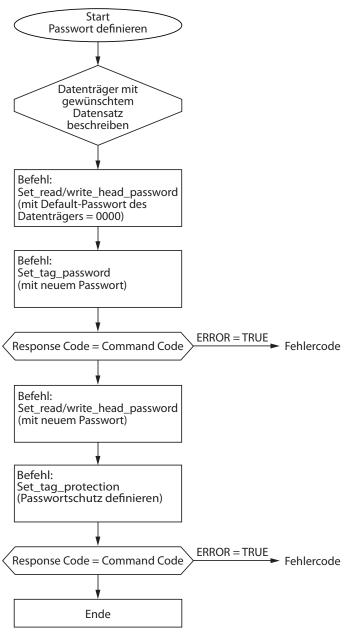


Abb. 180: Datenträger mit Passwort programmieren

16 Anhang: Zulassungen und Kennzeichnungen

Zulassungen	Kennzeichnung gemäß ATEX-Richtlinie UKSI (SI 2016/1107)	EN 60079-0/-7/-31
ATEX-Zulassung Nr.: TÜV 20 ATEX 264795 X UKEX-Zulassung Nr.: TURCK Ex-20002HX	⟨ □ 3 G(□ 1 3 D	Ex ec IIC T4 Gc Ex tc IIIC T115 °C Dc
IECEx-Zulassung Nr.: IECEx TUN 20.0010X		Ex ec IIC T4 Gc Ex tc IIIC T115 °C Dc

Umgebungstemperatur T_{amb} : -25 °C...+60 °C

Typenbezeichnung	TBEN-S2-2RFID-4DXP
Versorgungsspannung	24 VDC ±10 %
Eingangsstrom I _{max}	5,5 A (Gesamtstrom pro Modul)
Ausgangsstrom I _{max}	0,5 A (pro Ausgang)

17 Turck-Niederlassungen – Kontaktdaten

Deutschland Hans Turck GmbH & Co. KG

Witzlebenstraße 7, 45472 Mülheim an der Ruhr

www.turck.de

Australien Turck Australia Pty Ltd

Building 4, 19-25 Duerdin Street, Notting Hill, 3168 Victoria

www.turck.com.au

Belgien TURCK MULTIPROX

Lion d'Orweg 12, B-9300 Aalst

www.multiprox.be

Brasilien Turck do Brasil Automação Ltda.

Rua Anjo Custódio Nr. 42, Jardim Anália Franco, CEP 03358-040 São Paulo

www.turck.com.br

China Turck (Tianjin) Sensor Co. Ltd.

18,4th Xinghuazhi Road, Xiqing Economic Development Area, 300381

Tianjin

www.turck.com.cn

Frankreich TURCK BANNER S.A.S.

11 rue de Courtalin Bat C, Magny Le Hongre, F-77703 MARNE LA VALLEE

Cedex 4

www.turckbanner.fr

Großbritannien TURCK BANNER LIMITED

Blenheim House, Hurricane Way, GB-SS11 8YT Wickford, Essex

www.turckbanner.co.uk

Indien TURCK India Automation Pvt. Ltd.

401-403 Aurum Avenue, Survey. No 109 /4, Near Cummins Complex,

Baner-Balewadi Link Rd., 411045 Pune - Maharashtra

www.turck.co.in

Italien TURCK BANNER S.R.L.

Via San Domenico 5, IT-20008 Bareggio (MI)

www.turckbanner.it

Japan TURCK Japan Corporation

ISM Akihabara 1F, 1-24-2, Taito, Taito-ku, 110-0016 Tokyo

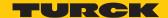
www.turck.jp

Kanada Turck Canada Inc.

140 Duffield Drive, CDN-Markham, Ontario L6G 1B5

www.turck.ca

Korea Turck Korea Co, Ltd.


B-509 Gwangmyeong Technopark, 60 Haan-ro, Gwangmyeong-si,

14322 Gyeonggi-Do www.turck.kr

Malaysia Turck Banner Malaysia Sdn Bhd

Unit A-23A-08, Tower A, Pinnacle Petaling Jaya, Jalan Utara C,

46200 Petaling Jaya Selangor www.turckbanner.my

Mexiko Turck Comercial, S. de RL de CV

Blvd. Campestre No. 100, Parque Industrial SERVER, C.P. 25350 Arteaga,

Coahuila

www.turck.com.mx

Niederlande Turck B. V.

Ruiterlaan 7, NL-8019 BN Zwolle

www.turck.nl

Österreich Turck GmbH

Graumanngasse 7/A5-1, A-1150 Wien

www.turck.at

Polen TURCK sp.z.o.o.

Wrocławska 115, PL-45-836 Opole

www.turck.pl

Rumänien Turck Automation Romania SRL

Str. Siriului nr. 6-8, Sector 1, RO-014354 Bucuresti

www.turck.ro

Russland TURCK RUS OOO

2-nd Pryadilnaya Street, 1, 105037 Moscow

www.turck.ru

Schweden Turck Sweden Office

Fabriksstråket 9, 433 76 Jonsered

www.turck.se

Singapur TURCK BANNER Singapore Pte. Ltd.

25 International Business Park, #04-75/77 (West Wing) German Centre,

609916 Singapore www.turckbanner.sg

Südafrika Turck Banner (Pty) Ltd

Boeing Road East, Bedfordview, ZA-2007 Johannesburg

www.turckbanner.co.za

Tschechien TURCK s.r.o.

Na Brne 2065, CZ-500 06 Hradec Králové

www.turck.cz

Türkei Turck Otomasyon Ticaret Limited Sirketi

Inönü mah. Kayisdagi c., Yesil Konak Evleri No: 178, A Blok D:4,

34755 Kadiköy/ Istanbul www.turck.com.tr

Ungarn TURCK Hungary kft.

Árpád fejedelem útja 26-28., Óbuda Gate, 2. em., H-1023 Budapest

www.turck.hu

USA Turck Inc.

3000 Campus Drive, USA-MN 55441 Minneapolis

www.turck.us

TURCK

Over 30 subsidiaries and 60 representations worldwide!

www.turck.com